Involutive Bases IV

Werner M. Seiler Institut für Mathematik Universität Kassel

W.M. Seiler: Involutive Bases IV - 1

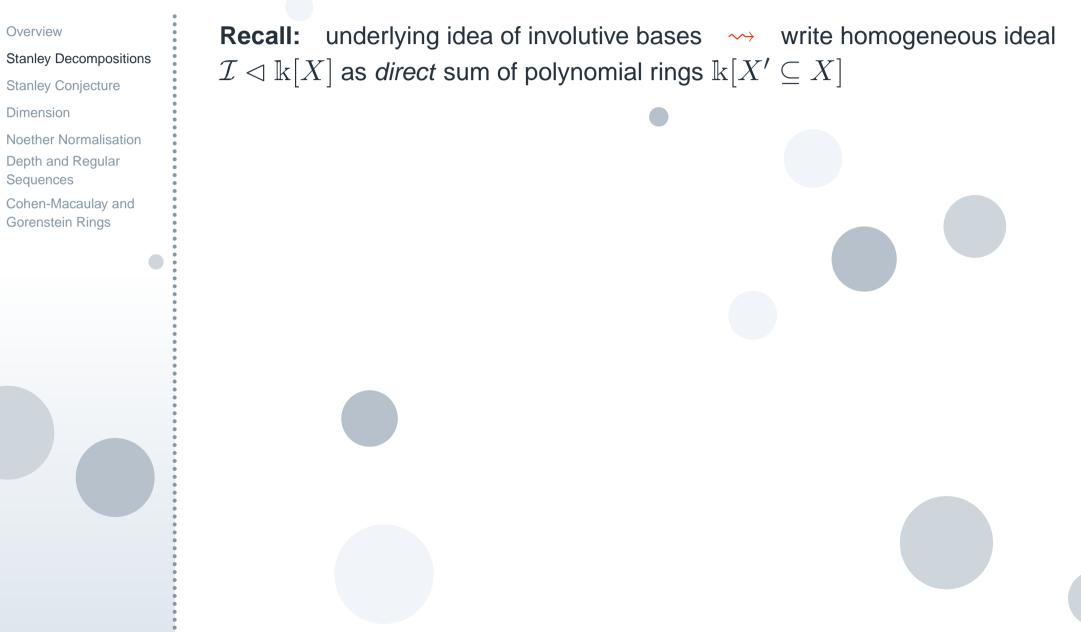
Overview

W.M. Seiler: Involutive Bases IV - 2

Overview

- Stanley Decompositions
- Stanley Conjecture
- Dimension
- Noether Normalisation
- Depth and Regular Sequences
- Cohen-Macaulay and Gorenstein Rings

- General Involutive Bases
- **Basic Algorithms**
- **Pommaret Bases and \delta-Regularity**
 - **Combinatorial Decompositions and Applications**
 - \Box Stanley decompositions of \mathcal{I} and \mathcal{P}/\mathcal{I}
 - □ Hilbert functions and polynomials
 - Dimension and Depth
 - Cohen-Macaulay and Gorenstein rings
- Syzygy Theory and Applications



Overview

Stanley Decompositions

- Stanley Conjecture
- Dimension
- Noether Normalisation
- Depth and Regular Sequences
- Cohen-Macaulay and Gorenstein Rings

Recall: underlying idea of involutive bases \rightsquigarrow write homogeneous ideal $\mathcal{I} \lhd \Bbbk[X]$ as *direct* sum of polynomial rings $\Bbbk[X' \subseteq X]$

Def: Stanley decomposition of graded k[X]-module $\mathcal{M} \rightsquigarrow$ isomorphism of graded k-linear spaces

$$\mathcal{M} \cong \bigoplus_{t \in \mathcal{T}} \Bbbk[X_t] \cdot t$$

with a finite set $T \subset T(X)^m$ of terms and for each $t \in T$ a set of multiplicative variables $X_t \subseteq X$

Overview

Stanley Decompositions

- Stanley Conjecture
- Dimension
- Noether Normalisation Depth and Regular
- Sequences
- Cohen-Macaulay and Gorenstein Rings

Recall: underlying idea of involutive bases \rightsquigarrow write homogeneous ideal $\mathcal{I} \lhd \Bbbk[X]$ as *direct* sum of polynomial rings $\Bbbk[X' \subseteq X]$

Def: Stanley decomposition of graded k[X]-module $\mathcal{M} \rightsquigarrow$ isomorphism of graded k-linear spaces

$$\mathcal{M} \cong \bigoplus_{\boldsymbol{t} \in \mathcal{T}} \Bbbk[X_{\boldsymbol{t}}] \cdot \boldsymbol{t}$$

with a finite set $T \subset T(X)^m$ of terms and for each $t \in T$ a set of *multiplicative variables* $X_t \subseteq X$

- Rees decomposition: $\forall t \in \mathcal{T} : X_t = \{x_1, \dots, x_{\text{lev }t}\}$ (with *level* lev *t* of generator *t*)
- quasi-Rees decomposition: $\exists \, \overline{t} \in \mathcal{T} \, \forall t \in \mathcal{T} : X_t \subseteq X_{\overline{t}}$

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular

Sequences

Cohen-Macaulay and Gorenstein Rings

 \mathcal{H} any involutive basis of $\mathcal{I} \triangleleft \mathcal{P} \rightsquigarrow$ Stanley decomposition of \mathcal{I} (\mathcal{H} Pommaret basis \rightsquigarrow Rees decomposition with $\operatorname{lev} t = \operatorname{cls} t$)

Problem: Stanley decomposition of $\overline{\mathcal{A}} = \mathcal{P}/\mathcal{I}$

Arbitrary involutive basis \mathcal{H} of \mathcal{I} does generally *not* yield such a *complementary decomposition*!

Overview

Stanley Decompositions

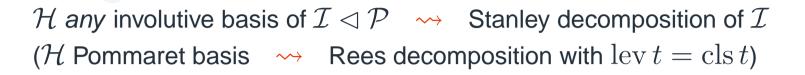
Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular

Sequences

Cohen-Macaulay and Gorenstein Rings



Problem: Stanley decomposition of $\overline{\mathcal{A}} = \mathcal{P}/\mathcal{I}$

Arbitrary involutive basis \mathcal{H} of \mathcal{I} does generally *not* yield such a *complementary decomposition*!

Prop: every ideal $\mathcal{I} \lhd \mathcal{P}$ has a complementary decomposition

Proof:

- Macaulay: $\mathcal{A} \cong \mathcal{A}' = \mathcal{P}/\operatorname{lt} \mathcal{I}$ as \Bbbk -linear spaces \rightsquigarrow *monomial* (i. e. combinatorial) problem
- induction over number of variables X yields simple recursive algorithm for construction of complementary decomposition via "slicing"
 - alternative algorithm via Janet bases

Overview

Stanley Decompositions

Stanley Conjecture

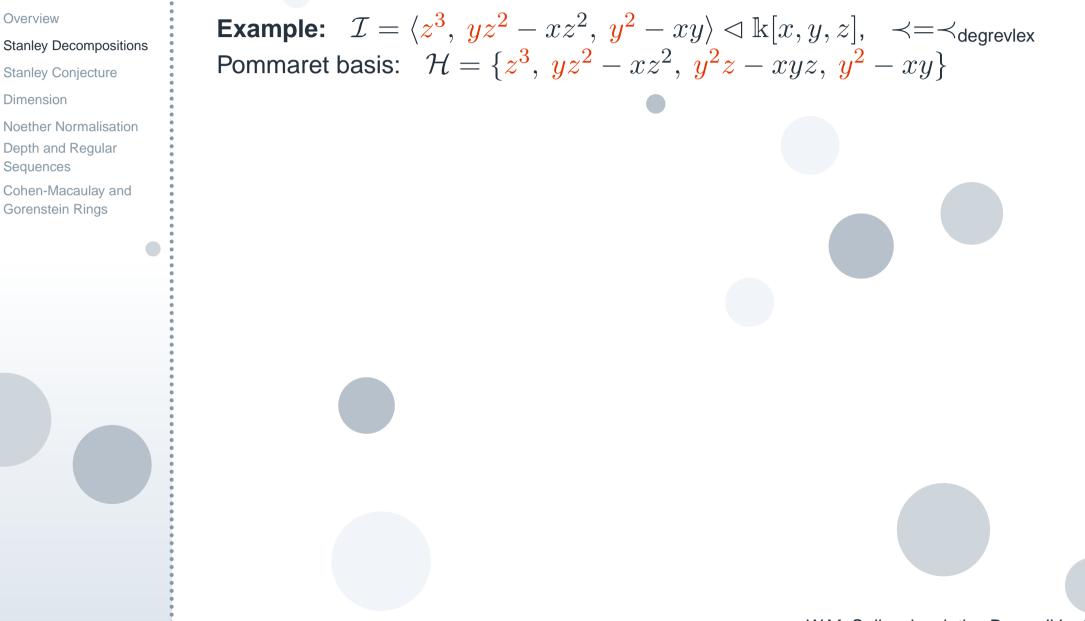
Dimension

Noether Normalisation Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings

Prop: \mathcal{H} *Pommaret basis* of *monomial* ideal $\mathcal{I} \lhd \mathcal{P}$; define $\mathcal{B}_0 = \{ t \in \mathbb{T}(X) \setminus \mathcal{I} \mid \deg t < \deg \mathcal{H} \} \text{ and }$ $\mathcal{B}_1 = \{ t \in \mathbb{T}(X) \setminus \mathcal{I} \mid \deg t = \deg \mathcal{H} \} \implies$ complementary Rees decomposition $\mathcal{A} \cong \langle \mathcal{B}_0 \rangle_{\mathbb{k}} \oplus \bigoplus \mathbb{k}[x_1, \dots, x_{\operatorname{cls} t}] \cdot t$ $t \in \mathcal{B}_1$ (i. e. lev t = 0 for $t \in \mathcal{B}_0$ and lev $t = \operatorname{cls} t$ for $t \in \mathcal{B}_1$) **Proof:** $\mathcal{P}_{\geq q} = \bigoplus \mathbb{k}[x_1, \dots, x_{\text{cls } t}] \cdot t$ $\deg t = q$

(above Rees decomposition usually highly redundant; optimised form with less generators obtainable with algorithm of *Hironaka*)



Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular

Sequences

Cohen-Macaulay and Gorenstein Rings

Example: $\mathcal{I} = \langle z^3, yz^2 - xz^2, y^2 - xy \rangle \triangleleft \mathbb{k}[x, y, z], \prec = \prec_{\text{degrevlex}}$ Pommaret basis: $\mathcal{H} = \{z^3, yz^2 - xz^2, y^2z - xyz, y^2 - xy\}$

complementary Rees decomposition according to proposition

$$\mathcal{A} \cong \langle 1, x, y, z, x^2, xy, xz, yz, z^2 \rangle_{\mathbb{k}} \oplus \\ \langle x^3, x^2y, x^2z, xyz, xz^2 \rangle_{\mathbb{k}[x]}$$

complementary Rees decomposition with Hironaka algorithm

$$\mathcal{A} \cong \langle 1, y, z, yz, z^2 \rangle_{\Bbbk[x]}$$

(note: all generators possess the *same level* \rightsquigarrow see end of lecture)

Stanley Conjecture

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation

Depth and Regular

Sequences

Cohen-Macaulay and Gorenstein Rings

consider monomial ideal $\, \mathcal{I} \lhd \mathcal{P} \,$

Def: Stanley depth of $\mathcal{I} \rightsquigarrow$

S-depth $\mathcal{I} = \max \left\{ k \in \mathbb{N} \mid \exists$ Stanley decomp. with $\min_{t \in \mathcal{T}} |X_t| = k \right\}$

Conjecture: S-depth $\mathcal{I} \geq depth \mathcal{I}$

W.M. Seiler: Involutive Bases IV - 4

Stanley Conjecture

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation

Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings

consider monomial ideal $\, \mathcal{I} \lhd \mathcal{P} \,$

Def: Stanley depth of $\mathcal{I} \rightsquigarrow$

S-depth $\mathcal{I} = \max \left\{ k \in \mathbb{N} \mid \exists$ Stanley decomp. with $\min_{t \in \mathcal{I}} |X_t| = k \right\}$

Conjecture: S-depth $\mathcal{I} \geq \operatorname{depth} \mathcal{I}$

Prop: Stanley conjecture true for *quasi-stable* ideals and their quotients **Proof:** will see later that Pommaret basis induces Rees decomposition of \mathcal{I} with $\min_{t \in \mathcal{T}} |X_t| = \operatorname{depth} \mathcal{I}$ and Rees decomposition of \mathcal{A} with $\min_{t \in \mathcal{T}} |X_t| = \operatorname{depth} \mathcal{A} = \operatorname{depth} \mathcal{I} - 1$

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings

Recall: \mathcal{M} non-negatively graded \mathcal{P} -module \rightsquigarrow

```
Hilbert function:h_{\mathcal{M}}(\boldsymbol{q}) = \dim_{\mathbb{k}} \mathcal{M}_{\boldsymbol{q}}Hilbert series:\mathcal{H}_{\mathcal{M}}(\lambda) = \sum h_{\mathcal{M}}(\boldsymbol{q})\lambda^{\boldsymbol{q}}
```

(generating function of $h_{\mathcal{M}}$)

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings

Recall: \mathcal{M} non-negatively graded \mathcal{P} -module \rightsquigarrow **Hilbert function:** $h_{\mathcal{M}}(q) = \dim_{\mathbb{K}} \mathcal{M}_{q}$ **Hilbert series:** $\mathcal{H}_{\mathcal{M}}(\lambda) = \sum_{q \ge 0} h_{\mathcal{M}}(q)\lambda^{q}$ (generating function of $h_{\mathcal{M}}$) **Prop:** $\mathcal{P} = \mathbb{k}[x_{1}, \dots, x_{n}] \implies$ $\mathcal{H}_{\mathcal{M}}(\lambda) = \frac{f(\lambda)}{(1-\lambda)^{n}}$ with $f \in \mathbb{Z}[\lambda]$

Cancelling common factors yields $\mathcal{H}_{\mathcal{M}}(\lambda) = g(\lambda)/(1-\lambda)^D$ where $D = \dim \mathcal{M}$

W.M. Seiler: Involutive Bases IV – 5

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings **Recall:** \mathcal{M} non-negatively graded \mathcal{P} -module \rightsquigarrow **Hilbert function:** $h_{\mathcal{M}}(q) = \dim_{\mathbb{K}} \mathcal{M}_{q}$ **Hilbert series:** $\mathcal{H}_{\mathcal{M}}(\lambda) = \sum_{q \ge 0} h_{\mathcal{M}}(q)\lambda^{q}$ (generating function of $h_{\mathcal{M}}$) **Prop:** $\mathcal{P} = \mathbb{k}[x_{1}, \dots, x_{n}] \implies$ $\mathcal{H}_{\mathcal{M}}(\lambda) = \frac{f(\lambda)}{(1-\lambda)^{n}}$ with $f \in \mathbb{Z}[\lambda]$

Cancelling common factors yields $\mathcal{H}_{\mathcal{M}}(\lambda) = g(\lambda)/(1-\lambda)^D$ where $D = \dim \mathcal{M}$

Thm: there exists *Hilbert polynomial* $H_{\mathcal{M}} \in \mathbb{Q}[s]$ such that $\forall q \geq \deg g : h_{\mathcal{M}}(q) = H_{\mathcal{M}}(q)$

Overview

Stanley Decompositions

Ρ

Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings

rop:
$$\mathcal{M}$$
 has Stanley decomposition $\mathcal{M} \cong \bigoplus_{t \in \mathcal{T}} \Bbbk[X_t] \cdot t \implies$

$$\begin{array}{ll} \mbox{Hilbert series} & \mathcal{H}_{\mathcal{M}}(\lambda) = \sum_{t \in \mathcal{T}} \frac{\lambda^{q_t}}{(1-\lambda)^{k_t}} \\ \mbox{Hilbert function} & h_{\mathcal{M}}(q) = \sum_{t \in \mathcal{T}} \binom{q - q_t + k_t - 1}{q - q_t} \\ & q - q_t \end{array} \\ \mbox{with } q_t = \deg t \mbox{ and } k_t = |X_t| \\ \mbox{Proof:} & \mathcal{H}_{\Bbbk[x_1,\ldots,x_k]}(\lambda) = 1/(1-\lambda)^k \end{array}$$

W.M. Seiler: Involutive Bases IV – 5

Overview

Stanley Decompositions

Ρ

Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings

rop:
$$\mathcal{M}$$
 has Stanley decomposition $\mathcal{M} \cong \bigoplus_{t \in \mathcal{T}} \Bbbk[X_t] \cdot t \implies$

$$\begin{array}{ll} \text{Hilbert series} & \mathcal{H}_{\mathcal{M}}(\lambda) = \sum_{t \in \mathcal{T}} \frac{\lambda^{q_t}}{(1-\lambda)^{k_t}} \\ \text{Hilbert function} & h_{\mathcal{M}}(q) = \sum_{t \in \mathcal{T}} \binom{q - q_t + k_t - 1}{q - q_t} \\ & \text{with } q_t = \deg t \text{ and } k_t = |X_t| \\ \end{array} \\ \begin{array}{l} \text{Proof:} & \mathcal{H}_{\Bbbk[x_1,\ldots,x_k]}(\lambda) = 1/(1-\lambda)^k \end{array} \end{array}$$

Cor: Stanley decomposition as above \implies

$$\dim \mathcal{M} = \max_{t \in \mathcal{T}} |X_t| \qquad \deg \mathcal{M} = \#\{t \in \mathcal{T} : |X_t| = \dim \mathcal{M}\}\$$

W.M. Seiler: Involutive Bases IV - 5

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

- Noether Normalisation Depth and Regular Sequences
- Cohen-Macaulay and Gorenstein Rings

Prop: $\mathcal H$ Pommaret basis of $\mathcal I$ with $\deg \mathcal H = q \implies$

 $\dim \mathcal{A} = D = \min \{i \mid \langle \mathcal{H}, x_1, \dots, x_i \rangle_{\boldsymbol{q}} = \mathcal{P}_{\boldsymbol{q}}\}$

Proof:

- Hilbert polynomials of \mathcal{A} and $\mathcal{A}_{\geq q}$ coincide
- consider Pommaret basis \mathcal{H}_q of $\mathcal{I}_{\geq q}$
 - $\square \quad \text{all terms } t \in \mathbb{T}(X) \text{ with } \deg t = q \text{ and } \operatorname{cls} t > D \text{ contained in } \operatorname{lt} \mathcal{H}_q$ (otherwise we needed also x_{D+1}, \ldots)
 - $\Box \quad \text{there exists term } s \in \mathbb{T}(X) \text{ with } \deg s = q \text{ and } \operatorname{cls} s = D \text{ not}$ contained in $\operatorname{lt} \mathcal{H}_q$ (otherwise x_D was not needed)
 - s generator in complementary Rees decomposition with maximal number of multiplicative variables $\{x_1, \ldots, x_D\} \implies \dim \mathcal{A} = D$

W.M. Seiler: Involutive Bases IV - 5

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

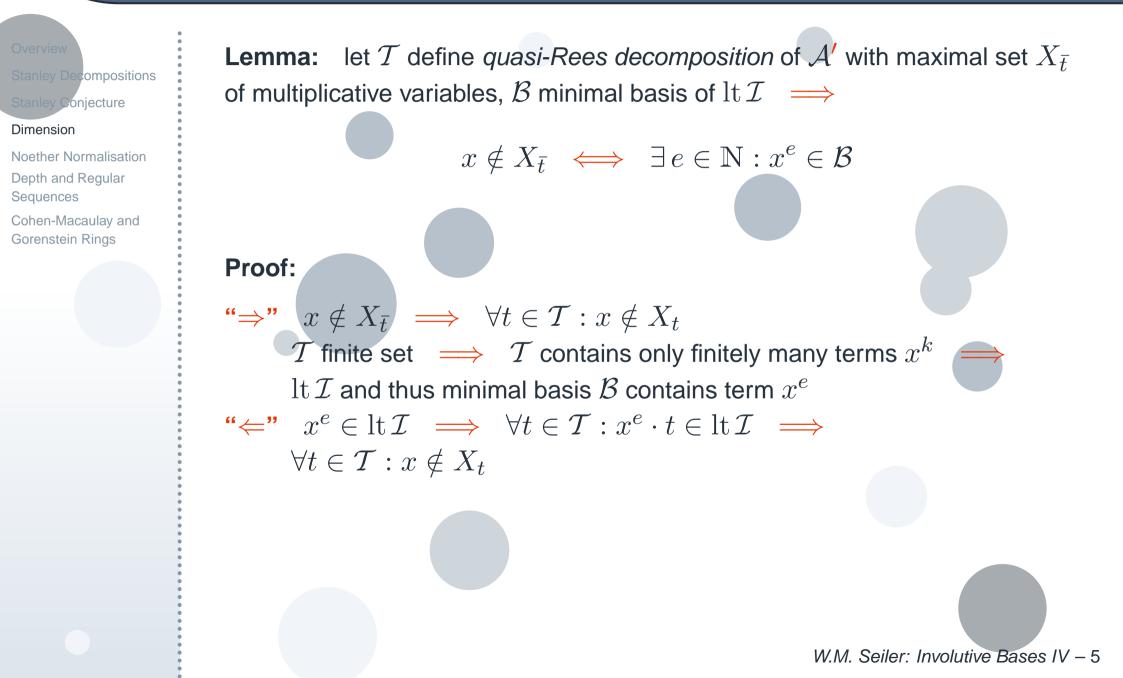
Noether Normalisation Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings

Def: $X_{\mathcal{I}} \subseteq X$ independent modulo $\mathcal{I} \rightsquigarrow \mathcal{I} \cap \Bbbk[\mathcal{X}_{\mathcal{I}}] = 0$ $X_{\mathcal{I}}$ strongly independent modulo \mathcal{I} and $\prec \rightsquigarrow \operatorname{lt} \mathcal{I} \cap \Bbbk[\mathcal{X}_{\mathcal{I}}] = 0$

Prop: dim $\mathcal{A} = \max \{ |X_{\mathcal{I}}| : X_{\mathcal{I}} \text{ (strongly) independent modulo } \mathcal{I} \}$

Problem: in general *many* different maximal (strongly) independent sets (not necessarily of the same size!) \rightsquigarrow *combinatorial explosion* for larger number of variables



Overview

Stanley Decompositions

Stanley Conjecture

Dimension

- Noether Normalisation Depth and Regular Sequences
- Cohen-Macaulay and Gorenstein Rings

Lemma: let \mathcal{T} define *quasi-Rees decomposition* of \mathcal{A}' with maximal set $X_{\bar{t}}$ of multiplicative variables, \mathcal{B} minimal basis of $\operatorname{lt} \mathcal{I} \implies$

 $x \notin X_{\overline{t}} \iff \exists e \in \mathbb{N} : x^e \in \mathcal{B}$

Prop: assumptions as above \implies $X_{\bar{t}}$ unique maximal strongly independent set modulo \mathcal{I} **Proof:** $s \in \operatorname{lt} \mathcal{I} \cap \Bbbk[X_{\bar{t}}] \implies s\bar{t} \in \operatorname{lt} \mathcal{I} \rightsquigarrow$ impossible as \mathcal{T} defines Stanley decomposition of $\mathcal{A}' \implies$ $X_{\bar{t}}$ strongly independent set modulo \mathcal{I} ; rest follows from Lemma Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings

Lemma: let \mathcal{T} define *quasi-Rees decomposition* of \mathcal{A}' with maximal set $X_{\bar{t}}$ of multiplicative variables, \mathcal{B} minimal basis of $\operatorname{lt} \mathcal{I} \implies$

 $x \notin X_{\overline{t}} \iff \exists e \in \mathbb{N} : x^e \in \mathcal{B}$

Prop: assumptions as above \implies $X_{\bar{t}}$ *unique* maximal strongly independent set modulo \mathcal{I}

Cor: variables δ -regular for $\mathcal{I} \implies$

 $\{x_1, \ldots, x_D\}$ unique maximal strongly independent set modulo $\mathcal I$

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation

Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings

Recall: Noether normalisation of $\mathcal{A} \rightsquigarrow$ injective map $\phi : \Bbbk[y_1, \dots, y_D] \hookrightarrow \mathcal{A}$ with $\operatorname{im} \phi \subseteq \mathcal{A}$ integral ring extension (in particular, \mathcal{A} finitely generated $\Bbbk[y_1, \dots, y_D]$ -module) \mathcal{I} in Noether position \rightsquigarrow may choose $y_1, \dots, y_D \in X$

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular

Sequences

Cohen-Macaulay and Gorenstein Rings

Recall: Noether normalisation of $\mathcal{A} \rightsquigarrow$ injective map $\phi : \Bbbk[y_1, \dots, y_D] \hookrightarrow \mathcal{A}$ with $\operatorname{im} \phi \subseteq \mathcal{A}$ integral ring extension (in particular, \mathcal{A} finitely generated $\Bbbk[y_1, \dots, y_D]$ -module)

 \mathcal{I} in Noether position \rightsquigarrow may choose $y_1, \ldots, y_D \in X$

Prop: let \mathcal{T} define *quasi-Rees decomposition* of \mathcal{A}' with maximal set $X_{\overline{t}}$ of multiplicative variables \implies restriction of canonical map $\mathcal{P} \twoheadrightarrow \mathcal{A}$ to $\Bbbk[X_{\overline{t}}]$ Noether normalisation

Proof: $X_{\bar{t}}$ strongly independent set modulo $\mathcal{I} \implies X_{\bar{t}}$ independent set modulo $\mathcal{I} \implies \phi$ injective definition of quasi-Rees decomposition \implies \mathcal{A} finitely generated $\Bbbk[X_{\bar{t}}]$ -module

Overview

- Stanley Decompositions
- Stanley Conjecture
- Dimension
- Noether Normalisation Depth and Regular
- Sequences
- Cohen-Macaulay and Gorenstein Rings

Recall: Noether normalisation of $\mathcal{A} \rightsquigarrow$ injective map $\phi : \mathbb{k}[y_1, \dots, y_D] \hookrightarrow \mathcal{A}$ with $\operatorname{im} \phi \subseteq \mathcal{A}$ integral ring extension (in particular, \mathcal{A} finitely generated $\mathbb{k}[y_1, \dots, y_D]$ -module) \mathcal{I} in Noether position \rightsquigarrow may choose $y_1, \dots, y_D \in X$

Prop: let \mathcal{T} define *quasi-Rees decomposition* of \mathcal{A}' with maximal set $X_{\overline{t}}$ of multiplicative variables \longrightarrow restriction of canonical map $\mathcal{P} \twoheadrightarrow \mathcal{A}$ to $\Bbbk[X_{\overline{t}}]$ Noether normalisation

Cor: variables δ -regular for $\mathcal{I} \implies \mathbb{k}[x_1, \dots, x_D]$ defines Noether normalisation of \mathcal{A}

Overview

Stanley Decompositions

- Stanley Conjecture
- Dimension
- Noether Normalisation
- Depth and Regular Sequences
- Cohen-Macaulay and Gorenstein Rings

Some comments:

- existence proof for Pommaret bases ⇒
 existence proof for (quasi-)Rees decomposition ⇒
 existence proof for Noether normalisation
- Construction of δ -regular variables \rightsquigarrow put \mathcal{I} in Noether position last lecture: deterministic approach possible!
- converse of corollary *not* true: even if $k[x_1, \ldots, x_D]$ defines Noether normalisation of \mathcal{A} , variables not necessarily δ -regular

Overview

Stanley Decompositions

- Stanley Conjecture
- Dimension
- Noether Normalisation
- Depth and Regular Sequences
- Cohen-Macaulay and Gorenstein Rings

Some comments:

- existence proof for Pommaret bases \implies existence proof for (quasi-)Rees decomposition \implies existence proof for Noether normalisation
- Construction of δ -regular variables \rightsquigarrow put \mathcal{I} in Noether position last lecture: deterministic approach possible!
- converse of corollary *not* true: even if $k[x_1, \ldots, x_D]$ defines Noether normalisation of \mathcal{A} , variables not necessarily δ -regular

Prop: \mathcal{I} monomial ideal with $D = \dim \mathcal{A}$, $\mathcal{I} = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_r$ irredundant monomial primary decomposition with $D_j = \dim (\mathcal{P}/\mathfrak{q}_j)$

 \mathcal{I} quasi-stable $\iff \mathbb{k}[x_1, \dots, x_D]$ Noether normalisation of \mathcal{A} and $\mathbb{k}[x_1, \dots, x_{D_j}]$ Noether normalisation of $\mathcal{P}/\mathfrak{q}_j$ for all j

Proof: \mathcal{I} quasi-stable $\iff \mathcal{I}$ of nested type (see last lecture)

W.M. Seiler: Involutive Bases IV – 6

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings **Recall:** \mathcal{M} finitely generated (graded) polynomial module, $\mathcal{J} \lhd \mathcal{P}$ proper (homogeneous) ideal

sequence (f₁,..., f_r) of polynomials f_k ∈ J is M-regular → f₁ non zero divisor on M and f_k non zero divisor on M/⟨f₁,..., f_{k-1}⟩M
 depth of module M on ideal J → maximal length depth (J, M) of M-regular sequence in J

- for analysis of module \mathcal{M} mainly depth $(\mathfrak{m}, \mathcal{M})$ with $\mathfrak{m} = \langle x_1, \dots, x_n \rangle$ (suffices to consider $f_1, \dots, f_r \in \mathcal{P}_1$)
- for analysis of ideal $\mathcal J$ mainly $\operatorname{depth}(\mathcal J,\mathcal P)$ with $\mathcal P$ considered as $\mathcal P$ -module

for ideal $\mathcal{I} \lhd \mathcal{P}$ and module $\mathcal{A} = \mathcal{P}/\mathcal{I} ~~ \leadsto$ ("abstract nonsense")

 $\operatorname{depth}\left(\mathfrak{m},\mathcal{A}\right)=\operatorname{depth}\left(\mathfrak{m},\mathcal{I}\right)-1$

W.M. Seiler: Involutive Bases IV - 7

W.M. Seiler: Involutive Bases IV – 7

Overvie	W	
Stanley	Decom	positions

Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings

Computational methods: (for $depth(\mathfrak{m},\mathcal{M})$)

- compute (length of) *minimal free resolution* of $\mathcal M$ or
- compute *extension groups* $\operatorname{Ext}^{n-i}_{\mathcal{P}}(\mathcal{M}, \Bbbk)$ till non-vanishing group found

each approach requires several Gröbner bases computations

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings

Computational methods: (for $depth(\mathfrak{m},\mathcal{M})$)

- compute (length of) *minimal free resolution* of \mathcal{M} or
- compute *extension groups* $\operatorname{Ext}^{n-i}_{\mathcal{P}}(\mathcal{M}, \Bbbk)$ till non-vanishing group found

each approach requires several Gröbner bases computations

Def: $\mathcal{I} \lhd \mathcal{P}$ ideal of codimension $\mathbf{c} = n - \dim \mathcal{I}$ maximal system of parameters for $\mathcal{I} \rightsquigarrow$ \mathcal{P} -regular sequence (f_1, \ldots, f_c) in \mathcal{I} such that $\operatorname{codim} \langle f_1, \ldots, f_c \rangle = \mathbf{c}$

Remark: $\tilde{\mathcal{I}} = \langle f_1, \ldots, f_c \rangle \subseteq \mathcal{I}$ parameter ideal for $\mathcal{I} \rightsquigarrow$ complete intersection used e.g. in algorithms for primary decomposition (determination of parameter ideals in practice often bottle neck)

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation

Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings **Prop:** \mathcal{H} Pommaret basis of ideal \mathcal{I} with $\operatorname{codim} \mathcal{I} = c \implies \mathcal{H}$ contains generators h_1, \ldots, h_c with $\operatorname{lt} h_i = x_{n-i+1}^{e_i}$ which form maximal system of parameters

Proof:

- generators h_1, \ldots, h_c define Gröbner basis of ideal spanned by them (leading terms coprime \rightsquigarrow Buchberger's first criterion)
- Syz (h_1, \ldots, h_c) generated by trivial syzygies $h_i \mathbf{e}_j h_j \mathbf{e}_i$ (Schreyer's theorem on syzygies of Gröbner basis)
- $fh_k \in \langle h_1, \dots, h_{k-1} \rangle$ \longrightarrow induces syzygy in $Syz(h_1, \dots, h_k)$ with component $fe_k \implies f \in \langle h_1, \dots, h_{k-1} \rangle$ \implies h_k non zero divisor on $\mathcal{P}/\langle h_1, \dots, h_{k-1} \rangle$

W.M. Seiler: Involutive Bases IV – 7

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation

Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings **Theorem:** \mathcal{H} Pommaret basis of \mathcal{I} for $\prec_{\text{degrevlex}}$ and $d = \operatorname{cls} \mathcal{H}$ $\implies (x_1, \ldots, x_d)$ maximal \mathcal{I} -regular sequence, i. e.

 $\operatorname{depth}(\mathfrak{m},\mathcal{I}) = \mathbf{d}$ and $\operatorname{depth}(\mathfrak{m},\mathcal{A}) = \mathbf{d} - 1$

Proof:

- \mathcal{I} -regularity follows from induced Rees decomposition of \mathcal{I} not possible to extend sequence with x_k where k > d: take generator $h \in \mathcal{H}$ with $\operatorname{cls} h = d$ and of maximal degree among all such generators \rightsquigarrow analysis of involutive standard representation of non-multiplicative product $x_k h$ shows that x_k zero divisor on $\mathcal{I}/\langle x_1, \ldots, x_d \rangle \mathcal{I}$
- existence of longer \mathcal{I} -regular sequence in $\mathcal{P}_1 \longrightarrow$ contradiction to δ -regularity of variables X

Remark: no similar result known for any other division!

W.M. Seiler: Involutive Bases IV - 7

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular Sequences

Cohen-Macaulay and Gorenstein Rings

Cor: depth $(\mathfrak{m}, \mathcal{A}) \leq \dim \mathcal{A}$

Remark: consider truncation $\mathcal{A}_{\geq q}$ with $q = \deg \mathcal{H}$ for Pommaret basis \mathcal{H} \rightsquigarrow Pommaret basis \mathcal{H}_q of $\mathcal{I}_{\geq q} \xrightarrow{}$

everything interesting happens between $\operatorname{depth}(\mathfrak{m},\mathcal{A})$ and $\dim\mathcal{A}$

It \mathcal{I} contains *all* terms t of degree q with $\operatorname{cls} t > \dim \mathcal{A}$ and *no* term t of degree q with $\operatorname{cls} t \le \operatorname{depth}(\mathfrak{m}, \mathcal{A})$

W.M. Seiler: Involutive Bases IV - 7

Overview

- Stanley Decompositions
- Stanley Conjecture
- Dimension
- Noether Normalisation
- Depth and Regular
- Sequences
- Cohen-Macaulay and Gorenstein Rings

Def: $\mathcal{A} = \mathcal{P}/\mathcal{I}$ Cohen-Macaulay \rightsquigarrow depth $(\mathfrak{m}, \mathcal{A}) = \dim \mathcal{A}$

Problem: *effective* test for affine algebra $\mathcal{A} = \mathcal{P}/\mathcal{I}$ to be Cohen-Macaulay

- **Classically:** difficult part to determine depth $(\mathfrak{m}, \mathcal{A})$
- trivial with *Pommaret basis* of \mathcal{I} for $\prec_{\text{degrevlex}}$

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation

Depth and Regular

Sequences

Cohen-Macaulay and Gorenstein Rings

Def: $\mathcal{A} = \mathcal{P}/\mathcal{I}$ Cohen-Macaulay \rightsquigarrow depth $(\mathfrak{m}, \mathcal{A}) = \dim \mathcal{A}$

Problem: effective test for affine algebra $\mathcal{A} = \mathcal{P}/\mathcal{I}$ to be Cohen-Macaulay

- **Classically:** difficult part to determine $depth(\mathfrak{m}, \mathcal{A})$
- trivial with *Pommaret basis* of \mathcal{I} for $\prec_{degrevlex}$

Prop: if variables $X \delta$ -regular for \mathcal{I} and $\prec_{degrevlex}$, then

 \mathcal{P}/\mathcal{I} Cohen-Macaulay $\iff \mathcal{P}/\operatorname{lt}\mathcal{I}$ Cohen-Macaulay

(*not* true without made assumptions!)

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation Depth and Regular

Sequences

Cohen-Macaulay and Gorenstein Rings **Def:** $\mathcal{A} = \mathcal{P}/\mathcal{I}$ Cohen-Macaulay \rightsquigarrow depth $(\mathfrak{m}, \mathcal{A}) = \dim \mathcal{A}$

Cor: (*Hironaka criterion*) \mathcal{A} Cohen-Macaulay ring \iff \mathcal{A} has Rees decomposition where all generators have the same level **Proof:**

"⇐": all generators level $d \implies \operatorname{depth}(\mathfrak{m}, \mathcal{A}) = \operatorname{dim} \mathcal{A} = d$

" \Rightarrow ": (after variable transformation) \mathcal{I} has Pommaret basis \mathcal{H} with $\operatorname{cls} \mathcal{H} = d + 1 \quad \rightsquigarrow \quad \operatorname{consider} \mathcal{B} = \left\{ x^{\nu} \in \overline{\langle \operatorname{lt} \mathcal{H} \rangle} \mid \operatorname{cls} \nu > d \right\} \quad \rightsquigarrow$ \mathcal{B} finite set by characterisation of $\dim \mathcal{A} = d \quad (|\nu| < \deg \mathcal{H}) \quad \rightsquigarrow$ Rees decomposition $\mathcal{A} \cong \bigoplus_{x^{\nu} \in \mathcal{B}} \Bbbk[x_1, \ldots, x_d] \cdot x^{\nu}$ (obtainable by applying Janet's algorithm to Janet basis \mathcal{H})

Overview

Stanley Decompositions

Stanley Conjecture

Dimension

Noether Normalisation

Depth and Regular

Sequences

Cohen-Macaulay and Gorenstein Rings

Example: recall from above

$$\Bbbk[x, y, z]/\langle z^3, yz^2 - xz^2, y^2 - xy \rangle \cong \langle 1, y, z, yz, z^2 \rangle_{\Bbbk[x]}$$

Hironaka criterion \implies Cohen-Macaulay ing

 $\begin{array}{ll} & \langle \mathcal{H}, x \rangle_{\geq 3} = \mathcal{P}_{\geq 3} \implies \dim \mathcal{A} = 1 \\ & \\ \blacksquare & \operatorname{cls} \mathcal{H} = 2 \implies \operatorname{depth} \left(\mathfrak{m}, \mathcal{A} \right) = 1 \end{array}$

Overview

Stanley Decompositions

Rec

Stanley Conjecture

Dimension

Noether Normalisation

Depth and Regular

Sequences

Cohen-Macaulay and Gorenstein Rings

all: socle of
$$\mathcal P$$
-module $\mathcal M \rightsquigarrow$

Soc
$$\mathcal{M} = 0 :_{\mathcal{M}} \mathfrak{m} = \{ m \in \mathcal{M} \mid \mathfrak{m} \cdot m = 0 \}$$

consider *d*-dimensional affine algebra $\mathcal{A} = \mathcal{P}/\mathcal{I}$ with system of parameters $a_1, \ldots, a_d \in \mathcal{A}$ (i.e. $\dim \overline{\mathcal{A}} = 0$ for $\overline{\mathcal{A}} = \mathcal{A}/\langle a_1, \ldots, a_d \rangle$)

Def: assume A Cohen-Macaulay *type* of A → t = dim_k Soc Ā (value of t independent of chosen system of parameters)
A Gorenstein → t = 1

Overview

- Stanley Decompositions
- Stanley Conjecture
- Dimension
- Noether Normalisation
- Depth and Regular Sequences
- Cohen-Macaulay and Gorenstein Rings

Problem: *effective* test for affine Cohen-Macaulay algebra $\mathcal{A} = \mathcal{P}/\mathcal{I}$ to be Gorenstein

- ${\mathcal H}$ Pommaret basis of ${\mathcal I}$ for $\prec_{
 m degrevlex}$
 - depth $(\mathfrak{m}, \mathcal{A}) = d \implies \operatorname{cls} \mathcal{H} = d + 1$
 - $\dim \mathcal{A} = d \implies$ $a_1 = x_1 + \mathcal{I}, \dots, a_d = x_d + \mathcal{I} \text{ system of parameters}$

Overview

- Stanley Decompositions
- Stanley Conjecture

Dimension

- Dimension
- Noether Normalisation Depth and Regular

Sequences

Cohen-Macaulay and Gorenstein Rings

Problem: effective test for affine Cohen-Macaulay algebra $\mathcal{A} = \mathcal{P}/\mathcal{I}$ to be Gorenstein

Theorem: $\{[h/x_d] \mid h \in \mathcal{H}_{Soc}\}$ basis of $Soc \overline{\mathcal{A}}$ **Proof:** wlog $d = 1 \rightsquigarrow$ to prove $\mathcal{I} : \mathfrak{m} = \mathcal{I} + \langle h/x_1 \mid h \in \mathcal{H}_{Soc} \rangle$ $f \in \mathcal{I}: \mathfrak{m} \implies x_1 f \in \mathcal{I} \implies$ involutive standard representation $x_1 f = \sum_{h \in \mathcal{H}} P_h h$ \Box cls $h > 1 \implies P_h \in \langle x_1 \rangle$ \Box cls $h = 1 \implies P_h = c_h + x_1 \tilde{P}_h \in \mathbb{k}[x_1]$ $\implies f \in \mathcal{I} + \langle h/x_1 \mid h \in \mathcal{H}_{\min} \rangle$ $\blacksquare h \in \mathcal{H}_{\min} \rightsquigarrow \text{ involutive standard representation } x_k \overline{h} = \sum_{h \in \mathcal{H}} Q_h h$ Q_h has constant term $\implies h \in \mathcal{H}_{\min}$ and $x_k h/x_1 \notin \mathcal{I}$ $\implies h/x_1 \notin \mathcal{I}: \mathfrak{m} \quad h \in \mathcal{H}_{\min} \text{ and } x_k h/x_1 \notin \mathcal{I}$ \implies only $h \in \mathcal{H}_{Soc}$ contribute to socle

Overview

Stanley Decompositions

- Stanley Conjecture
- Dimension
- Noether Normalisation
- Depth and Regular
- Sequences
- Cohen-Macaulay and Gorenstein Rings

Examples:

monomial ideal $\mathcal{I} = \langle y^3, xy^2, x^2 \rangle \lhd \Bbbk[x, y]$ Pommaret basis $\mathcal{H} = \{y^3, \underline{xy^2}, \underline{x^2y}, \underline{x^2}\}$

$$y \cdot x^2 = \mathbf{1} \cdot x^2 y$$
 $y \cdot x^2 y = x \cdot x y^2$ $y \cdot x y^2 = x \cdot y^3$
Soc $\overline{\mathcal{A}} = \langle [xy], [y^2] \rangle_{\mathbb{k}} \implies t = 2, \ \mathcal{A} \text{ not Gorenstein}$

Overview

Stanley Decompositions

- Stanley Conjecture
- Dimension
- Noether Normalisation
- Depth and Regular
- Sequences
- Cohen-Macaulay and Gorenstein Rings

Examples: • monomial ideal $\mathcal{I} = \langle y^3, xy^2, x^2 \rangle \triangleleft \Bbbk[x, y]$ Pommaret basis $\mathcal{H} = \{y^3, xy^2, x^2y, x^2\}$

 $y \cdot x^{2} = 1 \cdot x^{2}y \qquad y \cdot x^{2}y = x \cdot xy^{2} \qquad y \cdot xy^{2} = x \cdot y^{3}$ Soc $\overline{\mathcal{A}} = \langle [xy], [y^{2}] \rangle_{\mathbb{K}} \implies t = 2, \ \mathcal{A} \text{ not Gorenstein}$

polynomial ideal $\mathcal{I} = \langle z^2 - xy, yz, y^2, xz, x^2 \rangle \triangleleft \mathbb{k}[x, y, z]$ Pommaret basis $\mathcal{H} = \{z^2 - xy, yz, y^2, \underline{xz}, \underline{x^2y}, \underline{x^2}\}$ $z \cdot xz = x \cdot (z^2 - xy) + 1 \cdot x^2y$ $y \cdot x^2 = 1 \cdot x^2y$

 $\operatorname{Soc} \bar{\mathcal{A}} = \langle [xy] \rangle_{\mathbb{k}} \implies t = 1, \ \mathcal{A} \text{ Gorenstein}$

(note: $\mathcal{P}/\operatorname{lt} \mathcal{I}$ not Gorenstein, as [z] second socle generator!)

W.M. Seiler: Involutive Bases IV – 8