Involutive Bases III

Werner M. Seiler

Institut für Mathematik Universität Kassel

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret

Bases

Quasi-Stable Ideals

Quasi-Regularity à la

Serre

- **■** General Involutive Bases
- Basic Algorithms
- Pommaret Bases and δ -Regularity
 - \square δ and asymptotic regularity
 - □ Pommaret vs. Janet division
 - Existence of Pommaret bases
 - □ Quasi-stable ideals
- Combinatorial Decompositions and Applications
- Syzygy Theory and Applications

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret

Bases

Quasi-Stable Ideals

Quasi-Regularity à la

Serre

For the rest of the course:

(almost) all appearing polynomials, ideals etc are homogeneous

Convention: \mathcal{H} finite set of polynomials

δ -Regularity

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret

Bases

Quasi-Stable Ideals

Quasi-Regularity à la

Serre

Problem: not every ideal $\mathcal{I} \lhd \mathbb{k}[X]$ has *finite* Pommaret basis (existence guaranteed only for *zero-dimensional* ideals \leadsto later)

Claim: only a problem of the chosen *variables* $X = \{x_1, \dots, x_n\}$

Def: variables X δ -regular for \mathcal{I} and term order \prec \rightsquigarrow \mathcal{I} possesses *finite* Pommaret basis for \prec

δ -Regularity

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret

Quasi-Stable Ideals
Quasi-Regularity à la

Problem: not every ideal $\mathcal{I} \lhd \mathbb{k}[X]$ has *finite* Pommaret basis (existence guaranteed only for *zero-dimensional* ideals \leadsto later)

Claim: only a problem of the chosen *variables* $X = \{x_1, \dots, x_n\}$

Def: variables X δ -regular for \mathcal{I} and term order \prec \rightsquigarrow \mathcal{I} possesses *finite* Pommaret basis for \prec

Idea: assume term order \prec defined on *exponent vectors* $\stackrel{\longleftarrow}{\longrightarrow}$ linear transformation Y=AX with non-singular matrix $A\in \mathbb{k}^{n\times n}$ transforms polynomial $f\in \mathbb{k}[X]$ into new polynomial $\tilde{f}\in \mathbb{k}[Y]$ $\stackrel{\longleftarrow}{\longrightarrow}$ sort terms with same order as before — and hope that things get better. . .

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret

Quasi-Stable Ideals

Quasi-Regularity à la Serre **Observation:** δ -regularity is an *asymptotic* property

Lemma: ideal $\mathcal{I} \lhd \mathbb{k}[X]$

(i) \mathcal{H} Pommaret basis of \mathcal{I} , $q \geq \deg \mathcal{H} \implies$

$$\mathcal{H}_{\mathbf{q}} = \left\{ x^{\mu} h \mid h \in \mathcal{H}, \operatorname{deg}(x^{\mu} h) = \mathbf{q}, \ x^{\mu} \in \mathbb{T}(x_1, \dots, x_{\operatorname{cls} h}) \right\}$$

Pommaret basis of *truncated* ideal $\mathcal{I}_{\geq q}$

(ii) truncation $\mathcal{I}_{\geq q}$ has finite Pommaret basis for some $q \in \mathbb{N}_0^n \implies \mathcal{I}$ has finite Pommaret basis

Proof:

- (i) straightforward computation
- (ii) take finite Pommaret basis \mathcal{H} of truncated ideal $\mathcal{I}_{\geq q}$ add \mathbbm{k} -linear bases of \mathcal{I}_r for all lower degrees $0 \leq r < q \iff$ weak Pommaret basis of \mathcal{I}

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre

Consider finite, Pommaret head autoreduced set $\mathcal{F} \subset \Bbbk[X]$ \leadsto linear transformation Y = AX yields new set $\tilde{\mathcal{F}} \subset \Bbbk[Y]$ \leadsto Pommaret head autoreduction \leadsto final set $\tilde{\mathcal{F}}^\Delta \subset \Bbbk[Y]$

introduce "Hilbert functions" for $\mathcal{I}=\langle\mathcal{F}\rangle$ and involutive spans:

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre Consider finite, Pommaret head autoreduced set $\mathcal{F} \subset \Bbbk[X] \leadsto$ linear transformation Y = AX yields new set $\tilde{\mathcal{F}} \subset \Bbbk[Y] \leadsto$ Pommaret head autoreduction \leadsto final set $\tilde{\mathcal{F}}^\Delta \subset \Bbbk[Y]$

introduce "Hilbert functions" for $\mathcal{I}=\langle\mathcal{F}\rangle$ and involutive spans:

- $h_{\tilde{\mathcal{F}}^{\Delta}, P, \prec}(r) = \dim_{\mathbb{K}} \left(\langle \tilde{\mathcal{F}}^{\Delta} \rangle_{P, \prec} \right)_{r} \leq h_{\mathcal{I}}(r)$

Def: $\mathcal{F} \subset \mathbb{k}[X]$ finite, Pommaret head autoreduced set; variables X asymptotically regular for \mathcal{F} and term order \prec

$$\forall A \in \mathbb{k}^{n \times n} \text{ non-singular}, \ r \gg 0 : h_{\mathcal{F},P,\prec}(r) \geq h_{\tilde{\mathcal{F}}^{\Delta},P,\prec}(r)$$

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre

Ex:
$$\mathcal{F} = \{f = x_1 x_2\} \subset \mathbb{k}[x_1, x_2], \prec = \prec_{\text{degrevlex}}$$

$$\blacksquare$$
 cls $f = 1 \implies X_{P, \prec}(f) = \{x_1\} \implies$

$$\forall r \geq 2 : h_{\mathcal{F}, P, \prec}(r) = 1 < h_{\mathcal{I}}(r) = r - 1$$

 \blacksquare transformation: $x_1 = y_1 + y_2$, $x_2 = y_2$ \longrightarrow

$$\tilde{\mathcal{F}}^{\Delta} = \{ \tilde{f} = y_2^2 + y_1 y_2 \} \subset \mathbb{k}[y_1, y_2]$$

$$\operatorname{cls} y_2^2 = \mathbf{2} \implies Y_{P, \prec}(\tilde{f}) = \{y_1, y_2\} = Y \implies$$

$$\forall r > 2 : h_{\tilde{\mathcal{F}}^{\Delta}, P, \prec}(r) = h_{\mathcal{I}}(r) > h_{\mathcal{F}, P, \prec}(r)$$

X not asymptotically regular for \mathcal{F} and \prec but Y asymptotically regular for $\tilde{\mathcal{F}}$ and \prec (and δ -regular for $\langle \tilde{\mathcal{F}} \rangle$)

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre **Note:** asymptotic and δ -regularity generally independent properties

- lacksquare δ -regularity concerned with $\operatorname{lt} \mathcal{I}$
- **a** asymptotic regularity concerned with $\langle \operatorname{lt} \mathcal{F} \rangle \subseteq \operatorname{lt} \mathcal{I}$

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals Quasi-Regularity à la Serre **Note:** asymptotic and δ -regularity generally independent properties

- lacksquare δ -regularity concerned with $\operatorname{lt} \mathcal{I}$
- lacksquare asymptotic regularity concerned with $\langle \operatorname{lt} \mathcal{F} \rangle \subseteq \operatorname{lt} \mathcal{I}$

Lemma: X δ -regular for $\mathcal I$ and \prec , $\mathcal H$ Pommaret basis of $\mathcal I$ for \prec \Longrightarrow X asymptotically regular for $\mathcal H$ and \prec

Proof: $h_{\mathcal{H},P,\prec} = h_{\mathcal{I}}$

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la

Serre

Choosing "reference variables" X, we can identify each set of variables Y=AX with the matrix $A\in \mathbb{k}^{n\times n}$

Prop: \mathcal{F} involutively head autoreduced, \prec fixed term order \Longrightarrow variables asymptotically regular for \mathcal{F} and \prec form *Zariski open* set in $\mathbb{k}^{n\times n}$

Proof: consider transformation with *undetermined* matrix $A \rightsquigarrow$ leading coefficients in $\tilde{\mathcal{F}}^\Delta$ *polynomials* in entries of $A \rightsquigarrow$ asymptotically *singular* variables characterised by *vanishing* of certain leading coefficients \rightsquigarrow correspond to variety in $\mathbb{k}^{n\times n}$

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret

Quasi-Stable Ideals

Quasi-Regularity à la

Serre

Choosing "reference variables" X, we can identify each set of variables Y=AX with the matrix $A\in \mathbb{k}^{n\times n}$

Prop: \mathcal{F} involutively head autoreduced, \prec fixed term order \Longrightarrow variables asymptotically regular for \mathcal{F} and \prec form *Zariski open* set in $\mathbb{k}^{n\times n}$

Proof: consider transformation with *undetermined* matrix $A \rightsquigarrow$ leading coefficients in $\tilde{\mathcal{F}}^\Delta$ *polynomials* in entries of $A \rightsquigarrow$ asymptotically *singular* variables characterised by *vanishing* of certain leading coefficients \rightsquigarrow correspond to variety in $\mathbb{k}^{n\times n}$

Theoretical solution of problem of asymptotic regularity → perform linear random transformation of variables (though no guarantee of asymptotic regularity of new variables)

Practically useless, as all sparsity in \mathcal{F} destroyed by transformation \longrightarrow all subsequent computations much more expensive

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre Pommaret and Janet division are defined very differently but: yield often same multiplicative variables for finite sets $\mathcal{T} \subset \mathbb{T}(X)$

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals Quasi-Regularity à la Serre Pommaret and Janet division are defined very differently but: yield often same multiplicative variables for finite sets $\mathcal{T} \subset \mathbb{T}(X)$

Prop: \mathcal{T} involutively autoreduced wrt *Pommaret* division \Longrightarrow

$$\forall t \in \mathcal{T} : X_P(t) \subseteq X_{J,\mathcal{T}}(t)$$

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals Quasi-Regularity à la Serre Pommaret and Janet division are defined very differently but: yield often same multiplicative variables for finite sets $\mathcal{T} \subset \mathbb{T}(X)$

Prop: \mathcal{T} involutively autoreduced wrt *Pommaret* division \Longrightarrow

$$\forall t \in \mathcal{T} : X_P(t) \subseteq X_{J,\mathcal{T}}(t)$$

Cor:
$$\mathcal{T}_P = \mathcal{T} \setminus \{t \in \mathcal{T} \mid \exists t \neq s \in \mathcal{T} : s \mid_P t\} \implies$$

$$\langle \mathcal{T} \rangle_J \subseteq \langle \mathcal{T}_P \rangle_J$$

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals Quasi-Regularity à la Serre Pommaret and Janet division are defined very differently but: yield often same multiplicative variables for finite sets $\mathcal{T} \subset \mathbb{T}(X)$

Prop: \mathcal{T} involutively autoreduced wrt *Pommaret* division \Longrightarrow

$$\forall t \in \mathcal{T} : X_P(t) \subseteq X_{J,\mathcal{T}}(t)$$

Cor:
$$\mathcal{T}_P = \mathcal{T} \setminus \{t \in \mathcal{T} \mid \exists t \neq s \in \mathcal{T} : s \mid_P t\} \implies$$

$$\langle \mathcal{T} \rangle_J \subseteq \langle \mathcal{T}_P \rangle_J$$

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret

Bases

Quasi-Stable Ideals

Quasi-Regularity à la

Serre

Assume $|\mathbb{k}|=\infty$ (or \mathbb{k} "sufficiently" large)

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret

Bases

Quasi-Stable Ideals

Quasi-Regularity à la

Serre

Assume $|\mathbb{k}|=\infty$ (or \mathbb{k} "sufficiently" large)

Theorem: $\mathcal{F} \subset \mathbb{k}[X]$ finite, Pommaret head autoreduced, $\prec = \prec_{\text{degrevlex}}$,

$$\exists f \in \mathcal{F} : X_{P,\prec}(f) \subsetneq X_{J,\mathcal{F},\prec}(f) \implies$$

variables X asymptotically singular for $\mathcal F$ and \prec

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret Bases

Quasi-Stable Ideals Quasi-Regularity à la Serre

Assume $|\mathbb{k}| = \infty$ (or \mathbb{k} "sufficiently" large)

Theorem: $\mathcal{F} \subset \mathbb{k}[X]$ finite, Pommaret head autoreduced, $\prec = \prec_{\text{degrevlex}}$, $\exists f \in \mathcal{F} : X_{P, \prec}(f) \subseteq X_{J, \mathcal{F}, \prec}(f) \implies$ variables X asymptotically singular for $\mathcal F$ and \prec

Proof: $X_{P,\prec}(f) \subset X_{J,\mathcal{F},\prec}(f) \wedge \operatorname{cls} f = k \Longrightarrow$ $\exists x_{\ell} \in X_{J,\mathcal{F},\prec}(f) : \ell > k \quad \leadsto$ transformation $x_k = y_k + cy_l$ and $x_i = y_i$ else \Longrightarrow It f transforms into polynomial where leading term has class > k \leadsto choose c such that leading coefficient does not vanish \Longrightarrow $h_{ ilde{\mathcal{F}}^{\Delta},P,\prec}$ asymptotically larger than $h_{\mathcal{F},P,\prec}$ for almost all $c\in \mathbb{R}$

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret Bases

Quasi-Stable Ideals Quasi-Regularity à la Serre Assume $|\mathbb{k}| = \infty$ (or \mathbb{k} "sufficiently" large)

Theorem: $\mathcal{F} \subset \mathbb{k}[X]$ finite, Pommaret head autoreduced, $\prec = \prec_{\text{degrevlex}}$,

$$\exists f \in \mathcal{F} : X_{P,\prec}(f) \subsetneq X_{J,\mathcal{F},\prec}(f) \implies$$

variables X asymptotically singular for $\mathcal F$ and \prec

Thus: necessary (but not sufficient) criterion for asymptotic regularity

$$\forall f \in \mathcal{F} : X_{P,\prec}(f) = X_{J,\mathcal{F},\prec}(f)$$

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre Assume $|\mathbb{k}|=\infty$ (or \mathbb{k} "sufficiently" large)

Theorem: every ideal $\mathcal{I} \subseteq \Bbbk[X]$ possesses finite Pommaret basis in suitable variables X

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret Bases

Quasi-Stable Ideals Quasi-Regularity à la Serre Assume $|\mathbb{k}| = \infty$ (or \mathbb{k} "sufficiently" large)

Theorem: every ideal $\mathcal{I} \subseteq \Bbbk[X]$ possesses finite Pommaret basis in suitable variables X

Proof:

- use first corollary above to prove existence of *Pommaret* autoreduced
 Janet basis (apply completion algorithm with Janet division and
 Pommaret autoreductions)
- apply *modified* algorithm with *undetermined* variables \longrightarrow only *finitely* many intermediate bases \mathcal{H}_i
- choose variables Y asymptotically regular for all \mathcal{H}_i (always possible by *genericity* of asymptotic regularity)
- result simultaneously Janet and Pommaret basis of transformed ideal $\tilde{\mathcal{I}} \subseteq \Bbbk[Y]$ by second corollary above

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la

Serre

Assume $|\mathbb{k}|=\infty$ (or \mathbb{k} "sufficiently" large)

Theorem: every ideal $\mathcal{I} \subseteq \Bbbk[X]$ possesses finite Pommaret basis in suitable variables X

Cor: variables δ -regular for $\mathcal I$ form Zariski open set in $\mathbb R^{n\times n}$

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret Bases

Quasi-Stable Ideals Quasi-Regularity à la Serre Assume $|\mathbb{k}|=\infty$ (or \mathbb{k} "sufficiently" large)

Two possible algorithmic realisations:

check criterion after each completion step
 perform linear transformation whenever criterion fails
 Problem: unnecessary transformations

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals Quasi-Regularity à la Serre Assume $|\mathbb{k}| = \infty$ (or \mathbb{k} "sufficiently" large)

Two possible algorithmic realisations:

- check criterion after each completion step
 perform linear transformation whenever criterion fails
 Problem: unnecessary transformations
- compute Pommaret autoreduced Janet basis
 if not simultaneously Pommaret basis perform transformation
 Problem: unnecessary computations
 (Janet basis typically larger and of higher degree)

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals Quasi-Regularity à la Serre Assume $|\mathbb{k}| = \infty$ (or \mathbb{k} "sufficiently" large)

Two possible algorithmic realisations:

- check criterion after each completion step
 perform linear transformation whenever criterion fails
 Problem: unnecessary transformations
- compute Pommaret autoreduced Janet basis
 if not simultaneously Pommaret basis perform transformation
 Problem: unnecessary computations
 (Janet basis typically larger and of higher degree)

For the \mathcal{T} - \mathcal{Q} algorithm the *second* strategy is almost always better: even in δ -regular variables it requires for the Pommaret division generally much more non-multiplicative products.

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals Quasi-Regularity à la Serre Assume $|\mathbb{k}| = \infty$ (or \mathbb{k} "sufficiently" large)

Two possible algorithmic realisations:

- check criterion after each completion step
 perform linear transformation whenever criterion fails
 Problem: unnecessary transformations
- compute Pommaret autoreduced Janet basis
 if not simultaneously Pommaret basis perform transformation
 Problem: unnecessary computations
 (Janet basis typically larger and of higher degree)

General problem: prove that *finite* number of transformations suffices (solvable for $\prec = \prec_{\text{degrevlex}}$ with more theory)

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals Quasi-Regularity à la Serre

Ex:
$$\mathcal{F} = \{ z^2 - y^2 - 2x^2, \ xz + yx, \ yz + y^2 + x^2 \}, \ \prec = \prec_{\text{degrevlex}} \}$$

- same multiplicative variables for Janet and Pommaret division but: variables not asymptotically regular for \mathcal{F} (consider transformation $\tilde{x}=z, \, \tilde{y}=y+z, \, \tilde{z}=x$)
- first completion step: analyse $y(xz+xy) \leadsto -x^3$ new basis $\hat{\mathcal{F}} = \mathcal{F} \cup \{x^3\} \leadsto$ variables *not* asymptotically regular

$$X_{P,\prec}(x^3) = \{x\} \subseteq X_{J,\hat{\mathcal{F}},\prec}(x^3) = \{x,y\}$$

(completion does not terminate: x^3y , x^3y^2 , ...)

- $\hat{\mathcal{F}}$ Janet but *not* Pommaret basis: $\deg \hat{\mathcal{F}} = 3$, $|\hat{\mathcal{F}}| = 4$
- perform above coordinate transformation

$$\tilde{\mathcal{F}}^{\Delta} = \left\{ \tilde{\mathbf{z}}^{2} - \tilde{x}\tilde{y}, \ \tilde{\mathbf{y}}\tilde{\mathbf{z}} - \tilde{x}, \ \tilde{\mathbf{y}}^{2} - \tilde{z} \right\}$$

Janet and Pommaret basis with $\deg \tilde{\mathcal{F}}^\Delta = 2, \ |\tilde{\mathcal{F}}^\Delta| = 3$

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre For *monomial* ideals variable transformations uninteresting, as transformed ideal generally no longer monomial \rightsquigarrow

Pommaret division distinguishes class of monomial ideals

Def: monomial ideal \mathcal{I} quasi-stable \longrightarrow \mathcal{I} has finite Pommaret basis

Remark: many alternative names for these ideals in the literature

- ideals of nested type (see below)
- ideals of Borel type (Borel fixed ideals are quasi-stable)
- weakly stable ideals (stable ideals are quasi-stable)
- ideals in strong Noether position
 (quasi-stable ideals are in Noether position, but not every ideal in Noether position is quasi-stable see next lecture)

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret

Quasi-Stable Ideals

Quasi-Regularity à la Serre For *monomial* ideals variable transformations uninteresting, as transformed ideal generally no longer monomial \rightsquigarrow

Pommaret division distinguishes class of monomial ideals

Def: monomial ideal \mathcal{I} quasi-stable \leadsto \mathcal{I} has finite Pommaret basis

Prop:

- \blacksquare $\mathcal{I}_1, \mathcal{I}_2$ quasi-stable \Longrightarrow $\mathcal{I}_1 + \mathcal{I}_2, \mathcal{I}_1 \cdot \mathcal{I}_2, \mathcal{I}_1 \cap \mathcal{I}_2$ quasi-stable
- lacksquare quasi-stable, $\mathcal J$ arbitrary \Longrightarrow $\mathcal I:\mathcal J$ quasi-stable

Proof: Pommaret bases \mathcal{H}_k of \mathcal{I}_k

- $\mathcal{H}_1 \cup \mathcal{H}_2$ weak Pommaret basis of $\mathcal{I}_1 + \mathcal{I}_2$
- lacksquare $ig\{h_1h_2\mid h_k\in\mathcal{H}_kig\}$ weak Pommaret basis of $\mathcal{I}_1\cdot\mathcal{I}_2$
- lacksquare $\left\{\operatorname{lcm}\left(h_{1},h_{2}
 ight)\mid h_{k}\in\mathcal{H}_{k}\right\}$ weak Pommaret basis of $\mathcal{I}_{1}\cap\mathcal{I}_{2}$

(theoretical application of *continuity* of Pommaret division)

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre Quasi-stability is an intrinsic algebraic property!

Prop: equivalent are

- (i) \mathcal{I} quasi-stable
- (ii) $\mathcal{I}: x_1^\infty \subseteq \mathcal{I}: x_2^\infty \subseteq \cdots \subseteq \mathcal{I}: x_n^\infty$ (with $\mathcal{I}: x_k^\infty = \mathcal{P}$ for all $k \ge \dim \mathcal{P}/\mathcal{I}$)
- (iii) $\forall \mathbf{k} : \mathcal{I} : x_{\mathbf{k}}^{\infty} = \mathcal{I} : \langle x_{\mathbf{k}}, \dots, x_{\mathbf{n}} \rangle^{\infty}$
- (iv) every associated prime of \mathcal{P}/\mathcal{I} is of the form $\langle x_{k}, \dots, x_{n} \rangle$
- (v) x_1 is non zero divisor in $\mathcal{P}/\mathcal{I}^{\mathsf{sat}}$ and x_{k+1} is non zero divisor in $\mathcal{P}/\langle \mathcal{I}, x_1, \dots, x_k \rangle^{\mathsf{sat}}$ for every k > 0

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre

Quasi-stability is an intrinsic algebraic property!

Prop: equivalent are

- (i) \mathcal{I} quasi-stable
- (ii) $\mathcal{I}: x_1^\infty \subseteq \mathcal{I}: x_2^\infty \subseteq \cdots \subseteq \mathcal{I}: x_n^\infty$ (with $\mathcal{I}: x_k^\infty = \mathcal{P}$ for all $k \ge \dim \mathcal{P}/\mathcal{I}$)
- (iii) $\forall \mathbf{k} : \mathcal{I} : x_{\mathbf{k}}^{\infty} = \mathcal{I} : \langle x_{\mathbf{k}}, \dots, x_{\mathbf{n}} \rangle^{\infty}$
- (iv) every associated prime of \mathcal{P}/\mathcal{I} is of the form $\langle x_{k}, \dots, x_{n} \rangle$
- (v) x_1 is non zero divisor in $\mathcal{P}/\mathcal{I}^{\mathsf{sat}}$ and x_{k+1} is non zero divisor in $\mathcal{P}/\langle \mathcal{I}, x_1, \dots, x_k \rangle^{\mathsf{sat}}$ for every k > 0
- (ii) and (iii) easily effectively verifiable
- both allow check whether *permutation* suffices to obtain δ -regular variables
- simple *first* step: search for generators of the form $x_k^e \rightsquigarrow$ renumber corresponding variables as x_n, x_{n-1}, \dots

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre Quasi-stability is an intrinsic algebraic property!

Prop: equivalent are

- (i) \mathcal{I} quasi-stable
- (ii) $\mathcal{I}: x_1^\infty \subseteq \mathcal{I}: x_2^\infty \subseteq \cdots \subseteq \mathcal{I}: x_n^\infty$ (with $\mathcal{I}: x_k^\infty = \mathcal{P}$ for all $k \ge \dim \mathcal{P}/\mathcal{I}$)
- (iii) $\forall \mathbf{k} : \mathcal{I} : x_{\mathbf{k}}^{\infty} = \mathcal{I} : \langle x_{\mathbf{k}}, \dots, x_{\mathbf{n}} \rangle^{\infty}$
- (iv) every associated prime of \mathcal{P}/\mathcal{I} is of the form $\langle x_{k}, \dots, x_{n} \rangle$
- (v) x_1 is non zero divisor in $\mathcal{P}/\mathcal{I}^{\mathsf{sat}}$ and x_{k+1} is non zero divisor in $\mathcal{P}/\langle \mathcal{I}, x_1, \dots, x_k \rangle^{\mathsf{sat}}$ for every k > 0

Cor: \mathcal{I} not quasi-stable, \mathcal{B} finite, Pommaret autoreduced monomial basis $\exists t \in \mathcal{B} : X_P(t) \subsetneq X_{J,\mathcal{B}}(t)$

(thus variables always asymptotically singular for not quasi-stable ideal)

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre

Simple examples of quasi-stable ideals:

(i) irreducible ideals

$$\mathcal{I} = \langle x_{i_r}^{\ell_{i_r}}, \dots, x_{i_2}^{\ell_{i_2}}, x_{i_1}^{\ell_{i_1}} \rangle \quad \text{where } i_1 < \dots < i_r$$

recall from Lecture 1:

$$\mathcal{I}$$
 quasi-stable \iff $i_r = n, i_{r-1} = n-1, \ldots, i_1 = n-r+1$

Pommaret basis \mathcal{H} of \mathcal{I} then consists of all terms $x_{i_j}^{\ell_{i_j}} x_{i_j+1}^{k_{i_j+1}} \cdots x_n^{k_n}$ with $\forall m > i_j: k_m < \ell_m$

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre

Simple examples of quasi-stable ideals:

- (ii) zero-dimensional ideals consider arbitrary zero-dimensional monomial ideal ${\mathcal J}$
- \mathcal{J} contains irreducible ideal $\mathcal{I} = \langle x_1^{\ell_1}, \dots, x_n^{\ell_n} \rangle \subseteq \mathcal{J}$
- take (weak) Pommaret basis $\mathcal{H}_{\mathcal{I}}$ of \mathcal{I}
- add all monomials $x^{\mu} \in \mathcal{J} \setminus \mathcal{I}$ (finitely many!)
- obtain weak Pommaret basis $\mathcal{H}_{\mathcal{J}}$ of $\mathcal{J} \implies \mathcal{J}$ quasi-stable

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret

Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre

Simple examples of quasi-stable ideals:

(iii) (reverse) lexicographic ideals

monomial ideal \mathcal{I} (reverse) lexicographic \leadsto

 $\forall \, q \geq 0 \, \exists \, r_q \geq 0 \, : \, \text{component} \, \mathcal{I}_q \, \text{generated by} \, r_q \, \text{greatest terms of order} \, q$

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre **Def:** monomial ideal $\mathcal{I} \lhd \mathbb{k}[x_1, \dots, x_n]$ stable \leadsto

$$\forall \text{ terms } t \in \mathcal{I} \ \forall \ n \geq \ell > \frac{k}{k} = \operatorname{cls} t \ : \ \frac{x_\ell}{x_k} t \in \mathcal{I}$$

(definition independent of $\operatorname{char} \Bbbk$ — opposed to Borel fixed!)

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret

Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre **Def:** monomial ideal $\mathcal{I} \triangleleft \mathbb{k}[x_1, \dots, x_n]$ stable \rightsquigarrow

$$\forall \text{ terms } t \in \mathcal{I} \ \forall n \geq \ell > k = \operatorname{cls} t \ : \ \frac{x_\ell}{x_k} t \in \mathcal{I}$$

(definition independent of $\operatorname{char} \Bbbk$ — opposed to Borel fixed!)

Prop: \mathcal{I} stable \iff *minimal* basis \mathcal{B} of \mathcal{I} Pommaret basis

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre

Def: monomial ideal $\mathcal{I} \triangleleft \mathbb{k}[x_1, \dots, x_n]$ stable \rightsquigarrow

$$\forall \text{ terms } t \in \mathcal{I} \ \forall \ n \geq \ell > k = \operatorname{cls} t \ : \ \frac{x_\ell}{x_k} t \in \mathcal{I}$$

(definition independent of $\operatorname{char} \Bbbk$ — opposed to Borel fixed!)

Prop: \mathcal{I} stable \iff *minimal* basis \mathcal{B} of \mathcal{I} Pommaret basis

Prop: \mathcal{I} quasi-stable \Longrightarrow $\mathcal{I}_{\geq q}$ stable for $q\gg 0$

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet Division

Existence of Pommaret Bases

Quasi-Regularity à la Serre

Quasi-Stable Ideals

monomial ideal $\mathcal{I} \lhd \mathbb{k}[x_1,\ldots,x_n]$ stable \leadsto Def:

$$\forall \text{ terms } t \in \mathcal{I} \ \forall \ n \geq \ell > k = \text{cls } t : \frac{x_\ell}{x_k} t \in \mathcal{I}$$

(definition independent of char k — opposed to Borel fixed!)

Prop: \mathcal{I} stable \iff *minimal* basis \mathcal{B} of \mathcal{I} Pommaret basis

Prop: \mathcal{I} quasi-stable $\Longrightarrow \mathcal{I}_{\geq q}$ stable for $q \gg 0$

in δ -regular coordinates leading ideal $\operatorname{lt} \mathcal{I}$ of any polynomial ideal $\mathcal{I} \subseteq \mathcal{P}$ always quasi-stable; in general $\operatorname{lt} \mathcal{I}$ not Borel fixed and thus not the *generic initial ideal* $gin \mathcal{I}$; but $lt \mathcal{I}$ shares almost all properties of $gin \mathcal{I}$

Quasi-Regularity à la Serre

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret

Quasi-Stable Ideals

Quasi-Regularity à la Serre ${\mathcal V}$ arbitrary n-dimensional ${\mathbb k}$ -linear space ${\mathcal M}$ finitely generated graded $S{\mathcal V}$ -module

Lemma: for any degree q>0 and any homogeneous element $m\in\mathcal{M}$ the following statements are equivalent

- (i) $\operatorname{Ann}(m) = S_{+} \mathcal{V} \implies m \in \mathcal{M}_{\triangleleft q}$
- (ii) $(\exists v \in \mathcal{V} : v \cdot m = 0) \implies m \in \mathcal{M}_{\triangleleft q}$
- (iii) for all $v \in \mathcal{V}$ outside a finite number of proper linear subspaces $v \cdot m = 0 \implies m \in \mathcal{M}_{\leq q}$

Proof: (iii) \Longrightarrow (i): obvious

(i) \Longrightarrow (iii): let $\mathcal{A} = \{ \underline{m} \in \mathcal{M} \mid \operatorname{Ann}(m) = S_{+}\mathcal{V} \}$ and choose \mathcal{K} with

$$\mathcal{M}_{\leq q} = \mathcal{A} \oplus \mathcal{K} \quad \stackrel{\leadsto}{\longrightarrow} \quad \overline{\mathcal{M}} = \mathcal{K} \oplus \bigoplus_{r \geq q} \mathcal{M}_r$$

 $\operatorname{Ass} \overline{\mathcal{M}}$ finite set and $S_+ \mathcal{V} \notin \operatorname{Ass} \overline{\mathcal{M}} \implies$

 $\forall\,\mathfrak{p}\in\mathrm{Ass}\,\overline{\mathcal{M}}\,:\,\mathfrak{p}\cap\mathcal{V}$ proper subspace of \mathcal{V}

$$v \in \mathcal{V} \setminus \bigcup_{\mathfrak{p} \in \mathrm{Ass}\,\overline{\mathcal{M}}} \mathfrak{p} \implies \forall m \in \overline{\mathcal{M}} : v \cdot m \neq 0$$

Quasi-Regularity à la Serre

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret

Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre ${\mathcal V}$ arbitrary n-dimensional ${\mathbb k}$ -linear space ${\mathcal M}$ finitely generated graded $S{\mathcal V}$ -module

Def: $v \in \mathcal{V}$ quasi-regular at degree $q \rightsquigarrow v \cdot m = 0 \implies m \in \mathcal{M}_{\leq q}$ sequence $(v_1, \ldots, v_k) \in \mathcal{V}^k$ quasi-regular at degree $q \rightsquigarrow v_i$ quasi-regular at degree q for $\mathcal{M}/\langle v_1, \ldots, v_{i-1} \rangle \mathcal{M}$

Quasi-Regularity à la Serre

Overview

Remark

 δ -Regularity

Asymptotic Regularity

Pommaret vs. Janet

Division

Existence of Pommaret

Bases

Quasi-Stable Ideals

Quasi-Regularity à la Serre ${\mathcal V}$ arbitrary n-dimensional ${\mathbb k}$ -linear space ${\mathcal M}$ finitely generated graded $S{\mathcal V}$ -module

Def: $v \in \mathcal{V}$ quasi-regular at degree $q \rightsquigarrow v \cdot m = 0 \implies m \in \mathcal{M}_{\leq q}$ sequence $(v_1, \dots, v_k) \in \mathcal{V}^k$ quasi-regular at degree $q \rightsquigarrow v_i$ quasi-regular at degree q for $\mathcal{M}/\langle v_1, \dots, v_{i-1} \rangle \mathcal{M}$

Consider ideal $\mathcal{I} \lhd S\mathcal{V}$ and corresponding factor ring $\mathcal{A} = S\mathcal{V}/\mathcal{I}$.

Theorem: \mathbb{k} -linear basis (x_1,\ldots,x_n) of \mathcal{V} δ -regular for ideal $\mathcal{I} \lhd \mathbb{k}[x_1,\ldots,x_n] \cong S\mathcal{V}$ in the sense that Pommaret basis \mathcal{H} exists for degrevlex with $\deg \mathcal{H} = q \iff (x_1,\ldots,x_n)$ quasi-regular for \mathcal{A} at degree q but not at any lower degree