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Remark

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

For the rest of the course:

(almost) all appearing polynomials, ideals etc are homogeneous

Convention: H finite set of polynomials

B degH =max{degh |h e H}
B clsH =min{clsh | h € H}
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0-Regularity

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Problem: not every ideal Z <1 k| X has finite Pommaret basis
(existence guaranteed only for zero-dimensional ideals ~~ later)

Claim: only a problem of the chosen variables X = {z1,...,x,}

Def: variables X o-regular for Z and term order <~
I possesses finite Pommaret basis for <
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0-Regularity

ovenen :  Problem: not every ideal Z <1 k[.X] has finite Pommaret basis
Remark . . . . .

5-Regularity (existence guaranteed only for zero-dimensional ideals ~~ later)
Asymptotic Regularity :

Pommaret vs. Janet . - i —

s :  Claim: only a problem of the chosen variables X = {z1,..., %y}

Existence of Pommaret
Bases

cwsisaeweas ¢ Defr variables X o-regular for 7 and term order <~
QuastReguiarivala 3 T possesses finite Pommaret basis for <

Serre

ldea: assume term order < defined on exponent vectors ~~
. linear transformation Y = A X with non-singular matrix A € k™*" transforms
‘ polynomial f € k[X] into new polynomial f € k[Y] ~=
:  sort terms with same order as before — and hope that things get better. ..
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0-Regularity

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Observation:  0-regularity is an asymptotic property

Lemma: ideal Z <1 k| X]|
(i) H Pommaret basisofZ,q > deg’H —

Hy = {a"h | h e H, deg(z*h) = q, 2" € T(x1,...,Tcisn) }

Pommaret basis of truncated ideal Z>,
(i) truncation Z>, has finite Pommaret basis for some ¢ € Ny —
7 has finite Pommaret basis

Proof;

(i) straightforward computation

(i) take finite Pommaret basis H of truncated ideal 1>,
add k-linear bases of Z,. for all lower degrees 0 < r < g ~~
weak Pommaret basis of 7
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Asymptotic Regularity

A Consider finite, Pommaret head autoreduced set

Remark ~

5-Regulariy . linear transformation Y = AX yields new set F C

asympotic Reguiary  © Pommaret head autoreduction  ~~  final set F2 C Kk[Y]
Pommaret vs. Janet .

Division 5

E?ﬁ’%mmam . introduce “Hilbert functions” for Z = () and involutive spans:
Quasi- le Ideals § . h 1' _ dlm Z'

Quasi-Regularity a la E I k

Serre : W hrp dimy ({ p<) < hz(r)

]:A P< — dlmlk >P,<) (T)
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Asymptotic Regularity

Overview

Consider finite, Pommaret head autoreduced set
linear transformation Y = AX yields new set F C

Remark

d-Regularity . v

asympotic Reguiary  © Pommaret head autoreduction  ~~  final set F2 C Kk[Y]

Pommaret vs. Janet .

Division .

:;isgpommafet : introduce “Hilbert functions” for Z = (F) and involutive spans:
S .

Quasi- le Ideals § . h I — dlm Z'

Quasi-Regularity a la : I k

Serre : W hrp dimy ({ p<) < hz(r)

hia p (1) = dlmlk FAp<) ()

. Def: F C k[XTfinite, Pommaret head autoreduced set;
‘ variables X asymptotically regular for F and term order <~

VA € k""" non-singular, 7 > 0 : hx p<(r) > hza p<( r)

W.M¢ Seiler: Involutive Bases Ill =5



Asymptotic Regularity

R e : Ex F={f=uzx2} C Kklz1,x2], <:<degrevl.

Remark

d-Regularity ; O C].Sf — 1 — XP,%(f) — {gjl} —

Asymptotic Regularity

Pommaret vs. Janet

Division ; \V/’r' 2 2 h/f,P,<(7") =1 < hI(’r) —r—1

Exist Pommaret
Bas
Quasi- le Ideals

Quasi-Regularity a la
Serre

T1=Y1+ Y2, Tag =Yy2 ~>

Fo={f= y%‘z} C kly1, 2]

sz =2 — Yp () ={y1, 10} =Y —

‘ Vr > 2 hﬁA’P’<(T) = hI(T) > hj:’p’<(7“)
5 X not asymptotically regular for 7 and < but
‘ Y tically regular for 7 and < (and d-regular for (F))
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Asymptotic Regularity

. :  Note: asymptotic and d-regularity generally indep. properties
Remark :
5-Regularity B J)-regularity concerned with 1t 7

Asymptotic Regularity

B asymptotic regularity concerned with (It 7) C It Z

Pommaret vs. Janet
Division

Exist Pommaret
Bas
Quasi- le Ideals

Quasi-Regularity a la
Serre
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Asymptotic Regularity

. :  Note: asymptotic and d-regularity generally indep. properties
Remark :
5-Regularity B J)-regularity concerned with 1t 7

Asymptotic Regularity

B asymptotic regularity concerned with (It 7) C It Z

Pommaret vs. Janet

Division

Exist Pommaret :

N y : Lemma: gular for Z and <, 'H Pommaret basis of Z for < —
Quasi- e ldeals .

QuasiREgulartyala i X ASym gular for H and <

Serre

Proof: h

@
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Asymptotic Regularity

s Choosing “reference variables” X, we can identify t of variables

- Y = AX with the matrix A € kX"

d-Regularity
Asymptotic Regularity

S Prop: F involutively head autoreduced, < fixed term order —
Exis’%mmwet . variables asymptotically regular for 7 and < form Zariski open set in k™*"
et Proof: ransformation with undetermined matrix A ~~
e :  leading c ts in FA& polynomials in entries of A ~~

asymptotica ngular variables chara d by vanishing of certain leading

coefficients & correspond to variety X
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Asymptotic Regularity

N :  Choosing “reference variables” X, we can identify éach set of variables
Remark . . .

R Y = AX with the matrix A € k™"*"

-Regularity
Asymptotic Regularity :

S : Prop: F involutively head autoreduced, < fixed term order —
eisg@@mronmaret 1 variables asymptotically regular for F and < form Zariski open set in k™*"

Basdas

Quasi-Stable Ideals

ey o o Proof: consider transformation with undetermined maitrix A~
SEIIE . leading coefficients in F A polynomials in entries of A ~~
: asymptotically'singular variables characterised by vanishing of certain leading
coefficients ~+& “correspond to variety k" <"

Theoretical solution of problem of asymptotic regularity ~~
perform linear random transformation of variables
(though no_guarantee of asymptotic regularity of new variables)

Practically useless, as all sparsity in F destroyed by transformation ~~
all subsequent computations much more expensive
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Pommaret vs. Janet Division
o

Overview
Remark
d-Regularity

Asymptotic Regularity

,nmaret vs. Janet
ivision

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Pommaret and Janet division are defined very differently

but:

yield often same multiplicative variables for finite sets 7 C T'(X)
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Pommaret vs. Janet Division
o

Overview Pommaret and Janet division are defined very differently
e but: yield often same multiplicative variables for finite sets 7 C T'(X)

d-Regularity

Asymptotic Regularity :

Gommaretys. Janet - Prop: 7 involutively a
ivision .

Existence of Pommaret

Bases ; \V/t - T . Xp(t) g XJ,T(t)

Quasi-Stable Ideals

Quasi-Regularity a la :
Serre .

ed wrt Pommaret division —
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Pommaret vs. Janet Division
o

Overview Pommaret and Janet division are defined very differently
e but: yield often same multiplicative variables for finite sets 7 C T'(X)

d-Regularity §
Asymptotic Regularity E
pﬁmaretVS-Janet : Prop: 7 involutively a ed wrt Pommaret division —
IvVision .

Existence of Pommaret

Bases ; \V/t - T . Xp(t) g XJ,T(t)

Quasi-Stable Ideals

Quasi-Regularity a la :
Serre .

Cor: Tp=T\{teT |dt#seT:s|pt} —

(T)s < {Tp),
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Pommaret vs. Janet Division
o

Overview Pommaret and Janet division are defined very differently
e but: yield often same multiplicative variables for finite sets 7 C T'(X)

d-Regularity §
Asymptotic Regularity E
pﬁmaretVS-Janet : Prop: 7 involutively a ed wrt Pommaret division —
IvVision .

Existence of Pommaret

Bases ; \V/t - T . Xp(t) g XJ,T(t)

Quasi-Stable Ideals

Quasi-Regularity a la :
Serre .

Cor: Tp=T\{teT |dt#seT:s|pt} —

(T)s < {Tp),

Cor: 'H Pommaret basis of Z and < ——>  'H also Janet basis
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ence of Pommaret Bases

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Assume |k| = oo (or k “sufficiently” large)
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ence of Pommaret Bases

ovenvew Assume |k| = oo (or k “sufficiently” large)

Remark

d-Regularity .

Asymptotic Regularity Theorem: F C k[ X] finite, Pommaret head autoreduced, <=~ gegreviex:
s 3 e FrXpo(f) € XoF<(f) =

Existence of Pommaret 3 ygriables X asymptotically singular for F and <

Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre
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ence of Pommaret Bases

e Assume |k| = oo (or k “sufficiently” large)

Remark

d-Regularity .

Asymptotic Regularity Theorem: F C k[ X] finite, Pommaret head autoreduced, <=~ gegreviex:
s 3f e F Xp<(f) © XoF<(f) =

Existence of Pommaret variables X asymptotically singular for 7 and <

i proof Xp <(f) C XyE<(f) A dsf=k =

Serre § EleEXJ,f,-<(f) €>k‘ %

transformation xp = yi + cy; and x; = y; else —

It f transfo,nto polynomial where leading term has class > k& ~-
choose ¢ such that leading coefficient does not vanish —>
h]:"A,P,< asymptotically larger than hr p - for almost all ¢ € k
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ence of Pommaret Bases

Overview Assume |k| = oo (or k “sufficiently” large)

Remark

d-Regularity .

psmpoic reauery -+ Theorem: - C k[ X] finite, Pommaret head autoreduced, <=~ gegreviex:
e 3f e F o Xp () € Xy <(f) =

Existence of Pommaret ¢ ygrigables X asymptotically singular for F and <

Bases

Quasi-Stable Ideals
Quasi-Regularity a la

Serre Thus: necessary (but not sufficient) criterion for asymptotic regularity

’ VieF : Xp<(f)=Xs7r<(f)
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ence of Pommaret Bases

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Assume |k| = oo (or k “sufficiently” large)

Theorem: every ideal Z C k|X| possesses finite Pommaret basis in

suitable variables X
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ence of Pommaret Bases

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Assume |k| = oo (or k “sufficiently” large)

Theorem: every ideal Z C k|X| possesses finite Pommaret basis in
suitable variables X

Proof:

B use first corollary above to prove existence of Pommaret autoreduced
Janet basis (apply completion algorithm with Janet division and
Pommaret autoreductions)

B apply modified algorithm with undetermined variables ~~
only finitely many intermediate bases H;

B choose variables Y asymptotically regular for all H;

(always possible by genericity of asymptotic regularity)

B result simultaneously Janet and Pommaret basis of transformed ideal

7 C k[Y] by second corollary above
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ence of Pommaret Bases

Overview Assume |]k| = 0 (OI‘ ]k usufﬁcientlyn |arge)

Remark

d-Regularity

sympoterequary - Theorem:  every ideal Z C k[ X| possesses finite Pommaret basis in
Commaretys Janet suitable variables X

Division
Existence of Pommaret
Bases

Cor: variables d-regular for Z form Zariski open set in k™*"

Quasi-Stable Ideals
Quasi-Regularity a la
Serre
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ence of Pommaret Bases

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Assume |k| = oo (or k “sufficiently” large)

Two possible algorithmic realisations:

B check criterion after each completion step ~~
perform linear transformation whenever criterion fails
Problem: unnecessary transformations
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ence of Pommaret Bases

Overview Assume |k| = oo (or k “sufficiently” large)

Remark

d-Regularity .

nsymptotic Reguiariy = TWO PpOSSible algorithmic realisations:

Pommaret vs. Janet E ] ] .

Division - M check criterion after each completion step  ~~
Existence of Pommaret : . ) . . .
Bases : perform linear transformation whenever criterion fails
Quasi-Stable Ideals Problem: unnecessary transformations
Quasi-Regularity a la . .

Serre : W compute Pommaret autoreduced Janet basis

If not simultaneously Pommaret basis perform transformation

Proble’unnecessary computations
(Janet basis typically larger and of higher degree)
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ence of Pommaret Bases

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Assume |k| = oo (or k “sufficiently” large)

Two possible algorithmic realisations:

B check criterion after each completion step ~~

perform linear transformation whenever criterion fails

Problem: unnecessary transformations
B compute Pommaret autoreduced Janet basis

If not simultaneously Pommaret basis perform transformation

Proble’unnecessary computations
(Janet basis typically larger and of higher degree)

For the 7-Q algorithm the second strategy is almost always better: even in
d-regular variables it requires for the Pommaret division generally much more

non-multiplicative products.
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ence of Pommaret Bases

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Assume |k| = oo (or k “sufficiently” large)

Two possible algorithmic realisations:

B check criterion after each completion step ~~
perform linear transformation whenever criterion fails
Problem: unnecessary transformations

B compute Pommaret autoreduced Janet basis
If not simultaneously Pommaret basis perform transformation

Proble’unnecessary computations
(Janet basis typically larger and of higher degree)

General problem:  prove that finite number of transformations suffices

(solvable for <==gegreviex With more theory)

W.M. Seiler: Involutive Bases Ill — 7



ence of Pommaret Bases

o F= {21227 webye, yr P 427}, <=

Remark

0-Regularity : M same multiplicative variables for Janet and Pommaret division
Asymptotic Regularity . .

but: variables not asymptotically regular for F
(consider transformation £ =2,y =y + 2,2 = )

Pommaret vs. Janet
Division
Existence of Pommaret

pases : W first completion step: analyse y(zz + zy) ~» — T3
Quasi-Stable Ideal . .o ) i
szzi_nguTa“;a;la : new basis F = F U {xg} ~~ variables not asymptotically regular

Serre

Xp<(2®) = {0} € X, 5 (2%) = (o)

(complegdoes not terminate; z3 Y, z3 y L)
F Janet but not Pommaret basis: deg F = 3 Fl=4
perform above coordinate transformation

{z — XY, Yz — I, @2—2}
Janet‘ommaret basis with deg F> = 2, |F2| =3
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Quasi-Stable Ideals

Overview . For monomial ideals variable transformations uninteresting, as transformed
Remark . . .

5 | ideal generally no longer monomial ~~

-Regularity .

nsymprotic Requiarity = Pommaret division distinguishes class of monomial ideals

Pommaret vs. Janet .

Division :

exisence of Pommaret = Def:  monomial ideal Z quasi-stable  ~~ 7 has finite Pommaret basis
Bases :

Quasi-Stable Ideals :

ouasi-regulariyala ¢ Remark: many alternative names for these ideals in the literature

Serre °

B ideals of nested type (see below)

ideals of Borel type (Borel fixed ideals are quasi-stable)

weakly stable ideals (stable ideals are quasi-stable)

ideals in strong Noether position

(quasi-stable ideals are in Noether position, but not every ideal in Noether
position is quasi-stable — see next lecture)
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Quasi-Stable Ideals

Overview . For monomial ideals variable transformations uninteresting, as transformed
Remark . . .

5 | ideal generally no longer monomial ~~

-Regularity .

nsymprotic Requiarity = Pommaret division distinguishes class of monomial ideals

Pommaret vs. Janet .

Division :

exisence of Pommaret = Def:  monomial ideal Z quasi-stable  ~~ 7 has finite Pommaret basis
Bases :

Quasi-Stable Ideals :

Quasi-Regularity a la . Prop:

Serre .

B 7, 1o quasi-stable — 11+ 19,71 19,71 N1y quasi-stable
B 7 quasi-stable, J arbitrary — 1 : J quasi-stable

Proof: Pommaret bases H}. of Z;

B H; UHs weak Pommaret basis of Z7 + Zo
N {h1h2 | hi € Hk} weak Pommaret basis of 77 - 7o
L] {lcm (h1,ho) | hg € Hk} weak Pommaret basis of Z1 N Z»

(theoretical application of eontinuity of Pommaret division)
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Quasi-Stable Ideals

Overview :  Quasi-stability is an intrinsic algebraic property!
Remark .

5-Regularity :  Prop: equivalent are

Asymptotic Regularity S

Pommaret vs. Janet E (|) I quaSi-Stable

Division .

Existence of Pommaret (ll) 7 ./L'?O g 7 xgo g cee g 7 ZC,?LO

Bases . : . oo 1

e Stable deats (withZ : 22° = P forall k > dim P /Z)

Quasi Regulaiy 212 iy Vk:Z:2°=71:(xp,...,xn)>°
: (iv) every associated prime of P /Z is of the form (x, ..., x,)
: (v) s non zero divisor in P/Z°* and x4 is non zero divisor in
» P/(L,x1,...,x1)°" forevery k > 0
: (viy zteZandpu; >0forsomel <i1<n —
VO<r<pu,i<j<nds>0: :ij”/xfEI

(recall: saturation Z5% =7 : (x1,...,2y)>)
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Quasi-Stable Ideals

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Quasi-stability is an intrinsic algebraic property!

Prop: equivalent are

(i) 7 gquasi-stable

i) Z:x2PCL:x5°C --~CLrxx?
(with Z : 23° = P forall k > dim P /7)

iy Vk:Z:2°=71:(xp,...,xn)>°

(iv) every associated prime of P/Z is of the form (x, . .

.> Tn)

(v) 7 is non zero divisor in P /Z°%" and 1 is non zero divisor in

P/{T,z1,...,x)**" forevery k > 0
(viy 2t €Zandpu; >0forsomel <i<n —

VO<r<p,i<j<nds=>0:zizh/z] €T

B (i) and (iii) easily effectively verifiable
B Dboth allow check whether permutation suffices to obtain d-regular variables
B simple first step: search for generators of the form xz ~y

renumber corresponding variables as x,,, 5,1, ...
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Quasi-Stable Ideals

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Quasi-stability is an intrinsic algebraic property!

Prop: equivalent are

(i) 7 gquasi-stable

i) Z:x2PCL:x5°C --~CLrxx?
(with Z : 23° = P forall k > dim P /7)

iy Vk:Z:2°=71:(xp,...,xn)>°

(iv) every associated prime of P/Z is of the form (x, . .

.> Tn)

(v) 7 is non zero divisor in P /Z°%" and 1 is non zero divisor in

P/{T,z1,...,x)**" forevery k > 0
(viy 2t €Zandpu; >0forsomel <i<n —

VO<r<p,i<j<nds=>0:zizh/z] €T

Cor: Z not quasi-stable, 55 finite, Pommaret autoreduced monomial basis

— JdteB: Xp(t) C X;n(1)

(thus variables always asymptotically singular for not quasi-stable ideal)
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Quasi-Stable Ideals

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Simple examples of quasi-stable ideals:
(i) irreducible ideals

L £i2 e’il . .
T @yt @) wheredyp < - <

19
recall from Lecture 1:
7 quasi-stable <~— . =n, t,—1=n—1,..., 11 =n—1r—+1

. . bi; Fij41 .
Pommaret basis H of Z then consists of all terms x, * xi;il .o xFr with
J

Vm > 150 by < U,
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Quasi-Stable Ideals

Overview . Simple examples of quasi-stable ideals:
Remark :
0-Regularity - (i) zero-dimensional ideals
Asymptotic Regularity S ) ) ) y ] ]
Pommaret vs. Janet : consider arbitrary zero-dimensional monomial ideal [/
Division :
Sienceotronnae L @ 7 contains irreducible ideal Z = (x4 %, ..., zt) C F
Quasi-Stable Ideals : M take (weak) Pommaret basis H 7 of Z
ey Al B add all monomials z* € J \ Z (finitely many!)
B obtain weak Pommaret basis H 7 of / = J quasi-stable
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Quasi-Stable Ideals

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Simple examples of quasi-stable ideals:

(i)  (reverse) lexicographic ideals

monomial ideal Z (reverse) lexicographic ~~
Vg > 0dr, >0 : component Z, generated by r, greatest terms of order g
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Quasi-Stable Ideals

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Def: monomial ideal Z <1 k|z1,...,z,] stable ~~

Vtermst € ZY¥Yn >4 > k =clst : ﬂtEZ
Tk

(definition independent of chark — opposed to Borel fixed!)
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Quasi-Stable Ideals

Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vs. Janet
Division

Existence of Pommaret
Bases

Quasi-Stable Ideals
Quasi-Regularity a la
Serre

Def:

monomial ideal Z < k|z1, ..., x,] stable ~~

Vtermst € ZY¥Yn >4 > k =clst : ﬂtEZ
Tk

(definition independent of chark — opposed to Borel fixed!)

Prop:

7 stable <= minimal basis 5 of Z Pommaret basis
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Quasi-Stable Ideals

Overvien : Def: monomial ideal Z <1 k[x1, ..., 2,] stable ~

Remark :

d-Regularity E ng

Asymptotic Regularity S \V/ termst € IVn Z € > k’ — ClSt . —1 € I
Pommaret vs. Janet E ij

Division

Existence of Pommaret (definition independent of chark — opposed to Borel fixed!)

Bases

Quasi-Stable Ideals

Quasirequariyaia  © Prop:  Z stable <= minimal basis B of Z Pommaret basis

Serre

Prop: 71 quasi-stable — 1>, stable for g > 0
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Quasi-Stable Ideals

overview . Def: monomial ideal Z < klzi,...,x,] stable ~~

Remark :

d-Regularity E ng

Asymptotic Regularity S \V/ terms ¢ -~ IVn Z f > k’ — ClSt - —1 - I
Pommaret vs. Janet E :U,lc

Division :

exsience of Fonmaret ¢ (definition independent of chark — opposed to Borel fixed!)

Bases

Quasi-Stable Ideals

Quasirequariyaia  © Prop:  Z stable <= minimal basis B of Z Pommaret basis

Serre

Prop: 71 quasi-stable — 1>, stable for g > 0

Remark: in d-regular coordinates leading ideal 1t Z of any polynomij
7 C ‘P always quasi-stable; in general 1t Z not Borel fixed and thus
generic initial ideal gin Z; but 1t 7 shares almost all properties of gin
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Quasi-Regularity e a la Serre

Overview : ) arbitrary n-dimensional k-linear space

Remark . ..

5-Reqularitg M finitely generated graded S')-module

Asymptotic Regularity :

Pommarch SIS - Lemma:  for any degree ¢ > 0 and any homogeneous element m € M

Division o

Sosenceotronmaet 2 the following statements are equivalent
ases .

oo ) Am(m) =SV = meM
ua gularity a la .

Serre co (i) (HUEV:v-m:0) —> m €

(iii) for all v € V outside a finite number of proper linear subspaces
v-m=0 = me M,

Proof. (ii) —= (ii) = (i) : obvious

(i) = (i) : let A={m &€ M | Ann (m) = S+V} and choose /C with
Moy=ABK ~ M= K& ®D,>, M

Ass M finite setand S,V ¢ Ass M —

Vp € Ass M : p NV proper subspace of V

v €V \Upersi? = VmeM:v-m#0
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Overview

Remark

d-Regularity
Asymptotic Regularity
Pommaret vS:Jdanet
Division

Existence of Pommaret
Bases

Qu'le Ideals
Qua: gularity a la

Serre

Quasi-Regularity e a la Serre

) arbitrary n-dimensional k-linear space
M finitely generated graded S')-module

Def: ev € V quasi-regular atdegreeq ~ v-m=0 =— m e M_,
sequence (v1,...,v;) € \% quasi-regular at degree ¢ ~~

v; quasi-regular at degree ¢ for M /(v1, .

)M
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Quasi-Regularity e a la Serre

Overview

Remark

d-Regularityf
Asymptotic Regularity
Pommaret vS:Jdanet
Division

Existence of Pommaret
Bases

Qu'le Ideals
Qua: gularity a la

Serre

) arbitrary n-dimensional k-linear space
M finitely generated graded S')-module

Def: ev € V quasi-regular atdegreeq ~ v-m=0 =— m e M_,
sequence (v1,...,v;) € \% quasi-regular at degree ¢ ~~
v; quasi-regular at degree ¢ for M /{v1, . 1M

Consider ideal Z <1 SV and corresponding factor ring A = SV /7.

Theorem:  K-linear basis (x1, ..., xy) of V d-regular for ideal

T < Kk|zy,...,z,] = SV inthe sense that Pommaret basis H exists for
degrevlex withdegH =q <=

(x1,...,x,) quasi-regular for A at degree ¢ but not at any lower degree

W.M. Seiler: Involutive Bases Il — 9
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