General setting

Throughout this poster all the rings will be commutative of characteristic \boldsymbol{p} (where \boldsymbol{p} is a positive prime number) and \boldsymbol{k} will be a field of characteristic \boldsymbol{p}

Let \boldsymbol{R} be a ring and let \boldsymbol{M} be an \boldsymbol{R}-module. A $\boldsymbol{p}^{\boldsymbol{e}}$-linear map $M \xrightarrow{\varphi_{e}} M$ is an additive map that satisfies $\varphi_{e}(\boldsymbol{r m})=\boldsymbol{r}^{\boldsymbol{p}^{e}} \varphi_{e}(\boldsymbol{m})$ for each $(\boldsymbol{r}, \boldsymbol{m}) \in \boldsymbol{R} \times \boldsymbol{M}$. The set of all $\boldsymbol{p}^{\boldsymbol{e}}$-linear maps is denoted $\mathcal{F}^{e}(\boldsymbol{M})$
Definition (G. Lyubeznik and K. E. Smith, 2001)
The ring of Frobenius operators on \boldsymbol{M} is the graded associative (not necessarily commutative) ring

$$
\mathcal{F}(M):=\bigoplus_{e \in \mathbb{N}_{0}} \mathcal{F}^{e}(M)
$$

They raised the question whether $\mathcal{F}(\boldsymbol{M})$ is finitely generated as a ring extension of $\mathcal{F}^{0}(\boldsymbol{M})$.

Katzman's counterexample
M. Katzman showed in 2010 that if $R:=\boldsymbol{k}[[\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}]] / \boldsymbol{I}$, where \boldsymbol{I} is the ideal generated by $\boldsymbol{x} \boldsymbol{y}$ and $\boldsymbol{y} \boldsymbol{z}$, then the \boldsymbol{R}-algebra $\mathcal{F}\left(\boldsymbol{E}_{\boldsymbol{R}}\right)$ is not finitely generated

Key fact

Let $\boldsymbol{S}:=\boldsymbol{k}\left[\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d}\right]\right]$, let $\boldsymbol{I} \subset \boldsymbol{S}$ be any ideal and let $\boldsymbol{E}_{\boldsymbol{R}}$ be the injective hull of the residue field of $R:=S / I$. There is an isomorphism of \boldsymbol{R}-algebras

$$
\mathcal{F}\left(\boldsymbol{E}_{\boldsymbol{R}}\right) \cong \bigoplus_{e \geq 0}\left(\boldsymbol{I}^{\left[p^{e}\right]}: S I\right) / \boldsymbol{I}^{\left[p^{e}\right]}
$$

$$
\text { where } I^{\left[p^{e}\right]}:=\left\langle\boldsymbol{x}^{p^{e}} \mid x \in I\right\rangle
$$

From now on, let $\boldsymbol{I} \subseteq S$ be a squarefree monomial ideal generated by $\mathrm{x}^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}}, \alpha \in\{0,1\}^{d}$.
Proposition (J. Àlvarez Montaner, A. F. Boix, S. Zarzuela)
Let $\boldsymbol{I}=\boldsymbol{I}_{\alpha_{1}} \cap \cdots \cap \boldsymbol{I}_{\alpha_{s}}$ be a minimal primary decomposition of \boldsymbol{I} given in terms of face ideals $I_{\alpha}:=\left\langle x_{i} \mid \alpha_{i} \neq 0\right\rangle, \alpha \in\{0,1\}^{n}$. Then, one has that

$$
\left(I^{[q]}:_{S} I\right)=\left(I_{\alpha_{1}}^{[q]}+\left(\mathrm{x}^{\alpha_{1}}\right)^{q-1}\right) \cap \cdots \cap\left(I_{\alpha_{s}}^{[q]}+\left(\mathrm{x}^{\alpha_{s}}\right)^{q-1}\right)
$$

We must point out that this is a primary decomposition for the colon ideal which was proved by R. Fedder in 1983 for unmixed ideals of any regular local ring of prime characteristic.

Theorem (J. Àlvarez Montaner, A. F. Boix, S. Zarzuela)

The following statements are equivalent.
(i) $\mathcal{F}\left(\boldsymbol{E}_{\boldsymbol{R}}\right)$ is a finitely generated \boldsymbol{R}-algebra.
(ii) $\mathcal{F}\left(\boldsymbol{E}_{\boldsymbol{R}}\right)$ is a principally generated \boldsymbol{R}-algebra.
(iii) $\left(\boldsymbol{I}^{\left[p^{e}\right]}:_{S} \boldsymbol{I}\right)=\boldsymbol{I}^{\left[p^{e}\right]}+\left\langle\left(x_{1} \cdots x_{d}\right)^{p^{e}-1}\right\rangle$ for each $e \in \mathbb{N}_{0}$
(iv) $\left(I^{[p]}:_{S} I\right)=I^{[p]}+\left\langle\left(x_{1} \cdots x_{d}\right)^{p-1}\right\rangle$.
(v) $\left(I^{[2]}:_{S} I\right)=I^{[2]}+\left\langle x_{1} \cdots x_{d}\right\rangle$.

How to use it algoritmically?

Require: I squarefree monomial ideal with $\operatorname{ht}(I)>1$
Ensure: true if $\mathcal{F}\left(\boldsymbol{E}_{\boldsymbol{R}}\right)$ is principally generated and false otherwise
$J \leftarrow \operatorname{Ideal}(\operatorname{MinGens}(\boldsymbol{I}))\{$ In order to minimalize the number of generators
$G \leftarrow J^{[2]}$
$G \leftarrow(G: J)\{$ Using the primary decomposition founded in the above proposition\}
if $\operatorname{Len}(G)=\operatorname{Len}(J)+1$ then
return true
else
return false
end if
In order to avoid the height one case we use Alexander duality through Frobby, the software system developed by Bjarke Hammersholt Roune which is integrated inside CoCoA.

Infinitely generated case

Recall that $\mathcal{F}\left(\boldsymbol{E}_{R}\right)$ is an infinitely generated \boldsymbol{R}-algebra if and only if there is an ideal $\boldsymbol{J}_{2} \not \subset \boldsymbol{I}^{[2]}+\left\langle\boldsymbol{x}_{1} \cdots x_{d}\right\rangle$ such that

$$
\left(I^{[2]}: I\right)=I^{[2]}+J_{2}+\left\langle x_{1} \cdots x_{d}\right\rangle
$$

When the Frobenius algebra of $\boldsymbol{E}_{\boldsymbol{R}}$ is infinitely generated we may compute, using our package, the maximum number of generators that each graded piece can reach, using the fact that this upper bound must be reached when \boldsymbol{I} is of separate type.

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline d & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline \mu\left(J_{2}\right) & 2 & 4 & 8 & 18 & 26 & 64 & 83 & 210 & 275 & 664 \\
\hline
\end{array}
$$

Here, \boldsymbol{d} is the number of indeterminates of the current polynomial ring. For $d \geq 14$ our algorithm doesn't run.
Now, we introduce the main steps in order to generate the above table. Step 1 Generate all the squarefree monomial ideals of separate type. Step 2 For each ideal of separate type compute $\boldsymbol{\mu}\left(\boldsymbol{J}_{2}\right)$. Save these numbers in a list.
Step 3 Return the maximum of the list generated in Step 2.

We say that a squarefree monomial ideal is of separate type is there is $s=1, \ldots, d$ and $0=n_{0}<n_{1}<\cdots<n_{s}=d$ such that

$$
I=\bigcap_{j=1}^{s}\left\langle x_{n_{j-1}+1}, \ldots, x_{n_{j}}\right\rangle
$$

Finitely generated case

There is a distinguished family of ideals with principally generated Frobenius algebra. Namely, set $S:=k\left[\left[x_{1}, \ldots, x_{d}\right]\right] / I_{k, d}$, where

$$
I_{k, d}:=\bigcap_{1 \leq i_{1}<\cdots<i_{k} \leq d}\left\langle x_{i_{1}}, \ldots, x_{i_{k}}\right\rangle .
$$

One may see that $\mathcal{F}\left(\boldsymbol{E}_{S}\right)$ is a principally generated \boldsymbol{S}-algebra.
Underline that $I_{k, d}^{\vee}=I_{d-k+1, d}$. This property allows us to generate so quickly these family of ideals. Here we only treat the case where the number of indeterminates of our current polynomial ring is even.

Ensure: \boldsymbol{X} list with all the ideals $\boldsymbol{I}_{k, d}$ of our current ring in terms of their generators.
$q \leftarrow d / 2$
$\boldsymbol{X} \leftarrow[]$
for $i=1$ to q do
$\boldsymbol{Y} \leftarrow \boldsymbol{H I n t e r s e c t i o n L i s t}(\boldsymbol{Z})\{\boldsymbol{Z}$ is the list which contains all the face ideals of height $\boldsymbol{i}\}$
$\boldsymbol{X} \leftarrow \operatorname{Concat}\left(\boldsymbol{X},\left[\boldsymbol{Y}^{\vee}\right]\right)\{\mathrm{We}$ are using standard Alexander duality $\}$
end for
return X

Examples with pure height

It is known that Frobenius algebras of Gorenstein rings are principally generated and the converse also holds for normal varieties. In the following tables we deal with the case of 4 and 5 indeterminates. Depending on the height we count the number of pure ideals (up to relabeling) having principally generated Frobenius algebra, how many Gorenstein (Gor, for short) rings we get among them and the number of ideals having infinitely generated (i.g., for short) Frobenius algebra.

$n=4$	p.g.	Gor		$n=5$	p.g.	Gor	i.g.
$h t(I)=1$	1	1	.	$\mathrm{ht}(\boldsymbol{I})=1$	1	1	-
$h t(I)=2$	4	2	3	$\mathrm{ht}(I)=2$	6	2	13
$h t(I)=3$	3	1		$\mathrm{ht}(I)=3$	12	2	10
$h t(I)=4$	1	1	-	$h t(I)=4$	4	1	-
				$h t(I)=5$	1	1	-

For $d \geq 6$ our algorithm doesn't run.

