Alessandro Oneto

joint work with J.Backelin and R.Fröberg.
Departement of Mathematics at Stockholm University, Sweden

University

Abstract

In relation to the recent work [1] due to R. Fröberg, G. Ottaviani and B. Shapiro in connection with the Waring problem for polynomials, we are interested in study a particular class of power ideals.

In this poster, we will focus in particular on the computation of the Hilbert function of such ideals.

Basic notations

Fix a triple of positive integers (k, d, n) with $k \geq 2$. Let $S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$.

Definition. An homogeneous ideal $I \subset S$ is called a power ideal if I is generated by some powers $L_{1}^{d_{1}}, \ldots, L_{s}^{d_{s}}$ where the L_{i} 's are linear forms.

Let \mathbb{Z}_{k} be the group of cosets modulo k. We are interested in the following class of power ideals
$I_{k, d, n}:=\left(\phi_{\mathbf{g}}^{D} \mid \mathbf{g} \in \mathbb{Z}_{k}^{n+1}\right)$, with $D:=(k-1) d$, where

$$
\phi_{\mathbf{g}}(\mathbf{x}):=x_{0}+\xi^{g_{1}} x_{1}+\ldots+\xi^{g_{n}} x_{n}
$$

and ξ is a $k^{t h}$-root of unity.

First properties

We'll denote the weight of $\mathbf{g} \in \mathbb{Z}_{k}^{n+1}$ as

$$
\mathrm{wt}(\mathbf{g}):=\sum_{i=0}^{n} g_{i} .
$$

Fact 1. $S_{i, \mathbf{g}} \neq 0 \Leftrightarrow i-\mathrm{wt}(\mathbf{g})=m k$ for some $m \in \mathbb{N}$, in which case

$$
\operatorname{dim}_{\mathbb{C}} S_{i, \mathbf{g}}=\binom{n+m}{m}
$$

We represent the generator $\phi_{\mathbf{0}}$ of our ideal $I_{k, d, n}$ as

$$
\phi_{\mathbf{0}}^{D}(\mathbf{x})=\left(x_{0}+x_{1}+\ldots+x_{n}\right)^{D}=\sum_{\mathbf{g} \in \mathbb{Z}_{k}^{n+1}} \psi_{\mathbf{g}}(\mathbf{x})
$$

We have $\psi_{\mathbf{g}} \in S_{D, \mathbf{g}}$ and one can show that

$$
\psi_{\mathbf{g}} \neq 0 \Leftrightarrow S_{D, \mathbf{g}} \neq 0
$$

Fact 2. $I_{k, d, n}$ is minimally generated by $\left\{\psi_{\mathbf{g}}\right\}$.
In order to compute the Hilbert function of $I_{k, n, d}$, we define the maps

$$
\mu_{i, \mathbf{h}}: \bigoplus_{\mathbf{g} \in \mathbb{Z}_{k}^{n+1}} S_{i, \mathbf{h}-\mathbf{g}} \xrightarrow{\cdot \psi_{\mathbf{g}}} S_{i+D, \mathbf{h}},
$$

given by multiplications by $\psi_{\mathbf{g}}$.

The multicyclic gradation

Consider the extension of the usual of the projection map,

$$
\pi_{n+1}: \mathbb{N}^{n+1} \rightarrow \mathbb{Z}_{k}^{n+1},\left(a_{0}, \ldots, a_{n}\right) \mapsto\left(\left[a_{0}\right]_{k}, \ldots,\left[a_{n}\right]_{k}\right)
$$

For any monomial $\mathbf{x}^{\mathbf{a}}:=x_{0}^{a_{0}} \ldots x_{n}^{a_{n}}$, we define the multicyclic degree as

$$
\operatorname{mcdeg}\left(\mathbf{x}^{\mathbf{a}}\right):=\pi_{n+1}(\mathbf{a}) \in \mathbb{Z}_{k}^{n+1}
$$

which yelds to a multicyclic grading on S. Combining with the total degree $S=\bigoplus_{i \in \mathbb{N}} S_{i}$, we get the bigrading

$$
S=\bigoplus_{\mathbf{g} \in \mathbb{Z}_{k}^{n+1}} S_{\mathbf{g}}=\bigoplus_{\mathbf{g} \in \mathbb{Z}_{k}^{n+1}} \bigoplus_{i \in \mathbb{N}} S_{i, \mathbf{g}}, \text { where } S_{i, \mathbf{g}}:=S_{i} \cap S_{\mathbf{g}}
$$

Main result: the $k=2$ case

From now on, we consider $\mathbf{k}=\mathbf{2}$, i.e. $D=d$ and the coefficients of the generators $\phi_{\mathbf{g}}$ are simply ± 1.

Lemma. (1) $\mu_{i, \mathbf{h}}$ is injective for $\mathrm{wt}(\mathbf{h}) \leq d-i$;
(2) $\mu_{i, \mathbf{h}}$ is surjective for $\mathrm{wt}(\mathbf{h}) \geq d-i$.

Denoting the quotient ring as $R=S / I_{2, d, n}$, we have $\operatorname{HF}(R ; i):=\operatorname{dim}_{\mathbb{C}} R_{i}=\operatorname{dim}_{\mathbb{C}} S_{i}-\operatorname{dim}_{\mathbb{C}} I_{i}=$

$$
=\sum_{\substack{\mathbf{h} \in \mathbb{Z}_{k}^{n+1} \\ \mathrm{wt}(\mathbf{h}) \leq d-i}} \operatorname{dim}_{\mathbb{C}} R_{i, \mathbf{h}}=: \sum_{\substack{\mathbf{h} \in \mathbb{Z}_{k}^{n+1} \\ \mathrm{wt}(\mathbf{h}) \leq d-i}} \operatorname{HF}(R ; i, \mathbf{h}) .
$$

Theorem. (1) If $i<d$, then $\operatorname{HF}(R ; i)=\binom{n+i}{n}$;
(2) if $i=j+d$ with $j=0, \ldots, d$, then,
for any $\mathbf{h} \in \mathbb{Z}_{k}^{n+1}$ s.t. $S_{i, \mathbf{h}} \neq 0$ and $\mathrm{wt}(\mathbf{h})<d-j$,

$$
\operatorname{HF}(R ; i, \mathbf{h})=
$$

$$
=\operatorname{dim}_{\mathbb{C}}\left(S_{i, \mathbf{h}}\right)-\sum_{j-k \in 2 \mathbb{N}}\binom{n+1}{k} \operatorname{dim}_{\mathbb{C}}\left(S_{j-k, \mathbf{0}}\right) ;
$$

Final comments

(1) The Theorem turns into an implementable algorithm which works very fast even for large numbers. (2) From a geometrical point of view, the ideals $I_{k, d, n}$ corresponds to particular schemes of fat points.
(3) We believe that the Lemma can be generalized for $k \geq 2$ by replacing $(d-i)$ with $(k-1)(d-i)$.

A generalization of the Theorem would follow.

References

[1] Fröberg, Ralf and Ottaviani, Giorgio and Shapiro, Boris, On the Waring problem for polynomial rings, Proceedings of the National Academy of Sciences, vol.109.

