Original Buchberger-Möller (BM) Algorithm

Given:

- a (finite!) set of points $\mathbb{X} \subseteq K^n$
- a term-ordering σ

Compute:

- Reduced Gröbner Basis (RGB) of the associated ideal
- byproduct: separator polynomials satisfying $f_i(P_j) = \delta_{ij}$

Structure of Reduced Gröbner Basis (RGB)

Salient structural features of RGB of 0-dim ideal /

Original BM Algorithm: idea

Basic idea: build QB one element at a time in increasing order:

 $QB_1 = \{t_1 = 1\}$ $QB_2 = QB_1 \cup \{t_2\}$ $QB_3 = QB_2 \cup \{t_3\}$ $QB_4 = QB_3 \cup \{t_4\}$

and so on...

... until we discover a lin.comb. $g = t_k - \sum_{t \in QB_{k-1}} c_t t \in I$

 \rightarrow g is an element of RGB.

Keep going until all of RGB has been found!

Original BM Algorithm: evaluation matrix

Qn: How to tell when there is a lin.comb. $g = t_k - \sum_{t \in QB_{k-1}} c_t t \in I$?

Consider the evaluation matrix:

$$M = \begin{pmatrix} t_1(P_1) & t_1(P_2) & \cdots & t_1(P_s) \\ t_2(P_1) & t_2(P_2) & \cdots & t_2(P_s) \\ \vdots & \vdots & & \vdots \\ t_k(P_1) & t_k(P_2) & \cdots & t_k(P_s) \end{pmatrix}$$

Let r_i denote the *i*-th row of M.

 \rightarrow entries are the values of the polynomial t_i at the points P_1, \ldots, P_s .

Let $f = \sum_{i=1}^{k} a_i t_i$ be any polynomial. Evaluation is a homomorphism

 \implies the lin comb. of rows $\sum_{i=1}^{k} a_i r_i$ has *j*-th coord $\sum a_i t_i(P_j) = f(P_j)$

$$f \in I \iff f(P_j) = 0 \quad \forall j \iff \sum a_i r_i = 0$$

Ans: there is $g \in I$ iff last row of M is lin.dep. on the other rows!

Original BM Algm: running example

PP diagram Start with PP $t_1 = 1$. $M = (t_1(P_1) \ t_1(P_2) \ \cdots \ t_1(P_s))$

First row is just (1, 1, ..., 1), so there is no linear dependency. $\rightarrow QB = \{t_1\}$ $RGB = \{\}$ Proceed to next PP.

Original BM Algm: running example 2

PP diagram Next PP is $t_2 = x$. $M = \begin{pmatrix} t_1(P_1) & t_1(P_2) & \cdots & t_1(P_s) \\ t_2(P_1) & t_2(P_2) & \cdots & t_2(P_s) \end{pmatrix}$

We find no linear dependency. $\rightarrow QB = \{t_1, t_2\}$ $RGB = \{\}$ Consider next PP.

Original BM Algm: running example 3

We find no linear dependency. $\rightarrow QB = \{t_1, t_2, t_3\}$ $RGB = \{\}$ Consider next PP.

Original BM Algm: running example 4

We still find no linear dependency. $\rightarrow QB = \{t_1, \dots, t_7\}$ $RGB = \{\}$ Consider next PP.

Original BM Algm: running example 5

We find a **linear dependency**: $r_8 = \sum_{t \in QB} c_t r_t$ so we get RGB element $g_1 = t_8 - \sum_{t \in QB} c_t t$ $\longrightarrow QB = \{t_1 \dots, t_7\}$ $RGB = \{g_1\}$

Original BM Algm: running example 6

Exclude all multiples of t_8 from further consideration \rightarrow red quadrant in diagram. Proceed to next PP.

Original BM Algm: running example 7

There are no linear relations among the rows. $\rightarrow QB = \{t_1, \dots, t_{11}\}$ $RGB = \{g_1\}$ Proceed to next PP.

Original BM Algm: running example 8

We skip x^3y and x^2y^2 as they are excluded. Consider next PP.

Original BM Algm: running example 9

There is a **new linear relation** \rightarrow get a new RGB element: $g_2 = t_{12} - \sum_{t \in QB} c_t t$ $\rightarrow QB = \{t_1, \dots, t_{11}\}$ $RGB = \{g_1, g_2\}$

Original BM Algm: running example 10

Exclude all multiples of t_{12} from future consideration \rightarrow union of 2 red quadrants in diagram. Consider next PP.

Original BM Algm: running example 11

We have found the final two RGB elements g_3 and g_4 $\rightarrow QB = \{t_1, \dots, t_{12}, t_{13}\}$ $RGB = \{g_1, g_2, g_3, g_4\}$ Exclude all multiples of x^5 and y^5

- \longrightarrow there are no further PPs to consider
- \longrightarrow the algorithm terminates.

(1) initialization: $RGB = \emptyset$, $QB = \emptyset$, $L = \{1\}$, $M = 0 \times s$ matrix

- (2) While $L \neq \emptyset$ do
 - (2a) Set $t = \min_{\sigma}(L)$ and remove t from L.
 - (2b) Compute the evaluation vector $v = (t(p_1), \ldots, t(p_s)) \in K^s$
 - (2c) if v is linearly dependent on the rows of M then (wlog $v = \sum_i a_i r_i$) add $t - \sum_i a_i QB[i]$ to RGB and remove from L all multiples of t

else

add *v* as a new row to *M*; add *t* to *QB*; and add to *L* those elements of $\{x_1t, \ldots, x_nt\}$ which are neither multiples of an element of *L* nor of $LT_{\sigma}(RGB)$.

(3) return (RGB, QB)

Implementation ideas

Ideas for a good implementation

- find candidate QB via *fast* computation mod *p* → structure of answer
- compute *evaluation matrix* of QB without modulus
- recall that in QB each PP \neq 1 is x_i times another PP in QB.
- find coeffs of RGB elements by solving linear system
 → corners are LTs of RGB elements.
- if insoluble or soln gives wrong LT, try another prime p

XBM: Normal Form Vector

Key idea: normal form vector map $NFV : K[x_1, \ldots, x_n] \longrightarrow K^m$

NFV needs the following properties:

- NFV(f) = 0 iff f is in the ideal
- behave well wrt multiplication

In practice NFV comprises

- a vector $u \in K^m$ such that NFV(1) = u
- a collection of commuting multiplication matrices *M*₁,..., *M*_n such that *NFV*(*x_j* ⋅ *f*) = *M_j* ⋅ *NFV*(*f*)

Observation $NFV_1 \oplus NFV_2$ is also an NFV map \leftrightarrow intersection

XBM: NFV examples 1

Let I be a zero-dimensional ideal

- \implies *P*/*I* is finite dimensional vector space
- \longrightarrow Let e_1, \ldots, e_m be a basis for P/I.

Define $NFV_I : P \longrightarrow K^m$ by $f \mapsto (c_1, \ldots, c_m)$ where $\sum c_i e_i = NF_I(f)$

Example: Simple point *e.g.* $P = (2, 4, 6) \in K^3$

 \rightarrow associated ideal I = (x - 2, y - 4, z - 6)

$$\longrightarrow \dim(K[x, y, z]/I) = 1$$

 \rightarrow *NFV*_P is just evaluation at *P*

Recall original BM computes intersection $ideal(P_1) \cap \cdots \cap ideal(P_s)$

$$\mathsf{NFV}: t \mapsto \mathsf{NFV}_{\mathsf{P}_1}(t) \oplus \cdots \oplus \mathsf{NFV}_{\mathsf{P}_s}(t) \in \mathsf{K}^s$$

XBM extends naturally to ideals of points with multiplicity

- \rightarrow fat points \leftrightarrow power $(x_1 a_1, \dots, x_n a_n)^k$
- \rightarrow other multiple points such as (x, y^2) or $(x^3, y^5 x^2)$

Let *I* be a zero-dimensional ideal with a G-basis, so NFV_I is explicit. Original BM $+NFV_I =$ **FGLM** \leftrightarrow **change of ordering** for G-bases.

XBM: NFV examples 3

Let $G = \langle M_1, \ldots, M_n | M_i \cdot M_j = M_j \cdot M_i \rangle$ be a commutative semigroup of $s \times s$ matrices.

Define $NFV_G : P \longrightarrow K^s$ by $f \mapsto f(M_1, \ldots, M_n)$ then flatten the matrix.

Special case:

if $G = \langle M \rangle$ is cyclic then XBM computes **minimal poly** of *M*.

XBM: Projective Points

Points in projective space are defined up to a scalar multiple \implies seek homogeneous polynomials.

Problem: algebraically no longer zero-dimensional!

Compute degree-by-degree

- \longrightarrow computation in each degree is finite
- \longrightarrow but when to stop???

Stopping criterion:

- purely combinatorial
- derived from properties of the Hilbert function

XBM: Factor closedness of QB

Why a factor closed QB?

- **obligatory** for RGB (original BM algm)
- natural choice —> contains the simplest PPs
- QB remains valid under translation of the orig points (& scaling)

In general QB does not remain valid under rotation: for example...

XBM can build QB not necessarily in increasing order \longrightarrow but do not have complete freedom.

XBM: Border bases

Problem: given affine points, find a border basis for the ideal.

structure is determined by QB

- \longrightarrow QB may be *any* set having det(M) \neq 0
- \longrightarrow QB may be found using BM algorithm, or ...
- \longrightarrow if we use BM algm then RGB is subset of BB
- LT of each BB element determined by the QB
- coeffs of each BB element can be found via linear algebra
- B-basis is structurally stable because determined by an open condition

Note: notion of border basis is inherently 0-dimensional

Border basis from QB (1)

For instance, we can use this QB from the previous running example.

Border basis from QB (2)

If QB is **compatible with a term-ordering** then RGB is a subset of BB corresponding to the **corners**.

XBM and Approximate Data (1)

Motivation:

to find approx polynomial relations between experimental data

XBM is promising because:

- **guided by linear algebra** (decides if *t* gives QB element or RGB element)
- coeffs of output polys are found using linear algebra
- approximate linear algebra is (fairly) well understood

XBM and Approximate Data (2)

What is a set of approximate points?

Each approximate point comprises two parts $\tilde{p} = (p, N)$:

- a central exact point p
- a neighbourhood of admissible perturbations $N_{\varepsilon}(p)$

We additonally assume that the neighbourhoods are:

- identical (up to translation)
- given by $N_{\varepsilon}(p) = \{x \in \mathbb{R}^n : ||x p|| < \varepsilon\}$

BM and Approximate Data (3)

Main problem:

- \rightarrow given a set of approximate points
- ← find one or more approx polynomial relations between them.

Outline of method:

- find a suitable QB using approx linear dependency as a guide;
- find the **best polynomial(s)** with given support.

BM and Approximate Data (4)

How to measure approx linear dependency?

- \rightarrow small least squares residual
- \longrightarrow small singular value
- \rightarrow other???

What is the **best polynomial**?

- \longrightarrow minimise $|| \cdot ||_2$ of values at central points
- \longrightarrow minimise $|| \cdot ||_{\infty}$ of **values** at central points
- \rightarrow minimise $|| \cdot ||_2$ of **distances** to central points
- \rightarrow minimise $|| \cdot ||_{\infty}$ of **distances** to central points
- \rightarrow other???

XBM and Approximate Data (5)

A problem with finding several "approximate polynomial relations"

Taken together as a system these polynomials may be a **poor model**:

- different cardinality
- common solutions may be far from the original points
- \longrightarrow notion of stable complete intersection

Example: with $\epsilon = 0.005$

(0.672, 1.500) (0.800, 1.251) (1.000, 1.000) (1.251, 0.800) (1.500, 0.672) \rightarrow points are **well separated**.

One good polynomial relation is xy - 1 = 0Another good polynomial relation is $(x - 2)^2 + (y - 2)^2 - 2 = 0$

 \rightarrow they define two curves that are very similar over a certain range

 \rightarrow they have just a single common solution: (1, 1)

Approximate Points

BM and Approximate Data (6)

Both curves are a good fit: xy - 1 = 0 and $(x - 2)^2 + (y - 2)^2 - 2 = 0$

John Abbott (Università di Genova)