Involutive Bases II

Werner M. Seiler
Institut für Mathematik
Universität Kassel

Overview

Overview

- General Involutive Bases
- Basic Algorithms
\square Continuous and Constructive Divisions
\square Monomial Completion
\square Polynomial Completion
\square Minimal Bases and Optimisations
- Pommaret Bases and δ-Regularity
- Combinatorial Decompositions and Applications
- Syzygy Theory and Applications

Basic Computational Problems

■ existence of finite involutive basisclear for Noetherian division via Gröbner bases. . .
\square... but recall counterexample for Pommaret division

- effective criterion for involutive basis
\square basic theory provides no finite test
\square need "substitute" for S-polynomials
\square where lies "first" obstruction to involution?
- algorithmic construction of involutive basis
\square non-trivial already in monomial case!
\square "reduced" basis - uniqueness?
- efficient algorithms
\square optimisations
\square heuristics

Continuous and Constructive Divisions

Overview

Idea: consider only "nearest" obstruction to involution multiply with a single non-multiplicative variable

Def: finite set $\mathcal{T} \subset \mathbb{T}(X)$ locally involutive

$$
\begin{gathered}
\forall t \in \mathcal{T}, y \in \bar{X}_{L, \mathcal{T}}(t): y t \in\langle\mathcal{T}\rangle_{L} \\
\text { (here: } \bar{X}_{L, \mathcal{T}}(t)=X \backslash X_{L, \mathcal{T}}(t) \text { set of non-multiplicative variables) }
\end{gathered}
$$

Continuous and Constructive Divisions

Overview

Idea: consider only "nearest" obstruction to involution multiply with a single non-multiplicative variable

Def: finite set $\mathcal{T} \subset \mathbb{T}(X)$ locally involutive

$$
\forall t \in \mathcal{T}, y \in \bar{X}_{L, \mathcal{T}}(t): y t \in\langle\mathcal{T}\rangle_{L}
$$

(here: $\bar{X}_{L, \mathcal{T}}(t)=X \backslash X_{L, \mathcal{T}}(t)$ set of non-multiplicative variables)
obviously: $\quad \mathcal{T}$ involutive $\Longrightarrow \mathcal{T}$ locally involutive what about the converse?

Continuous and Constructive Divisions

Overview

Example: recall bizarre global division on $\mathbb{T}(x, y, z)$ defined in Lecture I by the following set of multiplicative variables

$$
\begin{gathered}
X_{L}(1)=\{x, y, z\} \\
X_{L}(x)=\{x, z\}, \quad X_{L}(y)=\{x, y\}, \quad X_{L}(z)=\{y, z\}, \\
X_{L}(t)=\emptyset \text { for all other } t \in \mathbb{T}(x, y, z)
\end{gathered}
$$

Consider the set $\mathcal{T}=\{x, y, z\}$

- \mathcal{T} locally involutive

$$
y \cdot x=x \cdot y \quad z \cdot y=y \cdot z
$$

- But \mathcal{T} not involutive: $\quad x y z \in\langle\mathcal{T}\rangle \backslash\langle\mathcal{T}\rangle_{L}$

Continuous and Constructive Divisions

Overview

Def: involutive division L continuous \rightsquigarrow

$$
\begin{aligned}
& \forall \text { finite sets } \mathcal{T} \subset \mathbb{T}(X) \quad \forall \text { finite sequences }\left(t_{1}, \ldots, t_{r}\right) \\
& \text { with } t_{i} \in \mathcal{T} \text { and } \forall t_{i} \exists y_{i} \in \bar{X}_{L, \mathcal{T}}\left(t_{i}\right):\left.t_{i+1}\right|_{L, \mathcal{T}} y_{i} t_{i} \\
& \forall k \neq \ell: t_{k} \neq t_{\ell}
\end{aligned}
$$

(in other words: such sequences cannot be cyclic)

Continuous and Constructive Divisions

Overview

Def: involutive division L continuous \rightsquigarrow

$$
\begin{aligned}
& \forall \text { finite sets } \mathcal{T} \subset \mathbb{T}(X) \quad \forall \text { finite sequences }\left(t_{1}, \ldots, t_{r}\right) \\
& \text { with } t_{i} \in \mathcal{T} \text { and } \forall t_{i} \exists y_{i} \in \bar{X}_{L, \mathcal{T}}\left(t_{i}\right):\left.t_{i+1}\right|_{L, \mathcal{T}} y_{i} t_{i} \\
& \forall k \neq \ell: t_{k} \neq t_{\ell}
\end{aligned}
$$

(in other words: such sequences cannot be cyclic)

Prop: $\quad L$ continuous, \mathcal{T} locally involutive $\Longleftrightarrow \mathcal{T}$ involutive (provides us with finite criterion for involutive sets!)

Continuous and Constructive Divisions

Overview

Def: involutive division L continuous \rightsquigarrow

$$
\begin{aligned}
& \forall \text { finite sets } \mathcal{T} \subset \mathbb{T}(X) \quad \forall \text { finite sequences }\left(t_{1}, \ldots, t_{r}\right) \\
& \text { with } t_{i} \in \mathcal{T} \text { and } \forall t_{i} \exists y_{i} \in \bar{X}_{L, \mathcal{T}}\left(t_{i}\right):\left.t_{i+1}\right|_{L, \mathcal{T}} y_{i} t_{i} \\
& \forall k \neq \ell: t_{k} \neq t_{\ell}
\end{aligned}
$$

(in other words: such sequences cannot be cyclic)

Prop: L continuous, \mathcal{T} locally involutive $\Longrightarrow \mathcal{T}$ involutive (provides us with finite criterion for involutive sets!)

Proof: (quite technical)
assume existence of minimal obstruction to involution x^{μ} not of form $y t$; starting from divisor $t \in \mathcal{T}$ of x^{μ}, construct infinite sequence contradicting continuity of division L

Continuous and Constructive Divisions

Overview

Def: involutive division L continuous \rightsquigarrow

$$
\begin{aligned}
& \forall \text { finite sets } \mathcal{T} \subset \mathbb{T}(X) \quad \forall \text { finite sequences }\left(t_{1}, \ldots, t_{r}\right) \\
& \text { with } t_{i} \in \mathcal{T} \text { and } \forall t_{i} \exists y_{i} \in \bar{X}_{L, \mathcal{T}}\left(t_{i}\right):\left.t_{i+1}\right|_{L, \mathcal{T}} y_{i} t_{i} \\
& \forall k \neq \ell: t_{k} \neq t_{\ell}
\end{aligned}
$$

(in other words: such sequences cannot be cyclic)

Prop: L continuous, \mathcal{T} locally involutive $\Longrightarrow \mathcal{T}$ involutive (provides us with finite criterion for involutive sets!)

Lemma: Janet and Pommaret division continuous
Proof: sequence ascending in appropriate sense Janet division $\rightsquigarrow \prec_{\text {lex }}$
Pommaret division \rightsquigarrow "essentially" $\prec_{\text {revlex }}$

Continuous and Constructive Divisions

Overview

Problem: continuity still not sufficient for design of effective algorithm need further very technical property (developed by "reverse engineering")

Def: continuous division L constructive
$\forall \mathcal{T} \subset \mathbb{T}(X)$ finite, $t \in \mathcal{T}, y \in \bar{X}_{L, \mathcal{T}}(t)$ such that
(i) $y t \notin\langle\mathcal{T}\rangle_{L}$
(ii) if $\exists s \in \mathcal{T}, z \in \bar{X}_{L, \mathcal{T}}(s): z s \mid y t \wedge z s \neq y t$, then $z s \in\langle\mathcal{T}\rangle_{L}$

$$
\nexists r \in\langle\mathcal{T}\rangle_{L}: y t \in \mathcal{C}_{L, \mathcal{T} \cup\{r\}}(r)
$$

(underlying idea: it makes no sense in a completion process to add elements already contained in the involutive span)

Continuous and Constructive Divisions

Overview

Problem: continuity still not sufficient for design of effective algorithm need further very technical property (developed by "reverse engineering")

Def: continuous division L constructive
$\forall \mathcal{T} \subset \mathbb{T}(X)$ finite, $t \in \mathcal{T}, y \in \bar{X}_{L, \mathcal{T}}(t)$ such that
(i) $y t \notin\langle\mathcal{T}\rangle_{L}$
(ii) if $\exists s \in \mathcal{T}, z \in \bar{X}_{L, \mathcal{T}}(s): z s \mid y t \wedge z s \neq y t$, then $z s \in\langle\mathcal{T}\rangle_{L}$

$$
\nexists r \in\langle\mathcal{T}\rangle_{L}: y t \in \mathcal{C}_{L, \mathcal{T} \cup\{r\}}(r)
$$

Lemma: Janet and any continuous global division constructive
Proof: simple for global division; very technical for Janet division

Monomial Completion

Overview

Minimal Bases

Basic monomial completion algorithm

Input: finite set $\mathcal{T} \subset \mathbb{T}(X)$, involutive division L
Output: weakly involutive completion $\hat{\mathcal{T}}$ of \mathcal{T}
1: $\hat{\mathcal{T}} \leftarrow \mathcal{T}$
2: loop
3: $\mathcal{S} \leftarrow\left\{y t \mid t \in \hat{\mathcal{T}}, y \in \bar{X}_{L, \hat{\mathcal{T}}}(t), y t \notin\langle\hat{\mathcal{T}}\rangle_{L}\right\}$
4: if $\mathcal{S}=\emptyset$ then
5: return $\hat{\mathcal{T}}$
6: else
7: \quad choose $s \in \mathcal{S}$ such that \mathcal{S} does not contain a proper divisor of it
8: $\quad \hat{\mathcal{T}} \leftarrow \hat{\mathcal{T}} \cup\{s\}$
9: end if
10: end loop

Monomial Completion

Overview

Prop: \mathcal{T} possesses weakly involutive completions, L constructive algorithm terminates with a weakly involutive completion $\hat{\mathcal{T}}$

(Sketch of) Proof:

- Correctness obvious: upon termination $\hat{\mathcal{T}}$ locally involutive
- Termination proof very technical: use continuity of L to show that each added term lies in any involutive completion of \mathcal{T} as otherwise contradiction to constructivity of L

Monomial Completion

Overview

Minimal Bases

■ existence of (weakly) involutive completion must be assumed
\square very different to standard Gröbner theory (termination implies existence of basis!)no issue for Noetherian division like Janet

- termination proof implies surprising properties of output
$\square \mathcal{T}_{L}$ any weakly involutive completion of $\mathcal{T} \Longrightarrow \hat{\mathcal{T}} \subseteq \mathcal{T}_{L}$output independent of choices in Line 7 (simple way to implement choice: use term order)

■ natural choice for input: minimal basis of $\langle\mathcal{T}\rangle$ (will see later \rightsquigarrow yields minimal involutive basis)

- recall: simple elimination process yields strong involutive basis

Monomial Completion

Overview

- existence of (weakly) involutive completion must be assumed
$\square \quad$ very different to standard Gröbner theory (termination implies existence of basis!)no issue for Noetherian division like Janet
- termination proof implies surprising properties of output
$\square \mathcal{T}_{L}$ any weakly involutive completion of $\mathcal{T} \Longrightarrow \hat{\mathcal{T}} \subseteq \mathcal{T}_{L}$output independent of choices in Line 7 (simple way to implement choice: use term order)
- natural choice for input: minimal basis of $\langle\mathcal{T}\rangle$ (will see later \rightsquigarrow yields minimal involutive basis)
- recall: simple elimination process yields strong involutive basis

Lemma: \mathcal{B} minimal basis of $\langle\mathcal{T}\rangle, L=P$ Pommaret division \Longrightarrow no termination, if at some stage $\operatorname{deg} \hat{\mathcal{T}}>\operatorname{deg} \operatorname{lcm} \mathcal{B}$
Proof: consequence of syzygy theory in Lecture 5

Overview

Example: $\mathcal{T}=\left\{z^{3}, y^{2}, x y\right\}$ with Pommaret division (choose in each iteration $y t$ minimal for degrevlex)

Polynomial Completion

Overview

Given finite polynomial set $\mathcal{F} \subset \mathcal{P}$, term order \prec, involutive division L

Simplest approach:

■ compute Gröbner basis \mathcal{G} of $\mathcal{I}=\langle\mathcal{F}\rangle$ (e.g. with Buchberger algorithm) \rightsquigarrow leading terms $\operatorname{lt} \mathcal{G}$ generate leading ideal $\operatorname{lt} \mathcal{I}$

- apply monomial completion algorithm to lt \mathcal{G} (keeping full polynomials!)
- obtain (weakly) involutive basis $\mathcal{H} \supseteq \mathcal{G}$ of \mathcal{I}

Polynomial Completion

Overview

Given finite polynomial set $\mathcal{F} \subset \mathcal{P}$, term order \prec, involutive division L

Better approach:

- generalise monomial completion algorithm
- requires two subalgorithms
\square NormalForm $_{L, \prec}(g, \mathcal{H})$ involutive normal form of polynomial $g \in \mathcal{P}$ wrt finite set $\mathcal{H} \subset \mathcal{P}$
\square (Head)AutoReduce ${ }_{L, \prec}(\mathcal{H})$ involutive (head) autoreduction of finite set $\mathcal{H} \subset \mathcal{P}$
(obtained by obvious modifications of standard algorithms)

Polynomial Completion

Overview

Basic polynomial completion algorithm

Input: finite set $\mathcal{F} \subset \mathcal{P}$, term order \prec, involutive division L
Output: involutive basis \mathcal{H} of $\mathcal{I}=\langle\mathcal{F}\rangle$ wrt L and \prec
1: $\mathcal{H} \leftarrow$ HeadAutoReduce $\left.{ }_{L, \prec} \prec \mathcal{F}\right)$
: loop
3: $\quad \mathcal{S} \leftarrow\left\{y h \mid h \in \mathcal{H}, y \in \bar{X}_{L, \mathcal{H}, \prec}(h), y h \notin\langle\mathcal{H}\rangle_{L, \prec}\right\}$
4: \quad if $\mathcal{S}=\emptyset$ then
5: return \mathcal{H}
6: else
7: \quad choose $\bar{g} \in \mathcal{S}$ such that $\operatorname{lt} \bar{g}=\min _{\prec} \mathcal{S}$
8: $\quad g \leftarrow$ NormalForm $_{L, \prec}(\bar{g}, \mathcal{H})$
9: $\quad \mathcal{H} \leftarrow$ HeadAutoReduce ${ }_{L, \prec}(\mathcal{H} \cup\{g\})$
10: end if
11: end loop

Polynomial Completion

Overview

Theorem: division L constructive and Noetherian \qquad algorithm terminates with involutive basis \mathcal{H} of \mathcal{I}

Polynomial Completion

Overview

Theorem: division L constructive and Noetherian \qquad algorithm terminates with involutive basis \mathcal{H} of \mathcal{I}

(Sketch of) Proof:

- extend notion of locally involutive set to polynomial sets
- show that for continuous division any locally involutive and involutively head autoreduced set is involutive
■ Noetherian argument shows that leading ideal $\langle\mathrm{lt} \mathcal{H}\rangle$ stabilises
- then polynomial completion reduces (more or less) to monomial completion

Polynomial Completion

Overview

Minimal Bases

Optimisations and Complexity Issues

Theorem: division L constructive and Noetherian \qquad \Rightarrow algorithm terminates with involutive basis \mathcal{H} of \mathcal{I}

Some comments:

- it does not suffice to assume existence of involutive basis of \mathcal{I} we need existence of involutive bases for all subideals of lt \mathcal{I}
- choice in Line 7 corresponds to normal selection strategy \rightsquigarrow use important for termination proof
■ even if algorithm does not terminate, it always produces for term orders of type ω a Gröbner basis after a finite number of steps
- algorithm implicitly reduces S-polynomials
- algorithm usually more efficient than Buchberger algorithm
\square Buchberger criteria to large extent automatically "built-in"
\square implicitly "Hilbert driven"
(without a priori knowledge of Hilbert function!)

Polynomial Completion

Overview

Basic Computational Prob

$$
\mathcal{F}=\left\{\mathbf{f}_{1}=y^{2} \mathbf{e}_{1}, \mathbf{f}_{2}=x y \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{f}_{3}=x \mathbf{e}_{2}\right\} \subset \mathcal{P}^{2}
$$

Polynomial Completion

Overview

Example: $\quad \mathcal{P}=\mathbb{k}[x, y]$, Pommaret division P

$$
\mathcal{F}=\left\{\mathbf{f}_{1}=y^{2} \mathbf{e}_{1}, \mathbf{f}_{2}=x y \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{f}_{3}=x \mathbf{e}_{2}\right\} \subset \mathcal{P}^{2}
$$

- choose term order such that $x y \mathbf{e}_{1} \succ \mathbf{e}_{2} \rightsquigarrow$ $\langle\mathrm{lt} \mathcal{F}\rangle$ has no finite Pommaret basis (consider \mathbf{e}_{2}-component)
■ add S-"polynomial" $\mathbf{S}\left(\mathbf{f}_{1}, \mathbf{f}_{2}\right)=y \mathbf{e}_{2}=\mathbf{f}_{4} \rightsquigarrow$

$$
\mathcal{H}=\mathcal{F} \cup\left\{\mathbf{f}_{4}\right\} \text { finite Pommaret basis of }\langle\mathcal{F}\rangle
$$

Polynomial Completion

Overview

Example: $\quad \mathcal{P}=\mathbb{k}[x, y]$, Pommaret division P

$$
\mathcal{F}=\left\{\mathbf{f}_{1}=y^{2} \mathbf{e}_{1}, \mathbf{f}_{2}=x y \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{f}_{3}=x \mathbf{e}_{2}\right\} \subset \mathcal{P}^{2}
$$

■ choose term order such that $x y \mathbf{e}_{1} \succ \mathbf{e}_{2} \rightsquigarrow$
$\langle\mathrm{lt} \mathcal{F}\rangle$ has no finite Pommaret basis (consider \mathbf{e}_{2}-component)

- add S-"polynomial" $\mathbf{S}\left(\mathbf{f}_{1}, \mathbf{f}_{2}\right)=y \mathbf{e}_{2}=\mathbf{f}_{4}$

$$
\mathcal{H}=\mathcal{F} \cup\left\{\mathbf{f}_{4}\right\} \text { finite Pommaret basis of }\langle\mathcal{F}\rangle
$$

- termination of completion algorithm depends on properties of term order
\square take "POT" order with $s \mathbf{e}_{1} \succ t \mathbf{e}_{2}$ for arbitrary $s, t \in \mathbb{T}(x, y)$ \Longrightarrow no termination
\square take "TOP" order based on degree compatible order after finite number of iterations \mathbf{f}_{4} is found \Longrightarrow termination

Minimal Bases

Overview

Def: $\mathcal{I} \subseteq \mathcal{P}, \mathcal{H} \subset \mathcal{I}$ involutive basis

- \mathcal{H}, \mathcal{I} monomial; \mathcal{H} minimal involutive basis of \mathcal{I} every monomial involutive basis $\hat{\mathcal{H}}$ of \mathcal{I} satisfies $\mathcal{H} \subseteq \hat{\mathcal{H}}$
- \mathcal{H}, \mathcal{I} polynomial; \mathcal{H} minimal involutive basis of \mathcal{I} lt \mathcal{H} minimal involutive basis of $\operatorname{lt} \mathcal{I}$

Minimal Bases

Overview

- \mathcal{H}, \mathcal{I} monomial; \mathcal{H} minimal involutive basis of \mathcal{I} every monomial involutive basis $\hat{\mathcal{H}}$ of \mathcal{I} satisfies $\mathcal{H} \subseteq \hat{\mathcal{H}}$
- \mathcal{H}, \mathcal{I} polynomial; \mathcal{H} minimal involutive basis of \mathcal{I} lt \mathcal{H} minimal involutive basis of $\operatorname{lt} \mathcal{I}$

Prop: $\mathcal{I} \subset \mathcal{P}$ monomial ideal with involutive basis minimal involutive basis exists and obtained by applying monomial completion algorithm to minimal basis in ordinary sense

Prop: L globally defined division \qquad monomial involutive basis unique and thus minimal

Minimal Bases

Overview

- \mathcal{H}, \mathcal{I} monomial; \mathcal{H} minimal involutive basis of \mathcal{I} every monomial involutive basis $\hat{\mathcal{H}}$ of \mathcal{I} satisfies $\mathcal{H} \subseteq \hat{\mathcal{H}}$
- \mathcal{H}, \mathcal{I} polynomial; \mathcal{H} minimal involutive basis of \mathcal{I} lt \mathcal{H} minimal involutive basis of $\operatorname{lt} \mathcal{I}$

Example: $\quad \mathcal{F}=\left\{x, x^{2}\right\} \subset \mathbb{k}[x]$
\mathcal{F} Janet autoreduced (x non-mult. for x because of x^{2}) \Longrightarrow algorithms will leave \mathcal{F} unchanged
obviously: $\{x\}$ minimal involutive basis of $\langle\mathcal{F}\rangle$

Minimal Bases

Overview

Def: $\mathcal{I} \subseteq \mathcal{P}, \mathcal{H} \subset \mathcal{I}$ involutive basis

- \mathcal{H}, \mathcal{I} monomial; \mathcal{H} minimal involutive basis of \mathcal{I} every monomial involutive basis $\hat{\mathcal{H}}$ of \mathcal{I} satisfies $\mathcal{H} \subseteq \hat{\mathcal{H}}$
- \mathcal{H}, \mathcal{I} polynomial; \mathcal{H} minimal involutive basis of \mathcal{I} lt \mathcal{H} minimal involutive basis of $\operatorname{lt} \mathcal{I}$

Prop: monic, involutively autoreduced, minimal involutive basis unique

Prop: L constructive, Noetherian division every polynomial ideal $\mathcal{I} \subseteq \mathcal{P}$ has minimal involutive basis

Proof: optimised completion algorithm

Minimal Bases

Overview

Basic Computational Problems
Continuous and Constructive Divisions

Monomial Completion
Polynomial Completion
Minimal Bases
Optimisations and Complexity Issues

Algorithm for minimal involutive basis (" $\mathcal{T}-\mathcal{Q}$ algorithm")
Input: finite set $\mathcal{F} \subset \mathcal{P}$, term order \prec, involutive division L
Output: minimal involutive basis \mathcal{H} of $\mathcal{I}=\langle\mathcal{F}\rangle$ wrt L and \prec
$: \mathcal{T} \leftarrow \emptyset ; \quad \mathcal{Q} \leftarrow \mathcal{F}$
repeat
3: $\quad g \leftarrow 0$
4: \quad while $(\mathcal{Q} \neq \emptyset) \wedge(g=0)$ do
5: \quad choose $f \in \mathcal{Q}$ such that $\operatorname{lt} f=\min _{\prec} Q$
$\mathcal{Q} \leftarrow \mathcal{Q} \backslash\{f\} ; \quad g \leftarrow \operatorname{NormalForm}_{L, \prec}(f, \mathcal{T})$
end while
if $g \neq 0$ then

$$
\mathcal{T}^{\prime} \leftarrow\{h \in \mathcal{T} \mid \operatorname{lt} g \prec \operatorname{lt} h\} ; \quad \mathcal{T} \leftarrow\left(\mathcal{T} \backslash \mathcal{T}^{\prime}\right) \cup\{g\}
$$

$$
\mathcal{Q} \leftarrow \mathcal{Q} \cup \mathcal{T}^{\prime} \cup\left\{y h \mid h \in \mathcal{T}, y \in \bar{X}_{L, \mathcal{T}, \prec}(h)\right\}
$$

end if
12: until $\mathcal{Q}=\emptyset$
13: return \mathcal{T}

Minimal Bases

Overview

Theorem: division L constructive and Noetherian algorithm terminates with minimal involutive basis \mathcal{H} of \mathcal{I}

Proof:

- termination proof requires only slight modifications
- \mathcal{H} involutive basis essentially as before
- proof of minimality requires analysis of last time a generator is moved to \mathcal{H}

Minimal Bases

Overview

Theorem: division L constructive and Noetherian algorithm terminates with minimal involutive basis \mathcal{H} of \mathcal{I}

Proof:

- termination proof requires only slight modifications
- \mathcal{H} involutive basis essentially as before
- proof of minimality requires analysis of last time a generator is moved to \mathcal{H}

Example: $\mathcal{F}=\left\{x, x^{2}\right\} \subset \mathbb{k}[x]$, Janet division

1. iteration: $\mathcal{T}=\{x\}, \quad \mathcal{Q}=\left\{x^{2}\right\}$
2. iteration: $\mathcal{T}=\{x\}, \quad \mathcal{Q}=\emptyset$

Optimisations and Complexity Iss

Overview

- worst case complexity of any algorithm for Gröbner bases is doubly exponential \rightsquigarrow potential size of basis (sharp estimate!)
- fortunately in practice rarely realised \rightsquigarrow "geometric" ideals have usually a lower Castelnuovo-Mumford regularity (see Lecture 5)
- good implementations require many optimisations of basic algorithms (proof of correctness often much more difficult)
- often only heuristic statements possible \rightsquigarrow good implementations provide options to control behaviour of algorithms
- important example: selection strategy

Optimisations and Complexity Iss

Overview

"Involutive Buchberger criteria"

- try to predict that a non-multiplicative product $y h$ (involutively) reduces to 0 (reductions are the most expensive part of a completion!)
- here much less an issue than for Buchberger algorithm
\rightsquigarrow yields only a modest gain in computation time
- to a large extent automatically built-in in our completion algorithm \rightsquigarrow consequence of syzygy theory (Lecture 5)

Optimisations and Complexity Iss

Overview

Remark: "value" of reductions to 0 depends on application context:
■ we only need some Gröbner basis for, say, deciding an ideal membership problem \rightsquigarrow such reductions a waste of time

- we also need syzygy module (common in algebraic geometry) (some) reductions to 0 yield valuable information on syzygies (Schreyer theorem — see Lecture 5)

Optimisations and Complexity Iss

"Involutive trees"

- Problem: fast determination of multiplicative variables for generators and fast search for involutive divisors important for effecient completion
- most studied for Janet division

■ natural tree structure on subsets $\left(d_{k}, \ldots, d_{n}\right) \subset \mathcal{T}$ used for definition of Janet division induced by inclusion relation leaves are elements of \mathcal{T}

- leads to special relationship with lexicographic order (leaves appear automatically sorted)
- refined version based on binary trees
- yields efficient graph theoretic algorithms (also for maintaining tree during completion!)

Optimisations and Complexity Iss

Overview

"Good Book-Keeping"

■ keep track of history of generators in order to avoid redundancies
\square Example: for Pommaret division in $\mathbb{k}[x, y, z]$ current basis contains $f \in \mathbb{k}[x] \rightsquigarrow$ must treat $y f$ and $z f \rightsquigarrow$ assume both polynomials must be added unchanged to basis (both of class 1) \rightsquigarrow must later treat both $z(y f)$ and $y(z f)$
\square in \mathcal{T} - \mathcal{Q} algorithm for minimal basis generator may repeatedly move between \mathcal{T} and $\mathcal{Q} \rightsquigarrow$ record which non-multiplicative products have already been considered

■ allows for simple extraction of reduced Gröbner basis (without any further computations!)

Optimisations and Complexity Iss

Overview

Minimal Bases

$$
\begin{array}{ll}
f_{1}=8 y^{2} z^{2}+5 y^{3} z+3 x z^{3}+x y z^{2} & f_{3}=8 z^{3}+12 y^{3}+x^{2} z+3 \\
f_{2}=z^{5}+2 x^{2} y^{3}+13 x^{3} y^{2}+5 x^{4} y & f_{4}=7 y^{4} z^{2}+18 x^{2} y^{3} z+x^{3} y^{3}
\end{array}
$$

reduced Gröbner basis of $\mathcal{I}=\left\langle f_{1}, f_{2}, f_{3}, f_{4}\right\rangle$

$$
g_{1}=z \quad g_{2}=y^{3}+1 / 4 \quad g_{3}=x^{2}
$$

intermediate polynomials have coefficients with about 80.000 digits
Janet basis requires additionally: $g_{4}=x^{2} y, g_{5}=x^{2} y^{2}$ largest intermediate coefficients have about 400 digits

