Involutive Bases V

Werner M. Seiler
Institut für Mathematik
Universität Kassel

Overview

- General Involutive Bases
- Basic Algorithms
- Pommaret Bases and δ-Regularity
- Combinatorial Decompositions and Applications
- Syzygy Theory and Applications
\square Syzygies of involutive bases
\square involutive Schreyer theorem
\square (minimal) free resolutions
\square monomial ideals
\square Castelnuovo-Mumford regularity

Syzygies of Gröbner Bases

Def: $\mathcal{H}=\left\{\mathbf{h}_{1}, \ldots, \mathbf{h}_{s}\right\} \subset \mathcal{P}^{m}, \quad \mathbf{S} \in \mathcal{P}^{s}$ syzygy of $\mathcal{H} \rightsquigarrow$

$$
\mathbf{S}=\sum_{\gamma=1}^{s} S_{\gamma} \mathbf{e}_{\gamma} \text { with } \sum_{\gamma=1}^{s} S_{\gamma} \mathbf{h}_{\gamma}=0
$$

all syzygyies of \mathcal{H} form syzygy module $\operatorname{Syz}(\mathcal{H})$
(by abuse of notation: $\operatorname{Syz}(\mathcal{M})$ for \mathcal{P}-module $\mathcal{M}=\langle\mathcal{H}\rangle$)
iteration \rightsquigarrow higher syzygy modules $\operatorname{Syz}_{k}(\mathcal{H})=\operatorname{Syz}\left(\operatorname{Syz}_{k-1}(\mathcal{H})\right)$

Syzygies of Gröbner Bases

Overview

 BasesSyzygies of Involutive

Def: $\mathcal{H}=\left\{\mathbf{h}_{1}, \ldots, \mathbf{h}_{s}\right\} \subset \mathcal{P}^{m}, \quad \mathbf{S} \in \mathcal{P}^{s}$ syzygy of $\mathcal{H} \rightsquigarrow$

$$
\mathbf{S}=\sum_{\gamma=1}^{s} S_{\gamma} \mathbf{e}_{\gamma} \text { with } \sum_{\gamma=1}^{s} S_{\gamma} \mathbf{h}_{\gamma}=0
$$

all syzygyies of \mathcal{H} form syzygy module $\operatorname{Syz}(\mathcal{H})$
(by abuse of notation: $\operatorname{Syz}(\mathcal{M})$ for \mathcal{P}-module $\mathcal{M}=\langle\mathcal{H}\rangle$)
iteration \rightsquigarrow higher syzygy modules $\operatorname{Syz}_{k}(\mathcal{H})=\operatorname{Syz}\left(\operatorname{Syz}_{k-1}(\mathcal{H})\right)$
Def: $\mathcal{H}=\left\{\mathbf{h}_{1}, \ldots, \mathbf{h}_{s}\right\} \subset \mathcal{P}^{m}, \quad \prec$ term order on $\mathbb{T}(X)^{m} \rightsquigarrow$ induced Schreyer order $\prec \mathcal{H}^{\mathcal{H}}$ on $\mathbb{T}(X)^{s}$:

$$
\begin{aligned}
s \mathbf{e}_{\sigma} \prec \mathcal{H} t \mathbf{e}_{\tau} \Longleftrightarrow & \left(\mathrm{lt}_{\prec}\left(s \mathbf{h}_{\sigma}\right) \prec \mathrm{lt}_{\prec}\left(t \mathbf{h}_{\tau}\right)\right) \vee \\
& \left(\left(\mathrm{lt}_{\prec}\left(s \mathbf{h}_{\sigma}\right)=\mathrm{lt}_{\prec}\left(t \mathbf{h}_{\tau}\right)\right) \wedge(\tau<\sigma)\right)
\end{aligned}
$$

Syzygies of Gröbner Bases

- assume \mathcal{H} Gröbner basis
- choose $\mathbf{t}_{\alpha}=\operatorname{lt} \mathbf{h}_{\alpha}, \mathbf{t}_{\beta}=\operatorname{lt} \mathbf{h}_{\beta}$ with $\mathbf{t}_{\alpha \beta}=\operatorname{lcm}\left(\mathbf{t}_{a}, \mathbf{t}_{\beta}\right) \neq \mathbf{0}$
- any standard representation of S-"polynomial"

$$
\mathbf{S}\left(\mathbf{h}_{\alpha}, \mathbf{h}_{\beta}\right)=\sum_{\gamma=1}^{s} f_{\alpha \beta \gamma} \mathbf{h}_{\gamma} \rightsquigarrow \mathbf{f}_{\alpha \beta}=\sum_{\gamma=1}^{s} f_{\alpha \beta \gamma} \mathbf{e}_{\gamma}
$$

induces an associated syzygy

$$
\mathbf{S}_{\alpha \beta}=\frac{\mathbf{t}_{\alpha \beta}}{\mathbf{t}_{\alpha}} \mathbf{e}_{\alpha}-\frac{\mathbf{t}_{\alpha \beta}}{\mathbf{t}_{\beta}} \mathbf{e}_{\beta}-\mathbf{f}_{\alpha \beta}
$$

Syzygies of Gröbner Bases

- assume \mathcal{H} Gröbner basis
- choose $\mathbf{t}_{\alpha}=\operatorname{lt} \mathbf{h}_{\alpha}, \mathbf{t}_{\beta}=\operatorname{lt} \mathbf{h}_{\beta}$ with $\mathbf{t}_{\alpha \beta}=\operatorname{lcm}\left(\mathbf{t}_{a}, \mathbf{t}_{\beta}\right) \neq \mathbf{0}$
- any standard representation of S-"polynomial"

$$
\mathbf{S}\left(\mathbf{h}_{\alpha}, \mathbf{h}_{\beta}\right)=\sum_{\gamma=1}^{s} f_{\alpha \beta \gamma} \mathbf{h}_{\gamma} \rightsquigarrow \mathbf{f}_{\alpha \beta}=\sum_{\gamma=1}^{s} f_{\alpha \beta \gamma} \mathbf{e}_{\gamma}
$$

induces an associated syzygy

$$
\mathbf{S}_{\alpha \beta}=\frac{\mathbf{t}_{\alpha \beta}}{\mathbf{t}_{\alpha}} \mathbf{e}_{\alpha}-\frac{\mathbf{t}_{\alpha \beta}}{\mathbf{t}_{\beta}} \mathbf{e}_{\beta}-\mathbf{f}_{\alpha \beta}
$$

Theorem: (Schreyer) \mathcal{H} Gröbner basis for $\prec \Longrightarrow$ $\mathcal{H}_{\text {Schreyer }}=\left\{\mathbf{S}_{\alpha \beta} \mid 1 \leq \alpha<\beta \leq s\right\}$ Gröbner basis of $\operatorname{Syz}(\mathcal{H})$ for $\prec \mathcal{H}$

Syzygies of Involutive Bases

Overview

Syzygies of Gröbner Bases
Syzygies of Involutive Bases
Involutive Schreyer Theorem
Free Resolutions of Polynomial Modules
Free Resolutions of
Monomial Modules

Minimal Resolutions

- assume \mathcal{H} involutive basis for involutive division L
- choose $\mathbf{h}_{\alpha} \in \mathcal{H}$ and $x_{k} \in \bar{X}_{L, \mathcal{H}, \prec}\left(\mathbf{h}_{\alpha}\right)$
- involutive standard representation of non-multiplicative product

$$
x_{k} \mathbf{h}_{\alpha}=\sum_{\gamma=1}^{s} P_{\gamma}^{\alpha ; k} \mathbf{h}_{\gamma}
$$

induces an associated syzygy

$$
\mathbf{S}_{\alpha ; k}=x_{k} \mathbf{e}_{\alpha}-\sum_{\gamma=1}^{s} P_{\gamma}^{\alpha ; k} \mathbf{e}_{\gamma}
$$

■ collect all these syzygies in the set

$$
\mathcal{H}_{\mathrm{Syz}}=\left\{\mathbf{S}_{\alpha ; k} \mid 1 \leq \alpha \leq s, x_{k} \in \bar{X}_{L, \mathcal{H}, \prec}\left(\mathbf{h}_{\alpha}\right)\right\}
$$

Syzygies of Involutive Bases

Overview

Syzygies of Gröbner Bases
Syzygies of Involutive Bases
Involutive Schreyer Theorem
Free Resolutions of Polynomial Modules
Free Resolutions of Monomial Modules

Minimal Resolutions

 Castelnuovo-Mumford RegularityConclusions

Lemma: \mathcal{H} involutive basis, $\mathbf{S}=\sum_{\beta=1}^{s} S_{\beta} \mathbf{e}_{\beta} \in \operatorname{Syz}(\mathcal{H})$

$$
\forall 1 \leq \beta \leq s: S_{\beta} \in \mathbb{k}\left[X_{L, \mathcal{H}, \prec}\left(\mathbf{h}_{\beta}\right)\right] \Longrightarrow \mathbf{S}=\mathbf{0}
$$

Proof:

$\square \mathbf{S} \in \operatorname{Syz}(\mathcal{H}) \Longrightarrow \sum_{\beta=1}^{s} S_{\beta} \mathbf{h}_{\beta}=\mathbf{0}$

- involutive standard representation of $\mathbf{0} \in\langle\mathcal{H}\rangle$ unique $\Longrightarrow \forall \beta: S_{\beta}=0$

Syzygies of Involutive Bases

Overview

Corollary: \mathcal{H} involutive basis $\Longrightarrow \operatorname{Syz}(\mathcal{H})=\left\langle\mathcal{H}_{\text {syz }}\right\rangle$

Proof:

- take $\mathbf{0} \neq \mathbf{S} \in \operatorname{Syz}(\mathcal{H})$
- Lemma \Longrightarrow at least one component S_{β} non-multiplicative for \mathbf{h}_{β}
- take maximal ($\mathrm{wrt} \prec_{\mathcal{H}}$) non-multiplicative term $c x^{\mu} \mathbf{e}_{\beta}$ and maximal non-multiplicative variable x_{j} with $\mu_{j}>0$
\square compute $\mathbf{S}^{\prime}=\mathbf{S}-c\left(x^{\mu} / x_{j}\right) \mathbf{S}_{\beta ; j}$; if $\mathbf{S}^{\prime} \neq \mathbf{0}$ iterate
- possible new non-multiplicative terms smaller wrt $\prec_{\mathcal{H}}$ iteration terminates with $\mathbf{0}$

Syzygies of Involutive Bases

Overview

Syzygies of Gröbner Bases
Syzygies of Involutive Bases
Involutive Schreyer Theorem
Free Resolutions of Polynomial Modules
Free Resolutions of Monomial Modules

Minimal Resolutions

 Castelnuovo-Mumford Regularity Conclusions
Lemma: $\quad \mathcal{H}_{\text {Syz }} \subseteq \mathcal{H}_{\text {Schreyer }}$

Proof: in involutive standard representation

$$
x_{k} \mathbf{h}_{\alpha}=\sum_{\gamma=1}^{s} P_{\gamma}^{\alpha ; k} \mathbf{h}_{\gamma}
$$

there exists unique value β such that $\operatorname{lt}\left(x_{k} \mathbf{h}_{\alpha}\right)=\operatorname{lt}\left(P_{\beta}^{\alpha ; k} \mathbf{h}_{\beta}\right)$
$\Longrightarrow \mathbf{S}_{\alpha ; k}=\mathbf{S}_{\alpha \beta}$

Syzygies of Involutive Bases

Overview

Lemma: $\quad \mathcal{H}_{\text {Syz }} \subseteq \mathcal{H}_{\text {Schreyer }}$

Proof: in involutive standard representation

$$
x_{k} \mathbf{h}_{\alpha}=\sum_{\gamma=1}^{s} P_{\gamma}^{\alpha ; k} \mathbf{h}_{\gamma}
$$

there exists unique value β such that $\operatorname{lt}\left(x_{k} \mathbf{h}_{\alpha}\right)=\operatorname{lt}\left(P_{\beta}^{\alpha ; k} \mathbf{h}_{\beta}\right)$
$\Longrightarrow \mathbf{S}_{\alpha ; k}=\mathbf{S}_{\alpha \beta}$

Theorem: \mathcal{H} involutive basis for \prec \qquad
$\mathcal{H}_{\text {syz }}$ Gröbner basis of $\operatorname{Syz}(\mathcal{H})$ for $\prec_{\mathcal{H}}$
Proof: corollary to Buchberger's second criterion

Involutive Schreyer Theorem

Goal: (automatic) involutive basis of $\operatorname{Syz}(\mathcal{H})$ given an involutive basis \mathcal{H}
Solution: currently known only for Janet and Pommaret bases

Problems:

- control of leading terms of syzygies $\mathbf{S}_{\alpha ; k}$
- "good" numbering of members of \mathcal{H} (recall: $\prec \mathcal{H}$ depends on numbering)
- control of multiplicative variables assigned to $\mathbf{S}_{\alpha ; k}$ by used division

Involutive Schreyer Theorem

Overview

Syzygies of Gröbner Bases
Syzygies of Involutive Bases
Involutive Schreyer Theorem
Free Resolutions of Polynomial Modules Free Resolutions of Monomial Modules

Def: involutive basis \mathcal{H} for division $L \rightsquigarrow \quad L$-graph of \mathcal{H} directed graph with elements h of \mathcal{H} as vertices edge from \mathbf{h} to \mathbf{h}^{\prime}, if $l \mathrm{t} \mathbf{h}^{\prime}$ (unique) involutive divisor of $\mathrm{lt}(x \mathbf{h})$ for some non-multiplicative variable $x \in \bar{X}_{\mathcal{H}, L, \prec}(\mathbf{h})$

Involutive Schreyer Theorem

Def: involutive basis \mathcal{H} for division $L \rightsquigarrow L$-graph of \mathcal{H} directed graph with elements h of \mathcal{H} as vertices edge from \mathbf{h} to \mathbf{h}^{\prime}, if $l \mathrm{t} \mathbf{h}^{\prime}$ (unique) involutive divisor of $\mathrm{lt}(x \mathbf{h})$ for some non-multiplicative variable $x \in \bar{X}_{\mathcal{H}, L, \prec}(\mathbf{h})$

Example: $\mathcal{P}=\mathbb{k}[x, y, z]$, Pommaret basis \mathcal{H} for $\prec_{\text {degrevlex }}$

$$
\begin{aligned}
\mathcal{H}=\{ & h_{1}=x^{2}, h_{2}=x y, h_{3}=x z-y \\
& \left.h_{4}=y^{2}, h_{5}=y z-y, h_{6}=z^{2}-z+x\right\}
\end{aligned}
$$

associated P-graph is acyclic

Involutive Schreyer Theorem

Def: involutive basis \mathcal{H} for division $L \rightsquigarrow L$-graph of \mathcal{H} directed graph with elements h of \mathcal{H} as vertices edge from \mathbf{h} to \mathbf{h}^{\prime}, if $l \mathrm{t} \mathbf{h}^{\prime}$ (unique) involutive divisor of $\mathrm{lt}(x \mathbf{h})$ for some non-multiplicative variable $x \in \bar{X}_{\mathcal{H}, L, \prec}(\mathbf{h})$

Lemma: L continuous division \Longrightarrow any L-graph acyclic
Proof: cycle corresponds to sequence violating definition of continuity

Involutive Schreyer Theorem

Def: involutive basis \mathcal{H} for division $L \rightsquigarrow L$-graph of \mathcal{H} directed graph with elements h of \mathcal{H} as vertices edge from \mathbf{h} to \mathbf{h}^{\prime}, if $l \mathrm{t} \mathbf{h}^{\prime}$ (unique) involutive divisor of $\mathrm{lt}(x \mathbf{h})$ for some non-multiplicative variable $x \in \bar{X}_{\mathcal{H}, L, \prec}(\mathbf{h})$

Def: $\quad L$-ordering of $\mathcal{H} \rightsquigarrow$ numbering $\mathcal{H}=\left\{\mathbf{h}_{1}, \ldots, \mathbf{h}_{s}\right\}$ such that $\alpha<\beta$ whenever L-graph contains path from \mathbf{h}_{α} to \mathbf{h}_{β}

Involutive Schreyer Theorem

Def: involutive basis \mathcal{H} for division $L \rightsquigarrow L$-graph of \mathcal{H} directed graph with elements \mathbf{h} of \mathcal{H} as vertices edge from \mathbf{h} to \mathbf{h}^{\prime}, if $l \mathrm{t} \mathbf{h}^{\prime}$ (unique) involutive divisor of $\mathrm{lt}(x \mathbf{h})$ for some non-multiplicative variable $x \in \bar{X}_{\mathcal{H}, L, \prec}(\mathbf{h})$

Def: L-ordering of $\mathcal{H} \rightsquigarrow$ numbering $\mathcal{H}=\left\{\mathbf{h}_{1}, \ldots, \mathbf{h}_{s}\right\}$ such that $\alpha<\beta$ whenever L-graph contains path from \mathbf{h}_{α} to \mathbf{h}_{β}

■ by lemma above L-ordering always exists for continuous divisions

- in example above $\mathcal{H} \quad P$-ordered

Involutive Schreyer Theorem

Def: involutive basis \mathcal{H} for division $L \rightsquigarrow L$-graph of \mathcal{H} directed graph with elements h of \mathcal{H} as vertices edge from \mathbf{h} to \mathbf{h}^{\prime}, if $l \mathrm{t} \mathbf{h}^{\prime}$ (unique) involutive divisor of $\mathrm{lt}(x \mathbf{h})$ for some non-multiplicative variable $x \in \bar{X}_{\mathcal{H}, L, \prec}(\mathbf{h})$

Def: L-ordering of $\mathcal{H} \rightsquigarrow$ numbering $\mathcal{H}=\left\{\mathbf{h}_{1}, \ldots, \mathbf{h}_{s}\right\}$ such that $\alpha<\beta$ whenever L-graph contains path from \mathbf{h}_{α} to \mathbf{h}_{β}

Lemma: $\mathcal{H} L$-ordered involutive basis $\Longrightarrow \mathrm{lt}_{\prec_{\mathcal{H}}} \mathbf{S}_{\alpha ; k}=x_{k} \mathbf{e}_{\alpha}$
Proof: apply definitions

Involutive Schreyer Theorem

Overview

Syzygies of Gröbner Bases
Syzygies of Involutive Bases
Involutive Schreyer Theorem
Free Resolutions of Polynomial Modules
Free Resolutions of Monomial Modules

Minimal Resolutions

 Castelnuovo-Mumford RegularityConclusions

Def: involutive division L of Schreyer type
for any involutive basis \mathcal{H} all sets $\bar{X}_{L, \mathcal{H}, \prec}(h)$ are again involutive

Involutive Schreyer Theorem

Overview

Syzygies of Gröbner Bases
Syzygies of Involutive Bases
Involutive Schreyer Theorem
Free Resolutions of Polynomial Modules
Free Resolutions of Monomial Modules

Minimal Resolutions

Def: involutive division L of Schreyer type
for any involutive basis \mathcal{H} all sets $\bar{X}_{L, \mathcal{H}, \prec}(h)$ are again involutive

Example: Thomas division not of Schreyer type

Lemma: Janet and Pommaret division of Schreyer type

Involutive Schreyer Theorem

Def: involutive division L of Schreyer type for any involutive basis \mathcal{H} all sets $\bar{X}_{L, \mathcal{H}, \prec}(h)$ are again involutive

Theorem: L continuous involutive division of Schreyer type, $\mathcal{H} L$-ordered involutive basis for L and term order $\prec \Longrightarrow$ $\mathcal{H}_{\text {syz }}$ involutive basis of $\operatorname{Syz}(\mathcal{H})$ for L and $\prec_{\mathcal{H}}$

Proof: simple corollary to previous results

- $\mathcal{H}_{\text {syz }}$ Gröbner basis
- leading terms $x_{k} \mathbf{e}_{\alpha}$ with $x_{k} \in \bar{X}_{L, \mathcal{H}, \prec}\left(\mathbf{h}_{\alpha}\right)$ because of L-ordering

■ $\left\{x_{k} \mathbf{e}_{\alpha} \mid x_{k} \in \bar{X}_{L, \mathcal{H}, \prec}\left(\mathbf{h}_{\alpha}\right)\right\}$ involutive, since L of Schreyer type

Free Resolutions of Polynomial Modules

Overview

Idea: iterate last theorem in order to obtain free resolution of polynomial submodule $\mathcal{M} \subseteq \mathcal{P}^{m}$

Remark: doing this effectively requires new computations do not know $\left(\mathcal{H}_{\text {syz }}\right)_{\text {syz }}$, as involutive basis $\mathcal{H}_{\text {syz }}$ was "for free" (general problem with practical application of Schreyer theorem)

Observation: for Pommaret division manystatements about obtained resolution possible without further computations \rightsquigarrow stronger form of Hilbert's syzygy theorem

Free Resolutions of Polynomial Modules

Overview Bases

Theorem: \mathcal{H} Pommaret basis of $\mathcal{M}, d=\operatorname{cls} \mathcal{H}, \beta_{0}^{(k)}$ number of generators in \mathcal{H} of class $k \Longrightarrow \mathcal{M}$ has free resolution of the form

$$
0 \longrightarrow \mathcal{P}^{r_{n-d}} \longrightarrow \cdots \longrightarrow \mathcal{P}^{r_{1}} \longrightarrow \mathcal{P}^{r_{0}} \longrightarrow \mathcal{M} \longrightarrow 0
$$

of length $n-d$ with ranks

$$
r_{i}=\sum_{k=1}^{n-i}\binom{n-k}{i} \beta_{0}^{(k)}
$$

(note: r_{i} upper bound for Betti number b_{i})

Free Resolutions of Polynomial Modiules

Overview

Syzygies of Gröbner Bases
Syzygies of Involutive Bases
Involutive Schreyer Theorem
Free Resolutions of Polynomial Modules Free Resolutions of Monomial Modules

Proof:

■ lt $\mathbf{S}_{\alpha ; k}=x_{k} \mathbf{e}_{\alpha} \Longrightarrow \operatorname{cls} \mathbf{S}_{\alpha ; k}=k \geq \operatorname{cls} \mathbf{h}_{\alpha}+1$ hence cls $\mathcal{H}_{\text {syz }}=\operatorname{cls} \mathcal{H}+1 \rightsquigarrow$ length of resolution (cls $\mathcal{H}=n \Longrightarrow\langle\mathcal{H}\rangle$ free module)

Free Resolutions of Polynomial Modules

Overview

Proof:

■ lt $\mathbf{S}_{\alpha ; k}=x_{k} \mathbf{e}_{\alpha} \Longrightarrow \operatorname{cls} \mathbf{S}_{\alpha ; k}=k \geq \operatorname{cls} \mathbf{h}_{\alpha}+1$ hence cls $\mathcal{H}_{\text {syz }}=\operatorname{cls} \mathcal{H}+1 \rightsquigarrow \quad$ length of resolution (cls $\mathcal{H}=n \quad \Longrightarrow\langle\mathcal{H}\rangle$ free module)

- rank formula obtained by induction and an identity for binomial coefficients
$\square \quad \beta_{i}{ }^{(k)}$ number of generators of class k in Pommaret basis of $\operatorname{Syz}_{i}(\mathcal{H})$

$$
\Longrightarrow \quad r_{i}=\sum_{k=1}^{n} \beta_{i}^{(k)}
$$

\square definition of Pommaret division

$$
\Longrightarrow \quad \beta_{i}{ }^{(k)}=\sum_{j=1}^{k-1} \beta_{i-1}^{(j)}
$$

Free Resolutions of Polynomial Modules

Overview

Example: $\mathcal{P}=\mathbb{k}[x, y, z]$, Pommaret basis \mathcal{H} for $\prec_{\text {degrevlex }}$

$$
\begin{aligned}
\mathcal{H}=\{ & h_{1}=x^{2}, h_{2}=x y, h_{3}=x z-y, \\
& \left.h_{4}=y^{2}, h_{5}=y z-y, h_{6}=z^{2}-z+x\right\}
\end{aligned}
$$

First syzygies (Pommaret basis $\mathcal{H}_{\text {syz }}$ of $\operatorname{Syz}_{1}(\mathcal{H})$ for $\prec_{\mathcal{H}}$)

$$
\begin{aligned}
& \mathbf{S}_{1 ; 3}=z \mathbf{e}_{1}-x \mathbf{e}_{3}-\mathbf{e}_{2} \\
& \mathbf{S}_{2 ; 3}=z \mathbf{e}_{2}-x \mathbf{e}_{5}-\mathbf{e}_{2} \\
& \mathbf{S}_{3 ; 3}=z \mathbf{e}_{3}-x \mathbf{e}_{6}+\mathbf{e}_{5}-\mathbf{e}_{3}+\mathbf{e}_{1} \\
& \mathbf{S}_{4 ; 3}=z \mathbf{e}_{4}-y \mathbf{e}_{5}-\mathbf{e}_{4} \\
& \mathbf{S}_{5 ; 3}=z \mathbf{e}_{5}-y \mathbf{e}_{6}+\mathbf{e}_{2} \\
& \mathbf{S}_{1 ; 2}=y \mathbf{e}_{1}-x \mathbf{e}_{2} \\
& \mathbf{S}_{2 ; 2}=y \mathbf{e}_{2}-x \mathbf{e}_{4} \\
& \mathbf{S}_{3 ; 2}=y \mathbf{e}_{3}-x \mathbf{e}_{5}+\mathbf{e}_{4}-\mathbf{e}_{2}
\end{aligned}
$$

Free Resolutions of Polynomial Modules

Example: $\mathcal{P}=\mathbb{k}[x, y, z]$, Pommaret basis \mathcal{H} for $\prec_{\text {degrevlex }}$

$$
\begin{aligned}
\mathcal{H}=\{ & h_{1}=x^{2}, h_{2}=x y, h_{3}=x z-y, \\
& \left.h_{4}=y^{2}, h_{5}=y z-y, h_{6}=z^{2}-z+x\right\}
\end{aligned}
$$

Second syzygies (Pommaret basis $\left(\mathcal{H}_{\mathrm{syz}}\right)_{\mathrm{syz}}$ of $\operatorname{Syz}_{2}(\mathcal{H})$ for $\prec_{\mathcal{H}}{ }_{\mathrm{syz}}$)

$$
\begin{aligned}
& \mathbf{S}_{1 ; 2,3}=z \mathbf{e}_{1 ; 2}-y \mathbf{e}_{1 ; 3}+x \mathbf{e}_{2 ; 3}-x \mathbf{e}_{4 ; 2}-\mathbf{e}_{2 ; 2} \\
& \mathbf{S}_{2 ; 2,3}=z \mathbf{e}_{2 ; 2}-y \mathbf{e}_{2 ; 3}+x \mathbf{e}_{4 ; 3}-\mathbf{e}_{2 ; 2} \\
& \mathbf{S}_{3 ; 2,3}=z \mathbf{e}_{3 ; 2}-y \mathbf{e}_{3 ; 3}+x \mathbf{e}_{5 ; 3}+\mathbf{e}_{2 ; 3}-\mathbf{e}_{4 ; 3}-\mathbf{e}_{3 ; 2}+\mathbf{e}_{1 ; 2}
\end{aligned}
$$

all generators of class $3 \Longrightarrow \operatorname{Syz}_{2}(\mathcal{H})$ free module

Free Resolutions of Polynomial Modules

Overview

Example: $\mathcal{P}=\mathbb{k}[x, y, z]$, Pommaret basis \mathcal{H} for $\prec_{\text {degrevlex }}$

$$
\begin{aligned}
\mathcal{H}=\{ & h_{1}=x^{2}, h_{2}=x y, h_{3}=x z-y, \\
& \left.h_{4}=y^{2}, h_{5}=y z-y, h_{6}=z^{2}-z+x\right\}
\end{aligned}
$$

free resolution of $\mathcal{I}=\langle\mathcal{H}\rangle$

$$
0 \longrightarrow \mathcal{P}^{3} \longrightarrow \mathcal{P}^{8} \longrightarrow \mathcal{I} \longrightarrow 0
$$

or (preferably) of $\mathcal{A}=\mathcal{P} / \mathcal{I}$

$$
0 \longrightarrow \mathcal{P}^{3} \longrightarrow \mathcal{P}^{8} \longleftrightarrow \mathcal{P}^{1} \longrightarrow \mathcal{A} \longrightarrow 0
$$

Free Resolutions of Monomial Modules

Overview

Syzygies of Gröbner Bases
Syzygies of Involutive Bases
Involutive Schreyer Theorem
Free Resolutions of Polynomial Modules

Free Resolutions of

 Monomial Modules
Minimal Resolutions

 Castelnuovo-Mumford RegularityAssume $\mathcal{M} \subset \mathcal{P}^{m}$ quasi-stable monomial module with Pommaret basis $\mathcal{H}=\left\{\mathbf{h}_{1}, \ldots, \mathbf{h}_{p}\right\} \quad \Longrightarrow$ explicit presentation of resolution exists (not requiring any further computations!)

Free Resolutions of Monomial Modules

Overview

Assume $\mathcal{M} \subset \mathcal{P}^{m}$ quasi-stable monomial module with Pommaret basis $\mathcal{H}=\left\{\mathbf{h}_{1}, \ldots, \mathbf{h}_{p}\right\} \Longrightarrow$ explicit presentation of resolution exists (not requiring any further computations!)

Explicit expressions for all syzygies obtainable from P-graph

- let x_{k} be non-multiplicative for generator \mathbf{h}_{α}
- \mathcal{H} contains generator \mathbf{h}_{β} with $x_{k} \mathbf{h}_{\alpha}=x^{\mu} \mathbf{h}_{\beta} \quad$ and $x^{\mu} \in \mathbb{k}\left[X_{P}\left(\mathbf{h}_{\beta}\right)\right]$

■ write $\Delta(\alpha, k)=\beta$ and $t_{\alpha, k}=x^{\mu}$

Free Resolutions of Monomial Modules

Overview

Assume $\mathcal{M} \subset \mathcal{P}^{m}$ quasi-stable monomial module with Pommaret basis $\mathcal{H}=\left\{\mathbf{h}_{1}, \ldots, \mathbf{h}_{p}\right\} \quad \Longrightarrow$ explicit presentation of resolution exists (not requiring any further computations!)

Explicit expressions for all syzygies obtainable from P-graph

- let x_{k} be non-multiplicative for generator \mathbf{h}_{α}
- \mathcal{H} contains generator \mathbf{h}_{β} with $x_{k} \mathbf{h}_{\alpha}=x^{\mu} \mathbf{h}_{\beta} \quad$ and $x^{\mu} \in \mathbb{k}\left[X_{P}\left(\mathbf{h}_{\beta}\right)\right]$

■ write $\Delta(\alpha, k)=\beta$ and $t_{\alpha, k}=x^{\mu}$

Theorem: Let $\mathbf{k}=\left(k_{1}, \ldots, k_{i}\right)$ with $\operatorname{cls} \mathbf{h}_{\alpha}<k_{1}<\cdots<k_{i}$
where $\mathbf{k}_{j}=\left(k_{1}, \ldots, \widehat{k_{j}}, \ldots, k_{i}\right) \quad(\mathbf{k}$ with j th entry removed $)$

Free Resolutions of Monomial Modules

Remark: For quasi-stable ideals the resolution can always be given the structure of a differential algebra.

- let h_{α}, h_{β} be two elements of \mathcal{H}

■ \mathcal{H} contains generator \mathbf{h}_{γ} with $\mathbf{h}_{\alpha} \mathbf{h}_{\beta}=x^{\mu} \mathbf{h}_{\gamma} \quad$ and $x^{\mu} \in \mathbb{k}\left[X_{P}\left(\mathbf{h}_{\gamma}\right)\right]$

- write $\Gamma(\alpha, \beta)=\gamma$ and $m_{\alpha, \beta}=x^{\mu}$
- express resolution as complex with symmetric and anti-symmetric part; use m, Γ to define product on symmetric part; use exterior product on anti-symmetric part
- properties of Pommaret basis ensure associativity and Leibniz rule
(Same construction possible for polynomial case; however, obtained product in general not associative and does not satisfy Leibniz rule.)

Minimal Resolutions

Overview

Free resolution of graded module \mathcal{M} minimal \rightsquigarrow all maps $\phi_{i}: \mathcal{P}^{r_{i}} \rightarrow \mathcal{P}^{r_{i-1}}$ in the resolution

- described by matrices with all entries of positive degrees (i.e. without constant terms) or equivalently
- map standard basis to minimal generating set of image

Theorem: Minimal free resolution unique up to isomorphism.
Remark: any non-minimal resolution can be transformed into a minimal one with some linear algebra.

Def: projective dimension $\operatorname{pim} \mathcal{M} \rightsquigarrow$ length of minimal free resolution

Minimal Resolutions

Overview

Syzygies of Gröbner Bases
Syzygies of Involutive Bases
Involutive Schreyer
Theorem
Free Resolutions of Polynomial Modules

Free Resolutions of Monomial Modules

Minimal Resolutions Castelnuovo-Mumford Regularity

Conclusions

Lemma: Resolution obtained with Pommaret basis minimal \qquad all syzygies $\mathbf{S}_{\alpha ; k} \in \mathcal{H}_{\text {Syz }}$ free of constant terms

Proof: follows easily from analysis of $\mathbf{S}_{\alpha ; k_{1}, k_{2}}$

Minimal Resolutions

Lemma: Resolution obtained with Pommaret basis minimal \qquad all syzygies $\mathbf{S}_{\alpha ; k} \in \mathcal{H}_{\text {Syz }}$ free of constant terms

Proof: follows easily from analysis of $\mathbf{S}_{\alpha ; k_{1}, k_{2}}$
Thus in general Pommaret basis does not yield minimal resolution. However, much information about minimal resolution deducible!

Theorem: \mathcal{H} Pommaret basis of \mathcal{M} for class respecting term order and $\operatorname{cls} \mathcal{H}=d \quad \Longrightarrow \quad \operatorname{pdim} \mathcal{M}=n-d$

Proof: analyse minimisation process applied to resolution obtained from \mathcal{H} \rightsquigarrow minimisation cannot reduce length of resolution (analyse syzygies obtained from generator of minimal class and maximal degree)

Minimal Resolutions

Lemma: Resolution obtained with Pommaret basis minimal \qquad all syzygies $\mathbf{S}_{\alpha ; k} \in \mathcal{H}_{\text {Syz }}$ free of constant terms

Proof: follows easily from analysis of $\mathbf{S}_{\alpha ; k_{1}, k_{2}}$
Thus in general Pommaret basis does not yield minimal resolution. However, much information about minimal resolution deducible!

Theorem: \mathcal{H} Pommaret basis of \mathcal{M} for class respecting term order and $\operatorname{cls} \mathcal{H}=d \quad \Longrightarrow \quad \operatorname{pdim} \mathcal{M}=n-d$

Proof: analyse minimisation process applied to resolution obtained from \mathcal{H} \rightsquigarrow minimisation cannot reduce length of resolution (analyse syzygies obtained from generator of minimal class and maximal degree)

Corollary: (Auslander-Buchsbaum formula)

$$
\operatorname{depth} \mathcal{M}+\operatorname{pdim} \mathcal{M}=n
$$

Minimal Resolutions

Overview

Syzygies of Gröbner Bases
Syzygies of Involutive Bases
Involutive Schreyer Theorem
Free Resolutions of Polynomial Modules

Free Resolutions of Monomial Modules

Minimal Resolutions Castelnuovo-Mumford Regularity

Thm: \mathcal{M} monomial module with Pommaret basis \mathcal{H}
\mathcal{M} stable $\Longleftrightarrow \mathcal{H}$ minimal basis of $\mathcal{M} \Longleftrightarrow$ resolution obtained from \mathcal{H} minimal (Eliahou-Kervaire resolution)

Minimal Resolutions

Overview

Syzygies of Gröbner Bases
Syzygies of Involutive Bases
Involutive Schreyer Theorem
Free Resolutions of Polynomial Modules
Free Resolutions of
Monomial Modules
Minimal Resolutions

Thm: \mathcal{M} monomial module with Pommaret basis \mathcal{H} \mathcal{M} stable $\Longleftrightarrow \mathcal{H}$ minimal basis of $\mathcal{M} \Longleftrightarrow$ resolution obtained from \mathcal{H} minimal (Eliahou-Kervaire resolution)

Thm: \mathcal{M} polynomial module with Pommaret basis \mathcal{H} resolution obtained from \mathcal{H} minimal $\Longrightarrow \mathcal{M}$ componentwise linear (for "proper" - generic - choice of δ-regular variables, converse true, too)

Def: graded module \mathcal{M} q-regular

- \mathcal{M} can be generated in degree $\leq q$
- $\operatorname{Syz}_{j}(\mathcal{M})$ can be generated in degree $\leq q+j$

Castelnuovo-Mumford regularity of \mathcal{M} $\operatorname{reg} \mathcal{M}=\min \{q \in \mathbb{N} \mid \mathcal{M} q$-regular $\}$

Def: graded module \mathcal{M} q-regular

- \mathcal{M} can be generated in degree $\leq q$
- $\operatorname{Syz}_{j}(\mathcal{M})$ can be generated in degree $\leq q+j$

Castelnuovo-Mumford regularity of \mathcal{M} $\operatorname{reg} \mathcal{M}=\min \{q \in \mathbb{N} \mid \mathcal{M} q$-regular $\}$
reg \mathcal{M} crucial for complexity analysis of Gröbner bases:
Theorem: (Bayer-Stillman)
in generic variables $\quad \operatorname{deg} \mathcal{G} \geq \operatorname{reg} \mathcal{M} \quad$ for any Gröbner basis \mathcal{G} (generically equality for degrevlex)

Problem: what means generic? No effective test known...

CasteInuovo-Mumford Regular

Theorem: \mathcal{H} Pommaret basis of \mathcal{M} for degrevlex \qquad
$\operatorname{deg} \mathcal{H}=\operatorname{reg} \mathcal{M}$

Proof:

- " \geq " obvious from resolution induced by \mathcal{H}
- for " $=$ " take element $\mathbf{h}_{\alpha} \in \mathcal{H}$ of maximal degree $\operatorname{deg} \mathcal{H}$ and of minimal class d among all elements of degree $\operatorname{deg} \mathcal{H} \leadsto$ show that syzygy $\mathbf{S}_{\alpha ; d+1, d+2, \ldots, n}$ cannot be eliminated during minimisation process

Theorem: \mathcal{H} Pommaret basis of \mathcal{M} for degrevlex \qquad $\operatorname{deg} \mathcal{H}=\operatorname{reg} \mathcal{M}$

Proof:

- " \geq " obvious from resolution induced by \mathcal{H}

■ for " $=$ " take element $\mathbf{h}_{\alpha} \in \mathcal{H}$ of maximal degree $\operatorname{deg} \mathcal{H}$ and of minimal class d among all elements of degree $\operatorname{deg} \mathcal{H} \sim$ show that syzygy $\mathbf{S}_{\alpha ; d+1, d+2, \ldots, n}$ cannot be eliminated during minimisation process

Remark: iteration of this argument \rightsquigarrow all extremal Betti numbers of \mathcal{M} can be read off degrevlex Pommaret basis \mathcal{H}

CasteInuovo-Mumford Regular

Example: recall from first lecture

$$
\mathcal{I}=\left\langle z^{8}-w x y^{6}, y^{7}-x^{6} z, y z^{7}-w x^{7}\right\rangle \triangleleft \mathbb{k}[w, x, y, z]
$$

(reduced) Gröbner basis for degrevlex
chosen variables already δ-regular completion adds the polynomials $z^{k}\left(y^{7}-x^{6} z\right)$ for $1 \leq k \leq 6$ Pommaret basis \mathcal{H} with $\operatorname{deg} \mathcal{H}=13 \Longrightarrow$

$$
\operatorname{reg} \mathcal{I}=13
$$

Theorem: (Eisenbud-Goto)
Some classical results on $\operatorname{reg} \mathcal{M}$ can be obtained as easy corollaries.
$\mathcal{M} q$-regular \Longleftrightarrow truncation $\mathcal{M}_{\geq q}$ possesses linear free resolution
Proof: " "": consider degrevlex Pommaret basis \mathcal{H} $\operatorname{deg} \mathcal{H}=\operatorname{reg} \mathcal{M} \leq q \rightsquigarrow \mathcal{H}_{q}$ Pommaret basis of $\mathcal{M} \geq q$ with all generators of same degree \rightsquigarrow induced resolution minimal and linear
$" \Longrightarrow ": \mathcal{M}_{\geq q}$ has linear resolution $\rightsquigarrow \operatorname{reg} \mathcal{M}_{\geq q}=q \rightsquigarrow \mathcal{M}_{\geq q}$ has Pommaret basis of degree $q \rightsquigarrow \mathcal{M}$ has Pommaret basis \mathcal{H} with $\operatorname{reg} \mathcal{M}=\operatorname{deg} \mathcal{H} \leq q \rightsquigarrow \mathcal{M} q$-regular
(noted as "curiosité" already 20 years earlier by Serre in the context of differential equations)

CasteInuovo-Mumford Regular

Some classical results on reg \mathcal{M} can be obtained as easy corollaries.
Theorem: (Bayer-Stillman)
homogeneous ideal $\mathcal{I} \subseteq \mathcal{P} q$-regular $\Longleftrightarrow \exists y_{1}, \ldots, y_{d} \in \mathcal{P}_{1}$

$$
\begin{gathered}
\left(\left\langle\mathcal{I}, y_{1}, \ldots, y_{k-1}\right\rangle: y_{k}\right)_{q}=\left\langle\mathcal{I}, y_{1}, \ldots, y_{k-1}\right\rangle_{q} \\
\left\langle\mathcal{I}, y_{1}, \ldots, y_{d}\right\rangle_{q}=\mathcal{P}_{q}
\end{gathered}
$$

"Proof:" y_{1}, \ldots, y_{d} can be extended to δ-regular variables

Conclusions

Overview

Syzygies of Gröbner

 BasesSyzygies of Involutive Bases
Involutive Schreyer Theorem
Free Resolutions of Polynomial Modules

Free Resolutions of

Monomial Modules

Minimal Resolutions

Castelnuovo-Mumford

One computation (Pommaret basis for degrevlex plus δ-regular coordinates) yields all the following information:

- Gröbner basis
- (complementary) Rees decomposition
- Hilbert series (function, polynomial)
- Krull dimension
(with maximal set of independent variables)
- multiplicity
- depth
(with simple maximal regular sequence)
- test for Cohen-Macaulay module
- test for Gorenstein module
(with socle basis)

Conclusions

Overview

Syzygies of Gröbner

 BasesSyzygies of Involutive Bases
Involutive Schreyer Theorem
Free Resolutions of Polynomial Modules
Free Resolutions of
Monomial Modules

Minimal Resolutions

Castelnuovo-Mumford

One computation (Pommaret basis for degrevlex plus δ-regular coordinates) yields all the following information:

- projective dimension (plus bounds on all Betti numbers)
- Castelnuovo-Mumford regularity (plus all extremal Betti-numbers)
- Noether normalisation
- Saturation $\mathcal{I}^{\text {sat }}$
- parameter ideal
- test for componentwise linearity
- ... work in progress ...

