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W.M. Seiler: Involutive Bases II – 2

� General Involutive Bases
� Basic Algorithms

� Continuous and Constructive Divisions

� Monomial Completion

� Polynomial Completion

� Minimal Bases and Optimisations

� Pommaret Bases and δ-Regularity
� Combinatorial Decompositions and Applications
� Syzygy Theory and Applications
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W.M. Seiler: Involutive Bases II – 3

� existence of finite involutive basis

� clear for Noetherian division via Gröbner bases. . .

� . . . but recall counterexample for Pommaret division

� effective criterion for involutive basis

� basic theory provides no finite test

� need “substitute” for S-polynomials

� where lies “first” obstruction to involution?

� algorithmic construction of involutive basis

� non-trivial already in monomial case!

� “reduced” basis — uniqueness?

� efficient algorithms

� optimisations

� heuristics



b

b
bb
b

bb

b

b

b

b
b

b b
b

b

b

Continuous and Constructive Divisions

Overview

Basic Computational
Problems

Continuous and
Constructive Divisions

Monomial Completion

Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

W.M. Seiler: Involutive Bases II – 4

Idea: consider only “nearest” obstruction to involution  

multiply with a single non-multiplicative variable

Def: finite set T ⊂ T(X) locally involutive  

∀ t ∈ T , y ∈ X̄L,T (t) : yt ∈ 〈T 〉L

(here: X̄L,T (t) = X \XL,T (t) set of non-multiplicative variables)
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W.M. Seiler: Involutive Bases II – 4

Idea: consider only “nearest” obstruction to involution  

multiply with a single non-multiplicative variable

Def: finite set T ⊂ T(X) locally involutive  

∀ t ∈ T , y ∈ X̄L,T (t) : yt ∈ 〈T 〉L

(here: X̄L,T (t) = X \XL,T (t) set of non-multiplicative variables)

obviously: T involutive =⇒ T locally involutive

what about the converse?
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W.M. Seiler: Involutive Bases II – 4

Example: recall bizarre global division onT(

x, y, z
)

defined in Lecture I by

the following set of multiplicative variables

XL(1) = {x, y, z}

XL(x) = {x, z}, XL(y) = {x, y}, XL(z) = {y, z},

XL(t) = ∅ for all other t ∈ T(

x, y, z
)

Consider the set T = {x, y, z}

� T locally involutive

y · x = x · y z · y = y · z x · z = z · x

� But T not involutive: xyz ∈ 〈T 〉 \ 〈T 〉L



b

b
bb
b

bb

b

b

b

b
b

b b
b

b

b

Continuous and Constructive Divisions

Overview

Basic Computational
Problems

Continuous and
Constructive Divisions

Monomial Completion

Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

W.M. Seiler: Involutive Bases II – 4

Def: involutive division L continuous  

∀ finite sets T ⊂ T(X) ∀ finite sequences (t1, . . . , tr)

with ti ∈ T and ∀ti ∃yi ∈ X̄L,T (ti) : ti+1 |L,T yiti

∀k 6= ℓ : tk 6= tℓ

(in other words: such sequences cannot be cyclic)
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W.M. Seiler: Involutive Bases II – 4

Def: involutive division L continuous  

∀ finite sets T ⊂ T(X) ∀ finite sequences (t1, . . . , tr)

with ti ∈ T and ∀ti ∃yi ∈ X̄L,T (ti) : ti+1 |L,T yiti

∀k 6= ℓ : tk 6= tℓ

(in other words: such sequences cannot be cyclic)

Prop: L continuous, T locally involutive =⇒ T involutive

(provides us with finite criterion for involutive sets!)
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W.M. Seiler: Involutive Bases II – 4

Def: involutive division L continuous  

∀ finite sets T ⊂ T(X) ∀ finite sequences (t1, . . . , tr)

with ti ∈ T and ∀ti ∃yi ∈ X̄L,T (ti) : ti+1 |L,T yiti

∀k 6= ℓ : tk 6= tℓ

(in other words: such sequences cannot be cyclic)

Prop: L continuous, T locally involutive =⇒ T involutive

(provides us with finite criterion for involutive sets!)

Proof: (quite technical)

assume existence of minimal obstruction to involution xµ not of form yt;
starting from divisor t ∈ T of xµ, construct infinite sequence contradicting

continuity of division L
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W.M. Seiler: Involutive Bases II – 4

Def: involutive division L continuous  

∀ finite sets T ⊂ T(X) ∀ finite sequences (t1, . . . , tr)

with ti ∈ T and ∀ti ∃yi ∈ X̄L,T (ti) : ti+1 |L,T yiti

∀k 6= ℓ : tk 6= tℓ

(in other words: such sequences cannot be cyclic)

Prop: L continuous, T locally involutive =⇒ T involutive

(provides us with finite criterion for involutive sets!)

Lemma: Janet and Pommaret division continuous

Proof: sequence ascending in appropriate sense

Janet division  ≺lex

Pommaret division  “essentially” ≺revlex
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W.M. Seiler: Involutive Bases II – 4

Problem: continuity still not sufficient for design of effective algorithm  

need further very technical property (developed by “reverse engineering”)

Def: continuous division L constructive  

∀T ⊂ T(X) finite, t ∈ T , y ∈ X̄L,T (t) such that

(i) yt /∈ 〈T 〉L

(ii) if ∃ s ∈ T , z ∈ X̄L,T (s) : zs | yt ∧ zs 6= yt, then zs ∈ 〈T 〉L

6 ∃ r ∈ 〈T 〉L : yt ∈ CL,T ∪{r}(r)

(underlying idea : it makes no sense in a completion process to add elements

already contained in the involutive span)
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W.M. Seiler: Involutive Bases II – 4

Problem: continuity still not sufficient for design of effective algorithm  

need further very technical property (developed by “reverse engineering”)

Def: continuous division L constructive  

∀T ⊂ T(X) finite, t ∈ T , y ∈ X̄L,T (t) such that

(i) yt /∈ 〈T 〉L

(ii) if ∃ s ∈ T , z ∈ X̄L,T (s) : zs | yt ∧ zs 6= yt, then zs ∈ 〈T 〉L

6 ∃ r ∈ 〈T 〉L : yt ∈ CL,T ∪{r}(r)

Lemma: Janet and any continuous global division constructive

Proof: simple for global division; very technical for Janet division
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W.M. Seiler: Involutive Bases II – 5

Basic monomial completion algorithm

Input: finite set T ⊂ T(X), involutive division L
Output: weakly involutive completion T̂ of T

1: T̂ ← T
2: loop

3: S ←
{

yt | t ∈ T̂ , y ∈ X̄
L,T̂ (t), yt /∈ 〈T̂ 〉L

}

4: if S = ∅ then
5: return T̂
6: else
7: choose s ∈ S such that S does not contain a proper divisor of it

8: T̂ ← T̂ ∪ {s}
9: end if

10: end loop
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W.M. Seiler: Involutive Bases II – 5

Prop: T possesses weakly involutive completions, L constructive =⇒
algorithm terminates with a weakly involutive completion T̂

(Sketch of) Proof:

� Correctness obvious: upon termination T̂ locally involutive

� Termination proof very technical: use continuity of L to show that each

added term lies in any involutive completion of T as otherwise

contradiction to constructivity of L
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W.M. Seiler: Involutive Bases II – 5

� existence of (weakly) involutive completion must be assumed

� very different to standard Gröbner theory

(termination implies existence of basis!)

� no issue for Noetherian division like Janet

� termination proof implies surprising properties of output

� TL any weakly involutive completion of T =⇒ T̂ ⊆ TL
� output independent of choices in Line 7

(simple way to implement choice: use term order)

� natural choice for input: minimal basis of 〈T 〉
(will see later  yields minimal involutive basis)

� recall: simple elimination process yields strong involutive basis
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W.M. Seiler: Involutive Bases II – 5

� existence of (weakly) involutive completion must be assumed

� very different to standard Gröbner theory

(termination implies existence of basis!)

� no issue for Noetherian division like Janet

� termination proof implies surprising properties of output

� TL any weakly involutive completion of T =⇒ T̂ ⊆ TL
� output independent of choices in Line 7

(simple way to implement choice: use term order)

� natural choice for input: minimal basis of 〈T 〉
(will see later  yields minimal involutive basis)

� recall: simple elimination process yields strong involutive basis

Lemma: B minimal basis of 〈T 〉, L = P Pommaret division =⇒
no termination, if at some stage deg T̂ > deg lcmB

Proof: consequence of syzygy theory in Lecture 5
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W.M. Seiler: Involutive Bases II – 5

Example: T = {z3, y2, xy} with Pommaret division

(choose in each iteration yt minimal for degrevlex)

xy

×
y

(1)

55

xyz

z

(2) ))

×
y

(4)

55

xyz2

z

(5) ))

×
y

(7)

55

×

z

(8)
))

y2 y2zz

(3)
// y2z2

z

(6)
// ×

z

(9)
//
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W.M. Seiler: Involutive Bases II – 6

Given finite polynomial set F ⊂ P , term order ≺, involutive division L

Simplest approach:

� compute Gröbner basis G of I = 〈F〉 (e. g. with Buchberger algorithm)

 leading terms ltG generate leading ideal lt I
� apply monomial completion algorithm to ltG

(keeping full polynomials!)

� obtain (weakly) involutive basisH ⊇ G of I
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W.M. Seiler: Involutive Bases II – 6

Given finite polynomial set F ⊂ P , term order ≺, involutive division L

Better approach:

� generalise monomial completion algorithm

� requires two subalgorithms

� NormalFormL,≺(g,H)
involutive normal form of polynomial g ∈ P wrt finite setH ⊂ P

� (Head)AutoReduceL,≺(H)
involutive (head) autoreduction of finite setH ⊂ P

(obtained by obvious modifications of standard algorithms)
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W.M. Seiler: Involutive Bases II – 6

Basic polynomial completion algorithm

Input: finite set F ⊂ P , term order ≺, involutive division L
Output: involutive basisH of I = 〈F〉 wrt L and ≺

1: H ← HeadAutoReduceL,≺(F)
2: loop
3: S ←

{

yh | h ∈ H, y ∈ X̄L,H,≺(h), yh /∈ 〈H〉L,≺

}

4: if S = ∅ then
5: return H
6: else
7: choose ḡ ∈ S such that lt ḡ = min≺ S
8: g ← NormalFormL,≺(ḡ,H)
9: H ← HeadAutoReduceL,≺(H ∪ {g})

10: end if
11: end loop
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W.M. Seiler: Involutive Bases II – 6

Theorem: division L constructive and Noetherian =⇒
algorithm terminates with involutive basisH of I
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W.M. Seiler: Involutive Bases II – 6

Theorem: division L constructive and Noetherian =⇒
algorithm terminates with involutive basisH of I

(Sketch of) Proof:

� extend notion of locally involutive set to polynomial sets

� show that for continuous division any locally involutive and involutively head

autoreduced set is involutive

� Noetherian argument shows that leading ideal 〈ltH〉 stabilises

� then polynomial completion reduces (more or less) to monomial completion
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W.M. Seiler: Involutive Bases II – 6

Theorem: division L constructive and Noetherian =⇒
algorithm terminates with involutive basisH of I

Some comments:

� it does not suffice to assume existence of involutive basis of I  
we need existence of involutive bases for all subideals of ltI

� choice in Line 7 corresponds to normal selection strategy  

use important for termination proof

� even if algorithm does not terminate, it always produces for term orders of

type ω a Gröbner basis after a finite number of steps

� algorithm implicitly reduces S-polynomials

� algorithm usually more efficient than Buchberger algorithm

� Buchberger criteria to large extent automatically “built-in”

� implicitly “Hilbert driven”

(without a priori knowledge of Hilbert function!)
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W.M. Seiler: Involutive Bases II – 6

Example: P = k[x, y], Pommaret division P

F =
{

f1 = y2e1, f2 = xye1 + e2, f3 = xe2

}

⊂ P2
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W.M. Seiler: Involutive Bases II – 6

Example: P = k[x, y], Pommaret division P

F =
{

f1 = y2e1, f2 = xye1 + e2, f3 = xe2

}

⊂ P2

� choose term order such that xye1 ≻ e2  

〈ltF〉 has no finite Pommaret basis (consider e2-component)

� add S-“polynomial” S(f1, f2) = ye2 = f4  

H = F ∪ {f4} finite Pommaret basis of 〈F〉
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W.M. Seiler: Involutive Bases II – 6

Example: P = k[x, y], Pommaret division P

F =
{

f1 = y2e1, f2 = xye1 + e2, f3 = xe2

}

⊂ P2

� choose term order such that xye1 ≻ e2  

〈ltF〉 has no finite Pommaret basis (consider e2-component)

� add S-“polynomial” S(f1, f2) = ye2 = f4  

H = F ∪ {f4} finite Pommaret basis of 〈F〉

� termination of completion algorithm depends on properties of term order

� take “POT” order with se1 ≻ te2 for arbitrary s, t ∈ T(

x, y
)

=⇒ no termination

� take “TOP” order based on degree compatible order  

after finite number of iterations f4 is found =⇒ termination
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Def: I ⊆ P , H ⊂ I involutive basis

� H, I monomial; H minimal involutive basis of I  
every monomial involutive basis Ĥ of I satisfiesH ⊆ Ĥ

� H, I polynomial; H minimal involutive basis of I  
ltH minimal involutive basis of ltI
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W.M. Seiler: Involutive Bases II – 7

Def: I ⊆ P , H ⊂ I involutive basis

� H, I monomial; H minimal involutive basis of I  
every monomial involutive basis Ĥ of I satisfiesH ⊆ Ĥ

� H, I polynomial; H minimal involutive basis of I  
ltH minimal involutive basis of ltI

Prop: I ⊂ P monomial ideal with involutive basis =⇒
minimal involutive basis exists and obtained by applying monomial completion

algorithm to minimal basis in ordinary sense

Prop: L globally defined division =⇒
monomial involutive basis unique and thus minimal
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W.M. Seiler: Involutive Bases II – 7

Def: I ⊆ P , H ⊂ I involutive basis

� H, I monomial; H minimal involutive basis of I  
every monomial involutive basis Ĥ of I satisfiesH ⊆ Ĥ

� H, I polynomial; H minimal involutive basis of I  
ltH minimal involutive basis of ltI

Example: F = {x, x2} ⊂ k[x]
F Janet autoreduced (x non-mult. for x because of x2) =⇒
algorithms will leave F unchanged

obviously: {x} minimal involutive basis of 〈F〉
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W.M. Seiler: Involutive Bases II – 7

Def: I ⊆ P , H ⊂ I involutive basis

� H, I monomial; H minimal involutive basis of I  
every monomial involutive basis Ĥ of I satisfiesH ⊆ Ĥ

� H, I polynomial; H minimal involutive basis of I  
ltH minimal involutive basis of ltI

Prop: monic, involutively autoreduced, minimal involutive basis unique

Prop: L constructive, Noetherian division =⇒
every polynomial ideal I ⊆ P has minimal involutive basis

Proof: optimised completion algorithm
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W.M. Seiler: Involutive Bases II – 7

Algorithm for minimal involutive basis (“T -Q algorithm”)

Input: finite set F ⊂ P , term order ≺, involutive division L
Output: minimal involutive basisH of I = 〈F〉 wrt L and ≺

1: T ← ∅; Q ← F
2: repeat
3: g ← 0
4: while (Q 6= ∅) ∧ (g = 0) do
5: choose f ∈ Q such that lt f = min≺ Q
6: Q ← Q \ {f}; g ← NormalFormL,≺(f, T )
7: end while
8: if g 6= 0 then
9: T ′ ← {h ∈ T | lt g ≺ lth}; T ←

(

T \ T ′
)

∪ {g}
10: Q ← Q∪ T ′ ∪

{

yh | h ∈ T , y ∈ X̄L,T ,≺(h)
}

11: end if
12: until Q = ∅
13: return T
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W.M. Seiler: Involutive Bases II – 7

Theorem: division L constructive and Noetherian =⇒
algorithm terminates with minimal involutive basisH of I

Proof:

� termination proof requires only slight modifications

� H involutive basis essentially as before

� proof of minimality requires analysis of last time a generator is moved toH
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Theorem: division L constructive and Noetherian =⇒
algorithm terminates with minimal involutive basisH of I

Proof:

� termination proof requires only slight modifications

� H involutive basis essentially as before

� proof of minimality requires analysis of last time a generator is moved toH

Example: F = {x, x2} ⊂ k[x], Janet division

1. iteration: T = {x}, Q = {x2}
2. iteration: T = {x}, Q = ∅
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It’s easy to implement a completion algorithm,

but difficult to provide a good implementation!

� worst case complexity of any algorithm for Gröbner bases is doubly

exponential  potential size of basis (sharp estimate!)

� fortunately in practice rarely realised  “geometric” ideals have usually

a lower Castelnuovo-Mumford regularity (see Lecture 5)

� good implementations require many optimisations of basic algorithms

(proof of correctness often much more difficult)

� often only heuristic statements possible  good implementations

provide options to control behaviour of algorithms

� important example: selection strategy
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“Involutive Buchberger criteria”

� try to predict that a non-multiplicative product yh (involutively) reduces to 0
(reductions are the most expensive part of a completion!)

� here much less an issue than for Buchberger algorithm

 yields only a modest gain in computation time

� to a large extent automatically built-in in our completion algorithm

 consequence of syzygy theory (Lecture 5)
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“Involutive Buchberger criteria”

� try to predict that a non-multiplicative product yh (involutively) reduces to 0
(reductions are the most expensive part of a completion!)

� here much less an issue than for Buchberger algorithm

 yields only a modest gain in computation time

� to a large extent automatically built-in in our completion algorithm

 consequence of syzygy theory (Lecture 5)

Remark: “value” of reductions to 0 depends on application context:

� we only need some Gröbner basis for, say, deciding an ideal membership

problem  such reductions a waste of time

� we also need syzygy module (common in algebraic geometry)  

(some) reductions to 0 yield valuable information on syzygies

(Schreyer theorem — see Lecture 5)
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“Involutive trees”

� Problem: fast determination of multiplicative variables for generators and

fast search for involutive divisors important for effecient completion

� most studied for Janet division

� natural tree structure on subsets (dk, . . . , dn) ⊂ T used for definition of

Janet division induced by inclusion relation  

leaves are elements of T
� leads to special relationship with lexicographic order

(leaves appear automatically sorted)

� refined version based on binary trees

� yields efficient graph theoretic algorithms

(also for maintaining tree during completion!)
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“Good Book-Keeping”

� keep track of history of generators in order to avoid redundancies

� Example: for Pommaret division in k[x, y, z]
current basis contains f ∈ k[x]  must treat yf and zf  

assume both polynomials must be added unchanged to basis

(both of class 1)  must later treat both z(yf) and y(zf)
� in T -Q algorithm for minimal basis generator may repeatedly move

between T andQ  record which non-multiplicative products

have already been considered

� allows for simple extraction of reduced Gröbner basis

(without any further computations!)



b

b

b

b

b

b
b

b

b bb

b

b

b

b

b

Optimisations and Complexity Issues

Overview

Basic Computational
Problems

Continuous and
Constructive Divisions

Monomial Completion

Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

W.M. Seiler: Involutive Bases II – 8

“Intermediate Expression Swell”

Problem : in- and output small, but intermediate results very large

(quite common in computer algebra)

Example: (Arnold) P = Q[x, y, z], degrevlex

f1 = 8y2z2 + 5y3z + 3xz3 + xyz2 f3 = 8z3 + 12y3 + x2z + 3

f2 = z5 + 2x2y3 + 13x3y2 + 5x4y f4 = 7y4z2 + 18x2y3z + x3y3

reduced Gröbner basis of I = 〈f1, f2, f3, f4〉

g1 = z g2 = y3 + 1/4 g3 = x2

intermediate polynomials have coefficients with about 80.000 digits

Janet basis requires additionally: g4 = x2y, g5 = x2y2

largest intermediate coefficients have about 400 digits
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