
Original BM Algorithm

Original Buchberger-Möller (BM) Algorithm

Given:
a (finite!) set of points X ⊆ K n

a term-ordering σ

Compute:
Reduced Gröbner Basis (RGB) of the associated ideal
byproduct: separator polynomials satisfying fi(Pj) = δij
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Original BM Algorithm

Structure of Reduced Gröbner Basis (RGB)

Salient structural features of RGB of 0-dim ideal I

PP diagram

◦ Quotient Basis (QB) element
• LT of RGB element
◦ other element of LT(I)

QB ←→ vec.sp. basis of P/I
=⇒

∑
t∈QB ct t ∈ I ⇐⇒ all ct = 0

RGB element has form gj = tj −
∑

t∈QB ct t using only t < tj
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Original BM Algorithm

Original BM Algorithm: idea

Basic idea: build QB one element at a time in increasing order:

QB1 = {t1 = 1}
QB2 = QB1 ∪ {t2}
QB3 = QB2 ∪ {t3}
QB4 = QB3 ∪ {t4}
and so on . . .
. . .until we discover a lin.comb. g = tk −

∑
t∈QBk−1

ct t ∈ I

−→ g is an element of RGB.

Keep going until all of RGB has been found!
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Original BM Algorithm

Original BM Algorithm: evaluation matrix

Qn: How to tell when there is a lin.comb. g = tk −
∑

t∈QBk−1
ct t ∈ I ?

Consider the evaluation matrix:

M =


t1(P1) t1(P2) · · · t1(Ps)
t2(P1) t2(P2) · · · t2(Ps)

...
...

...
tk (P1) tk (P2) · · · tk (Ps)


Let ri denote the i -th row of M .
−→ entries are the values of the polynomial ti at the points P1, . . . ,Ps .

Let f =
∑k

i=1 ai ti be any polynomial.
Evaluation is a homomorphism
=⇒ the lin.comb. of rows

∑k
i=1 ai ri has j -th coord

∑
ai ti(Pj) = f (Pj)

f ∈ I ⇐⇒ f (Pj) = 0 ∀j ⇐⇒
∑

ai ri = 0

Ans: there is g ∈ I iff last row of M is lin.dep. on the other rows!
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Original BM Algorithm

Original BM Algm: running example

PP diagram

Start with PP t1 = 1.

M =
(
t1(P1) t1(P2) · · · t1(Ps)

)

First row is just (1,1, . . . ,1) , so there is no linear dependency.
−→ QB = {t1} RGB = {}
Proceed to next PP.
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Original BM Algorithm

Original BM Algm: running example 2

PP diagram

Next PP is t2 = x .

M =

(
t1(P1) t1(P2) · · · t1(Ps)
t2(P1) t2(P2) · · · t2(Ps)

)

We find no linear dependency.
−→ QB = {t1, t2} RGB = {}
Consider next PP.
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Original BM Algorithm

Original BM Algm: running example 3

PP diagram

Next PP is t3 = y .

M =

t1(P1) t1(P2) · · · t1(Ps)
t2(P1) t2(P2) · · · t2(Ps)
t3(P1) t3(P2) · · · t3(Ps)



We find no linear dependency.
−→ QB = {t1, t2, t3} RGB = {}
Consider next PP.
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Original BM Algorithm

Original BM Algm: running example 4

PP diagram Next PPs are
t4 = x2, t5 = xy , t6 = y2, t7 = x3

M =


t1(P1) t1(P2) · · · t1(Ps)
t2(P1) t2(P2) · · · t2(Ps)

...
...

...
t7(P1) t7(P2) · · · t7(Ps)



We still find no linear dependency.
−→ QB = {t1, . . . . . . , t7} RGB = {}
Consider next PP.
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Original BM Algorithm

Original BM Algm: running example 5

PP diagram Next PP is t8 = x2y

M =


t1(P1) t1(P2) · · · t1(Ps)
t2(P1) t2(P2) · · · t2(Ps)

...
...

...
t7(P1) t7(P2) · · · t7(Ps)
t8(P1) t8(P2) · · · t8(Ps)



We find a linear dependency: r8 =
∑

t∈QB ct rt
so we get RGB element g1 = t8 −

∑
t∈QB ct t

−→ QB = {t1 . . . , t7} RGB = {g1}
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Original BM Algorithm

Original BM Algm: running example 6

PP diagram Remove last row from M :

M =


t1(P1) t1(P2) · · · t1(Ps)
t2(P1) t2(P2) · · · t2(Ps)

...
...

...
t7(P1) t7(P2) · · · t7(Ps)

��
��XXXXt8(P1) ��

��XXXXt8(P2) · · · ����XXXXt8(Ps)



Exclude all multiples of t8 from further consideration
−→ red quadrant in diagram.
Proceed to next PP.
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Original BM Algorithm

Original BM Algm: running example 7

PP diagram Next PPs are:
t9 = xy2, t10 = y3, t11 = x4

M =


t1(P1) t1(P2) · · · t1(Ps)
t2(P1) t2(P2) · · · t2(Ps)

...
...

...
t11(P1) t11(P2) · · · t11(Ps)



There are no linear relations among the rows.
−→ QB = {t1, . . . . . . , t11} RGB = {g1}
Proceed to next PP.
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Original BM Algorithm

Original BM Algm: running example 8

PP diagram
Skipping 2 PPs . . .

M =


t1(P1) t1(P2) · · · t1(Ps)
t2(P1) t2(P2) · · · t2(Ps)

...
...

...
t11(P1) t11(P2) · · · t11(Ps)



We skip x3y and x2y2 as they are excluded.
Consider next PP.
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Original BM Algorithm

Original BM Algm: running example 9

PP diagram The next PP is t12 = xy3

M =


t1(P1) t1(P2) · · · t1(Ps)
t2(P1) t2(P2) · · · t2(Ps)

...
...

...
t11(P1) t11(P2) · · · t11(Ps)
t12(P1) t12(P2) · · · t11(Ps)



There is a new linear relation
−→ get a new RGB element: g2 = t12 −

∑
t∈QB ct t

−→ QB = {t1, . . . , t11} RGB = {g1,g2}
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Original BM Algorithm

Original BM Algm: running example 10

PP diagram Remove the last row from M :

M =


t1(P1) t1(P2) · · · t1(Ps)
t2(P1) t2(P2) · · · t2(Ps)

...
...

...
t11(P1) t11(P2) · · · t11(Ps)

���
�XXXXt12(P1) ���

�XXXXt12(P2) · · · ����XXXXt12(Ps)



Exclude all multiples of t12 from future consideration
−→ union of 2 red quadrants in diagram.
Consider next PP.

John Abbott (Università di Genova) BM Algm Osnabrück, June 2013 14 / 32



Original BM Algorithm

Original BM Algm: running example 11

PP diagram Last PPs:
t13 = y4, t14 = x5, t15 = y5

excluded: x4y , x3y2, x2y3, xy4

M =


t1(P1) t1(P2) · · · t1(Ps)
t2(P1) t2(P2) · · · t2(Ps)

...
...

...
t13(P1) t13(P2) · · · t13(Ps)


We have found the final two RGB elements g3 and g4
−→ QB = {t1, . . . , t12, t13} RGB = {g1,g2,g3,g4}
Exclude all multiples of x5 and y5

−→ there are no further PPs to consider
−→ the algorithm terminates.
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Original BM Algorithm

Original BM Algorithm

(1) initialization: RGB = ∅ , QB = ∅ , L = {1} , M =0× s matrix
(2) While L 6= ∅ do

(2a) Set t = minσ(L) and remove t from L .
(2b) Compute the evaluation vector v = (t(p1), . . . , t(ps)) ∈ K s

(2c) if v is linearly dependent on the rows of M
then (wlog v =

∑
i ai ri ) add t −

∑
i aiQB[i] to RGB and remove

from L all multiples of t
else
add v as a new row to M ; add t to QB ; and add to L those
elements of {x1t , . . . , xnt} which are neither multiples of an element
of L nor of LTσ(RGB) .

(3) return (RGB,QB)
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BM Practical Considerations

Implementation ideas

Ideas for a good implementation

find candidate QB via fast computation mod p
−→ structure of answer
compute evaluation matrix of QB without modulus
recall that in QB each PP 6= 1 is xj times another PP in QB.
find coeffs of RGB elements by solving linear system
−→ corners are LTs of RGB elements.
if insoluble or soln gives wrong LT, try another prime p
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Extended BM

XBM: Normal Form Vector

Key idea: normal form vector map NFV : K [x1, . . . , xn] −→ K m

NFV needs the following properties:
NFV (f ) = 0 iff f is in the ideal
behave well wrt multiplication

In practice NFV comprises
a vector u ∈ K m such that NFV (1) = u
a collection of commuting multiplication matrices M1, . . . ,Mn such
that NFV (xj · f ) = Mj · NFV (f )

Observation NFV1 ⊕ NFV2 is also an NFV map ←→ intersection
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Extended BM

XBM: NFV examples 1

Let I be a zero-dimensional ideal
=⇒ P/I is finite dimensional vector space
−→ Let e1, . . . ,em be a basis for P/I .

Define NFVI : P −→ K m by f 7→ (c1, . . . , cm) where
∑

ciei = NFI(f )

Example: Simple point e.g. P = (2,4,6) ∈ K 3

−→ associated ideal I = (x − 2, y − 4, z − 6)
−→ dim(K [x , y , z]/I) = 1
−→ NFVP is just evaluation at P

John Abbott (Università di Genova) BM Algm Osnabrück, June 2013 19 / 32



Extended BM

XBM: NFV examples 2

Recall original BM computes intersection ideal(P1) ∩ · · · ∩ ideal(Ps)

NFV : t 7→ NFVP1(t)⊕ · · · ⊕ NFVPs(t) ∈ K s

XBM extends naturally to ideals of points with multiplicity
−→ fat points ←→ power (x1 − a1, . . . , xn − an)

k

−→ other multiple points such as (x , y2) or (x3, y5 − x2)

Let I be a zero-dimensional ideal with a G-basis, so NFVI is explicit.

Original BM +NFVI = FGLM ←→ change of ordering for G-bases.
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Extended BM

XBM: NFV examples 3

Let G = 〈M1, . . . ,Mn | Mi ·Mj = Mj ·Mi〉 be a commutative semigroup
of s × s matrices.

Define NFVG : P −→ K s by f 7→ f (M1, . . . ,Mn) then flatten the matrix.

Special case:
if G = 〈M〉 is cyclic then XBM computes minimal poly of M .
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Extended BM

XBM: Projective Points

Points in projective space are defined up to a scalar multiple
=⇒ seek homogeneous polynomials.

Problem: algebraically no longer zero-dimensional!

Compute degree-by-degree
−→ computation in each degree is finite
−→ but when to stop???

Stopping criterion:
purely combinatorial
derived from properties of the Hilbert function
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Extended BM

XBM: Factor closedness of QB

Why a factor closed QB?

obligatory for RGB (original BM algm)
natural choice −→ contains the simplest PPs
QB remains valid under translation of the orig points (& scaling)

In general QB does not remain valid under rotation: for example...

XBM can build QB not necessarily in increasing order
−→ but do not have complete freedom.
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Border Bases

XBM: Border bases

Problem: given affine points, find a border basis for the ideal.

structure is determined by QB
−→ QB may be any set having det(M) 6= 0
−→ QB may be found using BM algorithm, or . . .
−→ if we use BM algm then RGB is subset of BB
LT of each BB element determined by the QB
coeffs of each BB element can be found via linear algebra
B-basis is structurally stable because determined by an open
condition

Note: notion of border basis is inherently 0-dimensional
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Border Bases

Border basis from QB (1)

PP diagram

◦ ↔ quotient basis element

For instance, we can use this QB from the previous running example.
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Border Bases

Border basis from QB (2)

PP diagram

� ↔ corner BB element
• ↔ other BB element
◦ ↔ QB element

LT of BB are 1 step away from QB.

If QB is compatible with a term-ordering then RGB is a subset of BB
corresponding to the corners.
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Approximate Points

XBM and Approximate Data (1)

Motivation:
to find approx polynomial relations between experimental data

XBM is promising because:
guided by linear algebra (decides if t gives QB element or RGB
element)
coeffs of output polys are found using linear algebra
approximate linear algebra is (fairly) well understood
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Approximate Points

XBM and Approximate Data (2)

What is a set of approximate points?

Each approximate point comprises two parts p̃ = (p,N) :
a central exact point p
a neighbourhood of admissible perturbations Nε(p)

We additonally assume that the neighbourhoods are:
identical (up to translation)
given by Nε(p) = {x ∈ Rn : ||x − p|| < ε}
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Approximate Points

BM and Approximate Data (3)

Main problem:
→ given a set of approximate points
← find one or more approx polynomial relations between them.

Outline of method:
find a suitable QB using approx linear dependency as a guide;
find the best polynomial(s) with given support.
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Approximate Points

BM and Approximate Data (4)

How to measure approx linear dependency?
−→ small least squares residual
−→ small singular value
−→ other???

What is the best polynomial?
−→ minimise || · ||2 of values at central points
−→ minimise || · ||∞ of values at central points
−→ minimise || · ||2 of distances to central points
−→ minimise || · ||∞ of distances to central points
−→ other???
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Approximate Points

XBM and Approximate Data (5)

A problem with finding several “approximate polynomial relations”

Taken together as a system these polynomials may be a poor model:
different cardinality
common solutions may be far from the original points

−→ notion of stable complete intersection

Example: with ε = 0.005
(0.672,1.500) (0.800,1.251) (1.000,1.000) (1.251,0.800) (1.500,0.672)
−→ points are well separated.

One good polynomial relation is xy − 1 = 0
Another good polynomial relation is (x − 2)2 + (y − 2)2 − 2 = 0

−→ they define two curves that are very similar over a certain range
−→ they have just a single common solution: (1,1)
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Approximate Points

BM and Approximate Data (6)

Both curves are a good fit: xy − 1 = 0 and (x − 2)2 + (y − 2)2 − 2 = 0
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