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Abstract
By use of asymptotic integration and Prüfer angles, we
show that the point spectrum of the Coulomb-Dirac oper-
ator H0 is the limit of the point spectrum of the Dirac oper-
ator with anomalous magnetic moment Ha as a → 0. For
negative angular momentum quantum number κ, this holds
for all coupling constants c for which H0 has self-adjoint
realisation. For positive κ, there is a region near the origin
where the eigenfunctions of Ha experience oscillations.

Introduction
By separation of variables in spherical coordinates, the
Dirac operator with a Coulomb potential

H0 = −i~α · ∇ + βm− Ze
|x|
, taking ~ = c = 1 (1)

with ~α = (α1, α2, α3) and β symmetric 4× 4 matrices satis-
fying the anticommutation relations

αiαj + αjαi = 2δijI ∀ i, j = 1, 2, 3

αiβ + βαi = 0

α2 = β2 = I,

is unitarily equivalent to a direct sum of one-dimensional
Dirac operators on the half line

H0 = −iσ2
d

dr
+ mσ3 +

κ

r
σ1 −

Ze

r
r ∈ (0,∞) (2)

defined on L2(0,∞)2 with domain D = C∞0 (0,∞)2. The σi
are the Pauli matrices and κ ∈ Z \ 0 is the angular momen-
tum quantum number. Z is the atomic number.
Pauli suggested a modification of (1) to include the anoma-
lous magnetic moment term and equation (2) with this term
becomes

Ha = −iσ2
d

dr
+ mσ3 + (

κ

r
+
a

r2
)σ1 +

c

r
r ∈ (0,∞) (3)

defined on L2(0,∞)2 with c = −Ze. The mathematical in-
vestigation of (3) was initiated by Behncke [1], [2] and [3].
He has shown that Ha is essentially self-adjoint for a very
large class of potentials including the Coulomb potential.
This is in marked contrast to the case of H0 [5] which is
essentially self-adjoint on its minimal domain if and only if
c2 < κ2 − 1

4. C
∞
0 (0,∞)2 is a common core for both H0 and

Ha at least for c2 < κ2 − 1
4 and hence Ha

srs→ H0 as a → 0,
meaning the spectrum cannot expand suddenly in the limit
though it can contract. The essential spectrum σess(Ha) of
Ha is similar that of H0 and is (−∞,−m] ∪ [m,∞). H0

is known to have infinitely many eigenvalues in the spec-
tral gap [−m,m], which accumulate at right end point m.
One would therefore expect that the eigenvalues of Ha will
be perturbations of those of H0 such that each eigenvalue
of H0 will be the limit of exactly one eigenvalue branch
of Ha as a → 0. This expectation is partly influenced by
the strong resolvent convergence of Ha to H0. Behncke
[3] by decoupling equation (3) has shown stability of the
point spectra at least for κ ≥ 3. Kalf and Schmidt [4] ex-
tended Behncke’s results to hold for all κ by using asymp-
totic analysis of Pruefer and Riccati equations equivalent
to the eigenvalue equation of Ha. In our study we use the
asymptotic integration in conjunction with the Pruefer an-
gle to obtain similar results as those of Kalf and Schmidt.

Asymptotic Integration
Our starting point is the eigenvalue equation (Ha−λ)y = 0.
Written explicitly one obtains

y′ = Ay A =

(
−( ax2 + κ

x) −c
x + m + λ

c
x + m− λ a

x2 + κ
x

)
(4)

The equivalent Pruefer differential equations are

θ′(x) =
c

x
− λ + (

a

x2
+
κ

x
) sin 2θ + m cos 2θ

(ln ρ)′ = m sin 2θ − (
a

x2
+
κ

x
) cos 2θ

Using asymptotic integration, we study the behaviour of
eigenfunctions near the end points 0 and ∞. Clearly, the
eigenvalue equation is singular at these points. For spec-
tral convergence and stability, we need the eigenfunctions
to be square integrable. Stability here implies that for ε > 0
and for some λa ∈ (λ0 − ε, λ0 + ε), the λa−eigenfunction
y(λ, x) are ε-approximate to those of H0. If one can show
that for sufficiently small a, the equivalent Pruefer angles
corresponding to the L2 solutions of Ha converge to those
of H0, then we are done. To perform asymptotic integra-
tion, we need distinct eigenvalues and the corresponding
eigenvectors.

Behaviour near infinity
Here m and λ terms are dominant and the eigenvalues are
given as

µa ≈ ±(m+m−)
1
2

(
1 +

cλ

m+m−x
+

κ2 − c2

2m+m−x2
+ o(x−3)

)
(5)

The corresponding eigenvectors are(
1
b+

)
and

(
b−
1

)
for µa ≷ 0,

respectively with b± ≈ ±(m±)−1

{
(m+m−)

1
2 + cλ

x(m+m−)
1
2
+

κ
x ± (m∓m±)

1
2
c
x + o(x−2)

}
The diagonalising matrix T is

formed by these vectors as its columns and the trans-
formation y = Tz yields z′ = (Λ − T−1T ′)z, with
Λ = diag(µ,−µ). The correction terms can be easily ob-
tained. Further diagonalisation can be carried out, however
in our case the first one is sufficient. The eigenfunctions
thus have the form y(λ, x) ≈ (~b + r(x))x

± mλ
m+m−e±(m+m−)

1
2x

with r(x) ≈ o(x−2). The L2−angle is thus given by

tan θa ≈ b−1
− = −

(
m−
m+

)1
2

+ a1
x + a2

x2 + a
m+x2

where a1 =
m

m
3
2
+m

1
2
−

(
κz

1+z − c
)

and λ2

m2 = (1+z)−1 with z = c2

(n′+(κ2−c2)
1
2)2

,

and a2 =
(
m−
m+

)1
2 (κ2−c2)

2m+m−
+ c2λ

(m+m−)
3
2

+ cκ
m+m−

. For a = 0, this

L2-angle has the same value as that of H0. This means that
θa→ θ0 as a→ 0, giving exact convergence for all κ.

Behaviour near zero.
Here we introduce a new variable t = x−1, giving a new
system

y′ = Ay, A =

(
a + κ

t
c
t − t

−2(m + λ)
−c
t − t

−2(m− λ) −(a + κ
t )

)
(6)

Here m and λ terms are small and can be neglected. Thus
the eigenvalues are µa ≈ ±1

t [(at + κ)2 − c2]
1
2 and the corre-

sponding eigenvectors are(
1
b

)
and

(
b
1

)
for µa ≷ 0,

respectively with b = −(µa+a+κ
t )

c
t

. The above diagonalisation
procedure can be done again and the eigenfunctions thus
takes the form y(λ, x) ≈ (~b + r(x))e

∫ t
a µads.

The corresponding L2-angle is given by

tan θa ≈
[(at + κ)2 − c2]

1
2 + at + κ

−c
. (7)

Here we distinguish between two cases: κ < 0 and κ > 0.

Case κ < 0, a < 0
Close to the origin, the term at+κ is dominant. By assump-
tion, |κ| > |c| and hence b→ 0. This means that tan θa→ 0
as x→ 0 and thus θa→ nπ, n = 0, 1, 2, . . . . If a→ 0, we
have tan θa → (κ2−c2)

1
2+κ

−c which is equal to the case for H0.
This is in line with the results obtained by Kalf and Schmidt
and we have the following stability result.

Proposition 1 For any ε > 0 and λ0 there exists a0 < 0 and
R(ε) so that any normalized λ(a)− eigenfunction u of Ha

with λ(a) − λ0 ≤ ε satisfies ||y|| ≤ ε uniformly in [λ0 −
ε, λ0 + ε] and a0 < a < 0

Case κ > 0, a < 0
Here we have three regions to consider. The region where
κ is dominant, the region where a term is dominant and the
the region where the a term is approximately equal to κ.
In the latter case, µa changes sign and the eigenfunctions
experiences oscillations. This transition takes place in the
interval κ+|c|

−a < t < κ−|c|
−a . Thus there are values of c where

µa is imaginary. Except for these values of c, the eigen-
functions are stable since in the region κ+|c|

−a < t < κ−|c|
−a , the

functions are approximately constant. In the region where
κ is dominant, a

x2 is integrable and we have a regular pertur-
bation. Near the origin, where the a term is dominant, we
can apply asymptotic integration to obtain the behaviour of
the eigenfunctions.

Conclusion
In quantum mechanics, the eigenvalues correspond to the
energy levels. The eigenfunctions are the states of the sys-
tem at any time t. Stability therefore of the eigenvalues im-
plies one has a bound on the energy levels and hence also
a bound on the states. Our method, asymptotic integration,
can be used in obtaining better estimates of the energy lev-
els and thus can provide Physicists with an easier way of
obtaining bound states.
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