Original Buchberger-Möller (BM) Algorithm

Given:

- a (finite!) set of points $\mathbb{X} \subseteq K^{n}$
- a term-ordering σ

Compute:

- Reduced Gröbner Basis (RGB) of the associated ideal
- byproduct: separator polynomials satisfying $f_{i}\left(P_{j}\right)=\delta_{i j}$

Structure of Reduced Gröbner Basis (RGB)

Salient structural features of RGB of 0 -dim ideal /
PP diagram

- QB \longleftrightarrow vec.sp. basis of P / I
$\Longrightarrow \quad \sum_{t \in Q B} c_{t} t \in I \quad \Longleftrightarrow \quad$ all $c_{t}=0$
- RGB element has form $\boldsymbol{g}_{\boldsymbol{j}}=\boldsymbol{t}_{j}-\sum_{\boldsymbol{t} \in \boldsymbol{Q B}} \boldsymbol{c}_{\boldsymbol{t}} \boldsymbol{t}$ using only $t<t_{j}$

Original BM Algorithm: idea

Basic idea: build QB one element at a time in increasing order:

```
\(Q B_{1}=\left\{t_{1}=1\right\}\)
\(Q B_{2}=Q B_{1} \cup\left\{t_{2}\right\}\)
\(Q B_{3}=Q B_{2} \cup\left\{t_{3}\right\}\)
\(Q B_{4}=Q B_{3} \cup\left\{t_{4}\right\}\)
and so on...
\(\ldots\). until we discover a lin.comb. \(g=t_{k}-\sum_{t \in Q B_{k-1}} c_{t} t \quad \in I\) \(\longrightarrow \quad g\) is an element of RGB.
```

Keep going until all of RGB has been found!

Original BM Algorithm: evaluation matrix

Qn: How to tell when there is a lin.comb. $g=t_{k}-\sum_{t \in Q B_{k-1}} c_{t} t \quad \in I$? Consider the evaluation matrix:

$$
M=\left(\begin{array}{cccc}
t_{1}\left(P_{1}\right) & t_{1}\left(P_{2}\right) & \cdots & t_{1}\left(P_{s}\right) \\
t_{2}\left(P_{1}\right) & t_{2}\left(P_{2}\right) & \cdots & t_{2}\left(P_{s}\right) \\
\vdots & \vdots & & \vdots \\
t_{k}\left(P_{1}\right) & t_{k}\left(P_{2}\right) & \cdots & t_{k}\left(P_{s}\right)
\end{array}\right)
$$

Let r_{i} denote the i-th row of M.
\longrightarrow entries are the values of the polynomial t_{i} at the points P_{1}, \ldots, P_{s}. Let $f=\sum_{i=1}^{k} a_{i} t_{i}$ be any polynomial.
Evaluation is a homomorphism
\Longrightarrow the lin.comb. of rows $\sum_{i=1}^{k} a_{i} r_{i}$ has j-th coord $\sum a_{i} t_{i}\left(P_{j}\right)=f\left(P_{j}\right)$

$$
f \in I \quad \Longleftrightarrow \quad f\left(P_{j}\right)=0 \quad \forall j \quad \Longleftrightarrow \quad \sum a_{i} r_{i}=0
$$

Ans: there is $g \in I$ iff last row of M is lin.dep. on the other rows!

Original BM Algm: running example

PP diagram

Start with PP $t_{1}=1$.

$$
M=\left(\begin{array}{llll}
t_{1}\left(P_{1}\right) & t_{1}\left(P_{2}\right) & \cdots & t_{1}\left(P_{s}\right)
\end{array}\right)
$$

First row is just $(1,1, \ldots, 1)$, so there is no linear dependency.
$\longrightarrow Q B=\left\{t_{1}\right\} \quad R G B=\{ \}$
Proceed to next PP.

Original BM Algm: running example 2

PP diagram

$$
\text { Next PP is } t_{2}=x
$$

$$
M=\left(\begin{array}{llll}
t_{1}\left(P_{1}\right) & t_{1}\left(P_{2}\right) & \cdots & t_{1}\left(P_{s}\right) \\
t_{2}\left(P_{1}\right) & t_{2}\left(P_{2}\right) & \cdots & t_{2}\left(P_{s}\right)
\end{array}\right)
$$

We find no linear dependency.
$\longrightarrow Q B=\left\{t_{1}, t_{2}\right\} \quad R G B=\{ \}$
Consider next PP.

Original BM Algm: running example 3

PP diagram

$$
\text { Next PP is } t_{3}=y
$$

$$
M=\left(\begin{array}{llll}
t_{1}\left(P_{1}\right) & t_{1}\left(P_{2}\right) & \cdots & t_{1}\left(P_{s}\right) \\
t_{2}\left(P_{1}\right) & t_{2}\left(P_{2}\right) & \cdots & t_{2}\left(P_{s}\right) \\
t_{3}\left(P_{1}\right) & t_{3}\left(P_{2}\right) & \cdots & t_{3}\left(P_{s}\right)
\end{array}\right)
$$

We find no linear dependency.
$\longrightarrow Q B=\left\{t_{1}, t_{2}, t_{3}\right\} \quad R G B=\{ \}$
Consider next PP.

Original BM Algm: running example 4

PP diagram

Next PPs are

$$
t_{4}=x^{2}, t_{5}=x y, t_{6}=y^{2}, t_{7}=x^{3}
$$

$$
M=\left(\begin{array}{cccc}
t_{1}\left(P_{1}\right) & t_{1}\left(P_{2}\right) & \cdots & t_{1}\left(P_{s}\right) \\
t_{2}\left(P_{1}\right) & t_{2}\left(P_{2}\right) & \cdots & t_{2}\left(P_{s}\right) \\
\vdots & \vdots & & \vdots \\
t_{7}\left(P_{1}\right) & t_{7}\left(P_{2}\right) & \cdots & t_{7}\left(P_{s}\right)
\end{array}\right)
$$

We still find no linear dependency.
$\longrightarrow Q B=\left\{t_{1}, \ldots ., t_{7}\right\} \quad R G B=\{ \}$
Consider next PP.

Original BM Algm: running example 5

PP diagram

Next PP is $t_{8}=x^{2} y$

$$
M=\left(\begin{array}{cccc}
t_{1}\left(P_{1}\right) & t_{1}\left(P_{2}\right) & \cdots & t_{1}\left(P_{s}\right) \\
t_{2}\left(P_{1}\right) & t_{2}\left(P_{2}\right) & \cdots & t_{2}\left(P_{s}\right) \\
\vdots & \vdots & & \vdots \\
t_{7}\left(P_{1}\right) & t_{7}\left(P_{2}\right) & \cdots & t_{7}\left(P_{s}\right) \\
t_{8}\left(P_{1}\right) & t_{8}\left(P_{2}\right) & \cdots & t_{8}\left(P_{s}\right)
\end{array}\right)
$$

We find a linear dependency: $r_{8}=\sum_{t \in Q B} c_{t} r_{t}$ so we get RGB element $g_{1}=t_{8}-\sum_{t \in Q B} c_{t} t$ $\longrightarrow Q B=\left\{t_{1} \ldots, t_{7}\right\} \quad R G B=\left\{g_{1}\right\}$

Original BM Algm: running example 6

PP diagram

Remove last row from M :

$$
M=\left(\begin{array}{cccc}
t_{1}\left(P_{1}\right) & t_{1}\left(P_{2}\right) & \cdots & t_{1}\left(P_{s}\right) \\
t_{2}\left(P_{1}\right) & t_{2}\left(P_{2}\right) & \cdots & t_{2}\left(P_{s}\right) \\
\vdots & \vdots & & \vdots \\
t_{7}\left(P_{1}\right) & t_{7}\left(P_{2}\right) & \cdots & t_{7}\left(P_{s}\right) \\
t_{8}\left(P_{1}\right. & t_{8}\left(R_{2}\right) & \cdots & t_{8}\left(P_{s}\right)
\end{array}\right)
$$

Exclude all multiples of t_{8} from further consideration
\longrightarrow red quadrant in diagram.
Proceed to next PP.

Original BM Algm: running example 7

PP diagram

Next PPs are:

$$
t_{9}=x y^{2}, t_{10}=y^{3}, t_{11}=x^{4}
$$

$$
M=\left(\begin{array}{cccc}
t_{1}\left(P_{1}\right) & t_{1}\left(P_{2}\right) & \cdots & t_{1}\left(P_{s}\right) \\
t_{2}\left(P_{1}\right) & t_{2}\left(P_{2}\right) & \cdots & t_{2}\left(P_{s}\right) \\
\vdots & \vdots & & \vdots \\
t_{11}\left(P_{1}\right) & t_{11}\left(P_{2}\right) & \cdots & t_{11}\left(P_{s}\right)
\end{array}\right)
$$

There are no linear relations among the rows.
$\longrightarrow Q B=\left\{t_{1}, \ldots \ldots, t_{11}\right\} \quad R G B=\left\{g_{1}\right\}$
Proceed to next PP.

Original BM Algm: running example 8

PP diagram

Skipping 2 PPs...

$$
M=\left(\begin{array}{cccc}
t_{1}\left(P_{1}\right) & t_{1}\left(P_{2}\right) & \cdots & t_{1}\left(P_{s}\right) \\
t_{2}\left(P_{1}\right) & t_{2}\left(P_{2}\right) & \cdots & t_{2}\left(P_{s}\right) \\
\vdots & \vdots & & \vdots \\
t_{11}\left(P_{1}\right) & t_{11}\left(P_{2}\right) & \cdots & t_{11}\left(P_{s}\right)
\end{array}\right)
$$

We skip $x^{3} y$ and $x^{2} y^{2}$ as they are excluded. Consider next PP.

Original BM Algm: running example 9

PP diagram

The next PP is $t_{12}=x y^{3}$

$$
M=\left(\begin{array}{cccc}
t_{1}\left(P_{1}\right) & t_{1}\left(P_{2}\right) & \cdots & t_{1}\left(P_{s}\right) \\
t_{2}\left(P_{1}\right) & t_{2}\left(P_{2}\right) & \cdots & t_{2}\left(P_{s}\right) \\
\vdots & \vdots & & \vdots \\
t_{11}\left(P_{1}\right) & t_{11}\left(P_{2}\right) & \cdots & t_{11}\left(P_{s}\right) \\
t_{12}\left(P_{1}\right) & t_{12}\left(P_{2}\right) & \cdots & t_{11}\left(P_{s}\right)
\end{array}\right)
$$

There is a new linear relation
\longrightarrow get a new RGB element: $g_{2}=t_{12}-\sum_{t \in Q B} c_{t} t$
$\longrightarrow Q B=\left\{t_{1}, \ldots, t_{11}\right\} \quad R G B=\left\{g_{1}, g_{2}\right\}$

Original BM Algm: running example 10

PP diagram

Remove the last row from M :

$$
M=\left(\begin{array}{cccc}
t_{1}\left(P_{1}\right) & t_{1}\left(P_{2}\right) & \cdots & t_{1}\left(P_{s}\right) \\
t_{2}\left(P_{1}\right) & t_{2}\left(P_{2}\right) & \cdots & t_{2}\left(P_{s}\right) \\
\vdots & \vdots & & \vdots \\
t_{11}\left(P_{1}\right) & t_{11}\left(P_{2}\right) & \cdots & t_{11}\left(P_{s}\right) \\
t_{12}\left(P_{1}\right) & t_{12}\left(P_{2}\right) & \cdots & t_{12}\left(R_{s}\right)
\end{array}\right)
$$

Exclude all multiples of t_{12} from future consideration \longrightarrow union of 2 red quadrants in diagram.
Consider next PP.

Original BM Algm: running example 11

PP diagram

Last PPs:
$t_{13}=y^{4}, t_{14}=x^{5}, t_{15}=y^{5}$ excluded: $x^{4} y, x^{3} y^{2}, x^{2} y^{3}, x y^{4}$

$$
M=\left(\begin{array}{cccc}
t_{1}\left(P_{1}\right) & t_{1}\left(P_{2}\right) & \cdots & t_{1}\left(P_{s}\right) \\
t_{2}\left(P_{1}\right) & t_{2}\left(P_{2}\right) & \cdots & t_{2}\left(P_{s}\right) \\
\vdots & \vdots & & \vdots \\
t_{13}\left(P_{1}\right) & t_{13}\left(P_{2}\right) & \cdots & t_{13}\left(P_{s}\right)
\end{array}\right)
$$

We have found the final two RGB elements g_{3} and g_{4}
$\longrightarrow Q B=\left\{t_{1}, \ldots, t_{12}, t_{13}\right\} \quad R G B=\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}$
Exclude all multiples of x^{5} and y^{5}
\longrightarrow there are no further PPs to consider
\longrightarrow the algorithm terminates.

Original BM Algorithm

(1) initialization: $R G B=\emptyset, Q B=\emptyset, L=\{1\}, M=0 \times s$ matrix
(2) While $L \neq \emptyset$ do
(2a) Set $t=\min _{\sigma}(L)$ and remove t from L.
(2b) Compute the evaluation vector $v=\left(t\left(p_{1}\right), \ldots, t\left(p_{s}\right)\right) \in K^{s}$
(2c) if v is linearly dependent on the rows of M
then (wlog $v=\sum_{i} a_{i} r_{i}$) add $t-\sum_{i} a_{i} Q B[i]$ to $R G B$ and remove
from L all multiples of t
else
add v as a new row to M; add t to $Q B$; and add to L those elements of $\left\{x_{1} t, \ldots, x_{n} t\right\}$ which are neither multiples of an element of L nor of $\mathrm{LT}_{\sigma}(R G B)$.
(3) return ($R G B, Q B$)

Implementation ideas

Ideas for a good implementation

- find candidate QB via fast computation $\bmod p$ \longrightarrow structure of answer
- compute evaluation matrix of QB without modulus
- recall that in QB each $\mathrm{PP} \neq 1$ is x_{j} times another PP in QB.
- find coeffs of RGB elements by solving linear system \longrightarrow corners are LTs of RGB elements.
- if insoluble or soln gives wrong LT, try another prime p

XBM: Normal Form Vector

Key idea: normal form vector map NFV : $K\left[x_{1}, \ldots, x_{n}\right] \longrightarrow K^{m}$
$N F V$ needs the following properties:

- $N F V(f)=0$ iff f is in the ideal
- behave well wrt multiplication

In practice NFV comprises

- a vector $u \in K^{m}$ such that $N F V(1)=u$
- a collection of commuting multiplication matrices M_{1}, \ldots, M_{n} such that $\operatorname{NFV}\left(x_{j} \cdot f\right)=M_{j} \cdot \operatorname{NFV}(f)$

Observation $N F V_{1} \oplus N F V_{2}$ is also an $N F V$ map \longleftrightarrow intersection

XBM: NFV examples 1

Let I be a zero-dimensional ideal
$\Longrightarrow P / I$ is finite dimensional vector space
\longrightarrow Let e_{1}, \ldots, e_{m} be a basis for P / I.
Define $N F V_{l}: P \longrightarrow K^{m}$ by $f \mapsto\left(c_{1}, \ldots, c_{m}\right)$ where $\sum c_{i} e_{i}=N F_{l}(f)$

Example: Simple point e.g. $P=(2,4,6) \in K^{3}$
\longrightarrow associated ideal $I=(x-2, y-4, z-6)$
$\longrightarrow \operatorname{dim}(K[x, y, z] / I)=1$
$\longrightarrow N F V_{P}$ is just evaluation at P

XBM: NFV examples 2

Recall original BM computes intersection ideal $\left(P_{1}\right) \cap \cdots \cap \operatorname{ideal}\left(P_{s}\right)$

$$
N F V: t \mapsto N F V_{P_{1}}(t) \oplus \cdots \oplus N F V_{P_{s}}(t) \in K^{s}
$$

XBM extends naturally to ideals of points with multiplicity
\longrightarrow fat points \longleftrightarrow power $\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)^{k}$
\longrightarrow other multiple points such as $\left(x, y^{2}\right)$ or $\left(x^{3}, y^{5}-x^{2}\right)$

Let I be a zero-dimensional ideal with a G-basis, so $N F V_{\text {I }}$ is explicit.
Original BM $+N F V_{I}=F G L M \longleftrightarrow$ change of ordering for G-bases.

XBM: NFV examples 3

Let $G=\left\langle M_{1}, \ldots, M_{n} \mid M_{i} \cdot M_{j}=M_{j} \cdot M_{i}\right\rangle$ be a commutative semigroup of $s \times s$ matrices.

Define $N F V_{G}: P \longrightarrow K^{s}$ by $f \mapsto f\left(M_{1}, \ldots, M_{n}\right)$ then flatten the matrix.
Special case:
if $G=\langle M\rangle$ is cyclic then XBM computes minimal poly of M.

XBM: Projective Points

Points in projective space are defined up to a scalar multiple \Longrightarrow seek homogeneous polynomials.

Problem: algebraically no longer zero-dimensional!
Compute degree-by-degree
\longrightarrow computation in each degree is finite
\longrightarrow but when to stop???

Stopping criterion:

- purely combinatorial
- derived from properties of the Hilbert function

XBM: Factor closedness of QB

Why a factor closed QB?

- obligatory for RGB (original BM algm)
- natural choice \longrightarrow contains the simplest PPs
- QB remains valid under translation of the orig points (\& scaling)

In general QB does not remain valid under rotation: for example...
XBM can build QB not necessarily in increasing order
\longrightarrow but do not have complete freedom.

XBM: Border bases

Problem: given affine points, find a border basis for the ideal.

- structure is determined by QB
\longrightarrow QB may be any set having $\operatorname{det}(M) \neq 0$
\longrightarrow QB may be found using BM algorithm, or ... \longrightarrow if we use BM algm then RGB is subset of BB
- LT of each BB element determined by the QB
- coeffs of each BB element can be found via linear algebra
- B-basis is structurally stable because determined by an open condition

Note: notion of border basis is inherently 0-dimensional

Border basis from QB (1)

PP diagram

- \leftrightarrow quotient basis element

For instance, we can use this QB from the previous running example.

Border basis from QB (2)

PP diagram

$\square \leftrightarrow$ corner BB element
 - \leftrightarrow other BB element
 $\circ \leftrightarrow$ QB element

LT of BB are 1 step away from QB.

If $Q B$ is compatible with a term-ordering then RGB is a subset of $B B$ corresponding to the corners.

XBM and Approximate Data (1)

Motivation:
to find approx polynomial relations between experimental data
XBM is promising because:

- guided by linear algebra (decides if t gives QB element or RGB element)
- coeffs of output polys are found using linear algebra
- approximate linear algebra is (fairly) well understood

XBM and Approximate Data (2)

What is a set of approximate points?
Each approximate point comprises two parts $\tilde{p}=(p, N)$:

- a central exact point p
- a neighbourhood of admissible perturbations $N_{\varepsilon}(p)$

We additonally assume that the neighbourhoods are:

- identical (up to translation)
- given by $N_{\varepsilon}(p)=\left\{x \in \mathbb{R}^{n}:\|x-p\|<\varepsilon\right\}$

BM and Approximate Data (3)

Main problem:

\rightarrow given a set of approximate points
\leftarrow find one or more approx polynomial relations between them.
Outline of method:

- find a suitable QB using approx linear dependency as a guide;
- find the best polynomial(s) with given support.

BM and Approximate Data (4)

How to measure approx linear dependency?
\longrightarrow small least squares residual
\longrightarrow small singular value
\longrightarrow other???

What is the best polynomial?
\longrightarrow minimise $\|\cdot\|_{2}$ of values at central points
\longrightarrow minimise $\|\cdot\|_{\infty}$ of values at central points
\longrightarrow minimise $\|\cdot\|_{2}$ of distances to central points
\longrightarrow minimise $\|\cdot\|_{\infty}$ of distances to central points
\longrightarrow other???

XBM and Approximate Data (5)

A problem with finding several "approximate polynomial relations"
Taken together as a system these polynomials may be a poor model:

- different cardinality
- common solutions may be far from the original points
\longrightarrow notion of stable complete intersection
Example: with $\epsilon=0.005$
$(0.672,1.500) \quad(0.800,1.251) \quad(1.000,1.000) \quad(1.251,0.800) \quad(1.500,0.672)$ \longrightarrow points are well separated.
One good polynomial relation is $x y-1=0$
Another good polynomial relation is $(x-2)^{2}+(y-2)^{2}-2=0$
\longrightarrow they define two curves that are very similar over a certain range \longrightarrow they have just a single common solution: $(1,1)$

BM and Approximate Data (6)

Both curves are a good fit: $x y-1=0$ and $(x-2)^{2}+(y-2)^{2}-2=0$

