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Basic Computational Prob.lems

Overview

existence of finite involutive basis

Basic Computational

Problems E ) ) . .
Continuous and : [ clear for Noetherian n via Grobner bases. ..
Constructive Divisions . . e .

: 1 ... butrecall coun le for Pommaret division

Monomial Completion

Polynomial Completion 3 g effective  criterion for in

Minimal Bases

S [0 basic theory provides no finite test
: O need “substitute” for S-polyno
1 ‘where lies “first” obstruction

basis

jon?
B algorithmic construction of involu Sis

[0 non-trivial already in monomial case!
[0 *“reduced” basis — uniqueness?

B efficient algorithms

[ optimisations
[0 heuristics
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Continuous and Constructive Divisions

Overview : Idea: consider only “nearest” obstruction to involution ~~
Basic Computational E ) ] . - . .

Problems - multiply with a single non-multiplicative variable

Continuous and .

Constructive Divisions

Monomial Complgfion Def: finite set 7 C T'(X) locally involutive ~~

Polynomial Completion

Minimal Bases : Vit e T’ Y - XL,T(t) . yt c <T>L

Optimisations and
Complexity Issues

(here: X1 7(t) = X \ X1 7(t) setof non-multiplicative variables)
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Continuous and Constructive Divisions

Overview : Idea: consider only “nearest” obstruction to involution ~~
Basic Computational E ) ] . - . .
Problems - multiply with a single non-multiplicative variable

Continuous and
Constructive Divisions

Monomial Complgfion Def: finite set 7 C T(X) locally involutive ~~
Polynomial Completion ®
?)/I;:E?sla?iiizsand . \V/t E T? y E XL,T(t) : yt E <T>L

Complexity Issues

(here: X1 7(t) = X \ X1 7(t) setof non-multiplicative variables)

obviously: 7T involutive — 7 locally involutive

what about the'converse? ‘

W.M. Seiler: Involutive Bases Il — 4



Continuous and Constructive Divisions

Overview

sace compuaion. - EXample:  recall bizarre global division on TII‘(m, Y, Z) defined in Lecture | by
Problems . the following set of multiplicative variables

Continuous and
Constructive Divisions

MolnomiéI I(:C(:)mple:tio-n XL(l) — {x’ y) Z} .

Polynomial Completion

Minimf';\IB.ases XL(Q?) — {x7 Z}? XL(y) — {x7y}7 XL(Z) — {y7z}7
compleity sues X(t) =0 forallothert € T(x,y, 2)

Consider the set 7 = {z,vy, 2}

B 7 locally involutive
y-x=x-y Z-Yy=1uy-2 xz‘m
B But7 notinvolutive: zyz € (7)\(7)r ‘
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Continuous and Constructive Divisions

Overview . Def: involutive division L continuous ~-

Basic Computational
Problems

Continuous and V finite sets 7 C T'(X) ¥ finite sequences (t1,...,1,)
Monomial Complgfion with t; € 7 and Vt; Jy; € XL,’T(ti) Dt ‘L’g‘ Yil;
Polynomial Completion

Minimal Bases .

Optimisations and . Vk # e ’ tk # tE

Complexity Issues .

(in other words: such sequences cannot be cyclic)
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Continuous and Constructive Divisions

Overview :  Def: involutive division L continuous -~

Basic Computational .

Problems :

Continuous and : V finite sets 7 C T'(X) ¥ finite sequences (t1,...,1,)
Constructive Divisions : B

Monomial Complgfion with t; € 7 and Vt; Jy; € XL,’T(ti) Dt ‘L,’T Yit;
Polynomial Completion (

Optimisations and
Complexity Issues

Minimal Bases . \v/k ?é € : tk # tf

(in other words: such sequences cannot be cyclic)

Prop: L continuous, 7 locally involutive! =— 7 involutive

(provides us with-finite criterion for involutive sets!) ‘
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Continuous and Constructive Divisions

Overview :  Def: involutive division L continuous -~

Basic Computational o

Problems :

Continuous and : V finite sets 7 C T'(X) ¥ finite sequences (t1,...,1,)
Constructive Divisions : B

Monomial Complgfion with t; € 7 and Vt; Jy; € XL,’T(ti) Dt ‘L,’T Yit;
Polynomial Completion (

Optimisations and
Complexity Issues

Minimal Bases . \v/k # g : tk # tE

(in other words: such sequences cannot be cyclic)

Prop: L continuous, 7 locally involutive! =— 7 involutive

(provides us with-finite criterion for involutive sets!) ‘

Proof. (quite technical)
assume'existence of minimal obstruction to involution x* not of form yt;
starting from divisor ¢ € 7 of x*, construct infinite sequence contradicti
continuity of division L
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Continuous and Constructive Divisions

Overview :  Def: involutive division L continuous -~

Basic Computational o

Problems :

Continuous and : V finite sets 7 C T'(X) ¥ finite sequences (t1,...,1,)
Constructive Divisions : B

Monomial Complgfion with t; € 7 and Vt; Jy; € XL,’T(ti) Dt ‘L,’T Yit;
Polynomial Completion (

Optimisations and
Complexity Issues

Minimal Bases . \v/k # g : tk # tE

(in other words: such sequences cannot be cyclic)

Prop: L continuous, 7 locally involutive! =— 7 involutive

(provides us with-finite criterion for involutive sets!) ‘

Lemma: Janet and Pommaret division continuous

Proof: “sequence ascending in appropriate sense
Janet division ~~ <Jex
Pommaret division ~~ “essentially” < eviex
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Continuous and Constructive Divisions

gve_”izw . :  Problem: continuity still not sufficient for design of effective algorithm ~~
asic Computationa .
Problems . need further very technical property (developed by “reverse engineering®)

Continuous and
Constructive Divisions

Monomial Complgfion Def: continuous division L constructive ~~

Polynomial Completion ®
inlooalh VT CTX)fnite, £ €T, y € Xr,7(t) such that
Complexity Issues ; (|) yt ¢ <T>L

(i) fIse€T,z2€ Xp7(s):28|ytAzs#uyt thenzs e (T)]
Are(T)r : yt €€ 10y (r)

(underlying idea: it makes no sense in a completion p

‘to add elements
already contained in the involutive span)
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Continuous and Constructive Divisions

gve_”izw . :  Problem: continuity still not sufficient for design of effective algorithm ~~
asic Computationa .
Problems . need further very technical property (developed by “reverse engineering®)

Continuous and
Constructive Divisions

Monomial Complgfion Def: continuous division L constructive ~~

Polynomial Completion ®
inlooalh VT CTX)fnite, £ €T, y € Xr,7(t) such that
Complexity Issues ; (|) yt ¢ <T>L

(i) fIse€T,z2€ Xp7(s):28|ytAzs#uyt thenzs e (T)]
Are(T)r : yt €€ 10y (r)

Lemma: Janet and any continuous global division cor‘e

Proof: _simple for global division; very technical for Janet division
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Momomial Completion

Overview :  Basic monomial completion algorithm

Basic Computational .

Problems E

Continuous and :Input: finite set 7 C T(X), involutive division L
Constructive Divisions o ] ) ] A~

Vonomial Completion Output:  weakly involutive completion 7 of 7
Polynomial Completion E 1: T <— T

Minimal Bases

Optimisations and : 2: IOOp
Complexity Issues § 3- 8 - {yt | t E ,Z’\,’ y E XL ,j,(t)’ yt ¢ <7/\1>L}
: if S=10 then

4:

5: return 7

6: else ‘
7l

3.

choose s € S such that S does not contain a proper divisor of it

T — T U{s}
9: endif
10: end loop
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Momomial Completion

Overview

Basic Computational
Problems

Continuous and
Constructive Divisions

Monomial Completion
Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

Prop: 7 possesses weakly involutive completions, L constructive —>
algorithm terminates with a weakly.involutive completion 7

(Sketch of) Proof:

Correctness obvious: upon termination T locally involutive
Termination proof very technical: use continuity of L to show that each
added term lies in any involutive completion of 7 as otherwise
contradiction to constructivity of L
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Momomial Completion

Overview

existence of (weakly) involutive completion must be assumed

Basic Computational

Problems . . .
Continuous and : 1 very different to standard Grobner theory
Constructive Divisions . . . . . . .
(termination implies existence of basis!)
Monomial Completion . ) ) o ]
Polynomial Completion - [0 no issue for Noetherian division like Janet
Minimal Bases E . . . . - .
Optimisations and : W termination proof implies surprising properties of output

Complexity Issues

1 77 any weakly involutive completion of 7 —> 7 C T
(1 output independent of choices in Line 7
(simple way to implement choice: use term order) ‘

B natural choice for input: minimal basis of (7)
(will see later ~~ yields minimal involutive basis)
B recall: simple elimination process yields strong involutive basis
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Momomial Completion

Overview

Basic Computational
Problems

Continuous and
Constructive Divisions

Monomial Completion
Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

existence of (weakly) involutive completion must be assumed

[1 very different to standard Grobner theory
(termination implies existence of basis!)
(1 no issue for Noetherian division like Janet

B termination proof implies surprising properties of output

1 77 any weakly involutive completion of 7 —> 7 C T
(1 output independent of choices in Line 7
(simple way to implement choice: use term order) ‘

B natural choice for input: minimal basis of (7)
(will see later ~~ yields minimal involutive basis)
B recall: simple elimination process yields strong involutive basis

Lemma: B minimal basis of (7), L = P Pommaret division —
no termination, if at some stage deg 7 > deglcm B

Proof: consequence of syzygy theory in Lecture 5
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Momomial Completion

Overview

Basic Computational
Problems

Continuous and
Constructive Divisions

Monomial Completion
Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

Example: 7 = {2, y?, zy} with Pommaret division
(choose in each iteration y¢ minimal for degrevlex)

TR 8
Xy Y 5 X
(2) Xyz Gy ﬁ
5 T
(5) " xyz? | (7)
(8) -
g O e O ®
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Polynomial Completion

Overview

Basic utational
Prob

Cont d
Constructive Divisions

Monomial Completion
Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

Given finite polynomial set 7 C ‘P, term order <, involutive division L

Simplest approach:

B compute Grobner basis G of Z = (F)  (e.g. with Buchberger algorithm)
~ leading terms 1t G generate leading ideal 1t Z

B apply monomial completion algorithm to 1t G
(keeping full polynomials!)

B obtain (weakly) involutive basis H O G of 7
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Polynomial Completion

Overview ' Given finite polynomial set F C P, term order <, involutive division L

Basic utational
Prob

Cont d . ]
Constructive Divisions E Better approaCh.

Monomial Completion

Polynomial Completion B generalise monomial completion algorithm
Minimal Bases : W requires two subalgorithms

Optimisations and
Complexity Issues

0 NormalFormy <(g,H
iInvolutive normal form lynomial g € P wrt finite set H C P

0 (Head)AutoReducey, < (H)
involutive (head) autoreduction of finite set H C P ‘

(obtained by obvious modifications of standard algorithms)
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Polynomial Completion

Overview :  Basic polynomial completion algorithm

Basic utational
Prob

Cont d . Input: finite set 7 C P, term order <, involutive division L

Constructive Divisions

Jonomal comperon - OUtpUt: involutive basis H of Z = (F) wrt L and <
Polynomial Completion - 1: 'H < HeadAutoReduce L,<(~7: )
e b 2 oo
FEERL w5 {uh | e My K (). vh ¢ ()]
L4 if S = () then
5: return H
6: else ‘
7 choose g € S suchthatlt g = min. S
8: g < NormalFormy, (g, H)
9: H «— HeadAutoReducey, <(H U {g})
10: end if
11: end loop
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Polynomial Completion

Overview

Basic utational
Prob

Cont d
Constructive Divisions

Monomial Completion
Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

Theorem: division L constructive and Noetherian
algorithm terminates with involutive basis H of 7

—
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Polynomial Completion

g;:giew I ' Theorem: division L constructive and Noetherian —>
algorithm terminates with involutive basis H of 7

Prob

Cont d
Constructive Divisions

Monomial Completion E (Sketch Of) Proof:

Polynomial Completion :

Minimal Bases : W extend notion of locally involutive set to polynomial sets

Optimisations and . . . e . . . . .

Complexity Issues : W show that for continuous division any locally involutive and involutively head

autoreduced set is involuti\‘
Noetherian argument shows that leading ideal (1t ) stabilises
then polynomial completion reduces (more or less) to monomial ¢

n
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Polynomial Completion

Overview

Basic Camgutational
ProbjSIs

ContEauSend
Constructive Divisions

Monomial Completion
Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

Theorem: division L constructive and Noetherian —
algorithm terminates with involutive basis H of 7

Some comments:

it does not suffice to assume existence of involutive basis of Z ~~

we need existence of involutive bases for all subideals of 1t Z

choice in Line 7 corresponds to normal selection strategy ~~

use important for termination proof

even if algorithm does not terminate, it always produces for term orders of
type w a Grobner basis after a finite number of steps

algorithm implicitly reduces S-polynomials

algorithm usually more efficient than Buchberger algorithm

[1 Buchberger criteria to large extent automatically “built-in”
[0 implicitly “Hilbert driven”
(without a priori knowledge of Hilbert function!)
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Polynomial Completion

Overview

Basic utational
Prob

Cont d
Constructive Divisions

Monomial Completion
Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

Example:

P = Kk|x,y|, Pommaret division P
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Polynomial Completion

Overview

Basic utational
Prob

Cont d
Constructive Divisions

Monomial Completion
Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

Example: P = k[, y|, Pommaret division P

choose term order such that xye; > es ~~
<lt .7-") has no finite Pommaret basis (consider eo-component)

add S-“polynomial” S(fy, ‘ yeo = f4 ~

H = F U{fy} finite Pommaret basis of (F) ‘
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Polynomial Completion

Overview Example: P = kl|z,y|, Pommaret division P

Basic utational
Prob

Cont d

: 2 2
Constructive Divisions E f — {fl — y el) f2 — xyel —|_ 627 f3 — er} C 7)

Monomial Completion

Polynomial Completion

Minimal Bases : W choose term order such that zye; > ey ~~
optmisatons and (It F) has no finite Pommaret basis (consider ea-component)

Complexity Issues
B add S-“polynomial” S(fi, ‘ yeo = f4 ~

H = F U{fy} finite Pommaret basis of (F)

B termination of completion algorithm depends on properties of term order

[0 take “POT” order with se1 > teq for arbitrary s, ¢ € T(:U, y)
—> no termination

[0 take “TOP” order based on degree compatible order ~~
after finite number of iterations f; is found —— termination
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Minimal Bases

Overview :  Def: Z C P, H CZ involutive basis

Basic Computational
Problems

Continuous and : M 'H,Z monomial; H minimal mvolutwe‘s of L ~»
R every monomial involutive basis 7 of Z satisfies H C H
Monomial Completion .

coynomial compieion - M H, Z polynomial; H minimal involutive basis of Z ~~
Minimal Bases 1t H minimal involutive basis of 1t Z

Optimisations and
Complexity Issues
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Minimal Bases

Overview

Basic Computational
Problems

Continuous and
Constructive Divisions

Monomial Completion
Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

Def: Z C P, 'H C 1 involutive basis

B H,Z monomial; ‘H minimal involutive'basis of Z ~~
every monomial involutive basis H of Z satisfies H C 'H
B H, 7 polynomial; ‘H minimal involutive basis of Z ~~

1t H minimal involutive basis of 1t 7

Propt® Z C P monomial ideal with involutive basis —
minimal involutive basis exists and obtained by applying monomial completion

algorithm to minimal basis in ordinary sense

Prop: L globally defined division —
monomial involutive basis unique and thus minimal

W.M. Seiler: Involutive Bases Il — 7



Minimal Bases

Overview

Basic Computational
Problems

Continuous and
Constructive Divisions

Monomial Completion
Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

Def: Z C P, 'H C 1 involutive basis

B H,Z monomial; H minimal mvolutwe‘s of I ~
every monomial involutive basis H of T satisfies H C H
B H, 7 polynomial; ‘H minimal involutive basis of Z ~~

1t H minimal involutive basis of 1t 7

Exarfiple: F = {x, 2%} C k[z]

F Janet autoreduced (z non-mult. for  because of z°%) =—

algorithms will leave F unchanged

obviously: {z} minimal involutive basis of <‘
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Minimal Bases

Overview \Qu . Def: Z C P, H CZ involutive basis

Basic Computational o

Problems E .

Continuous and MW H,Z monomial: H minimal involutive sof Z ~~
R every monomial involutive basis 7 of Z satisfies H C H
Monomial Completion .

coynomial compieion - M H, Z polynomial; H minimal involutive basis of Z ~~

Minimal Bases 1t 'H minimal involutive basis of 1t 7

Optimisations and
Complexity Issues

Prop® monic, involutively autoreduced, minimal involutive basis unique

Prop: L constructive, Noetherian division
every polynomial ideal Z C P has minimal ||.ut|ve basis

Proof: optimised completion algorithm
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Minimal Bases

Overview : Algorithm for minimal involutive basis “] -Q algorithm”)
Basic Computational o

Problems E

Continuous and : Input: finite set 7 C ‘P, term order <, in ive division L
Constructive Divisions : o ) ] ]

Vonomial compieton ¢ Output:  minimal involutive basis H of Z = (F) wrt L and <

Polynomial Completion E 1 T «— @, Q «— f
Minimal Bases E 5- t
Optimisations and : repea

Complexity Issues E 3: g «— 0

4 g While (Q#0)A(g=0)do

5: choose f € Q suchthatlt f = min_. ()

6: Q«— O\ {f}; g+« NormalFormy ~(f,7)

7: end while

8: if g # 0then ‘

o: T —{heT|ltg=<1th}; T« (T\T')U{g}
10: Q—QUT'U{yh|heT,ye Xrr<(h)}

11: end if

12: until Q = ()

13: return 7
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Minimal Bases

Overview :  Theorem: division L constructive and Noetherian

Basic Computational . ] ) ) o ) .
Problems :  algorithm terminates with minimal involutiv sHofZ
Continuous and .
Constructive Divisions
Monomial Completion E Proof:
Polynomial Completion .
Minimal Bases : W termination proof requires only slight modifications
Optimisations and . . . . .
Complexity Issues : B H involutive basis essentially as before
B proof of minimality requires analysis ofdast time a generator is moved to 'H
O
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Minimal Bases

Overview :  Theorem: division L constructive and Noetherian

Basic Computational . ] ) ) o ) .
Problems :  algorithm terminates with minimal involutiv sHofZ
Continuous and .
Constructive Divisions
Monomial Completion E Proof:
Polynomial Completion .
Minimal Bases : W termination proof requires only slight modifications
Optimisations and . . . . .
Complexity Issues : B H involutive basis essentially as before
: W proof of minimality requires analysis ofdast time a generator is moved to H
O

Example: F = {x,2%} C k[z], Janet division

1. iteration: 7 = {z}, QO = {2?} .
2. iteration: 7 ={z}, Q=10
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Optimisations and Complexity ISSUg

Overview

Basic Computational
Problems

Continuous and
Constructive Divisions

Monomial Completion
Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

It's easy to implement a completion algorithm,
but difficult to provide a good implementation!

worst case complexity ofiany algorithm for Grobner bases is doubly
exponential ~~ potential size of basis (sharp estimate!)

fortunately in practice rarely realised ~~ “geometric” ideals have usually
a lower Castelnuovo-Mumford regularity (see Lecture 5)

good implementations require many optimisations of basic algorithms
(proof of correctness often much more difficult)

often only heuristic statements possible ~~ good implementations
provide options to control behaviour of algorithms

important example: selection strategy
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Optimisations and Complexity ISSUg

Overview

Basic Computational
Problems

Continuous and
Constructive Divisions

Monomial Completion
Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

“Involutive Buchberger criteria”

try to predict that a non-multiplicative praduct yh (involutively) reduces to
(reductions are the most expensive part of a completion!)

here much less an issue than for Buchberger‘algorithm

~~ yields only a modest gain in computation time

to a large extent a ically built-in in our completion algorithm

~~  consequence ygy theory (Lecture 5)

'Seiler: Involutive Bases Il — 8




Optimisations and Complexity ISSUg

Overview . “Involutive Buchberger criteria”
Basic Computational .
Problems . . . g . . .
N : W try to predict that a non-multiplicative praduct yh (involutively) reduces to
;O”S”“_Ctl'f D'V'ls'c_’”s : (reductions are the most expensive part of a completion!)
onomial Completion . ) .
Polynomial Completion & B here much less an issue than for Buchbergeralgorithm
Minimal Bases ~~ yields only a modest gain in computation time
Optimisations and . . cry e . .
Complexity Issues - W to alarge extent automatically built-in in our completion algorithm

~~ consequence of syzygy theory (Lecture 5)

Remark: “value” of reductions to 0 depends on application context:

B we only need some Grobner basis for, say, deciding an ideal membership
problem ~~ such reductions a waste of time

B we also need syzygy module (common in algebraic geometry) ~~
(some) reductions to 0 yield valuable information on syzygies
(Schreyer theorem — see Lecture 5)
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Optimisations and Complexity ISSUg

Overview . “Involutive trees”

Basic Computational .

Problems . . . T . .

Continuous and : M Problem: fast determination of multiplicative variables for generators and
constiuctve bvisions 3 fast search for involutive divisors important for effecient completion

Monomial Completion . . L.

Polynomial Completion - B most studied for Janet division

Minimal Bases B natural tree structure on subsets (dk, Cee dn) C 7 used for definition of
Optimisations and : .. . . . .

Complexity Issues : Janet division induced by inclusion relation ~~

leaves are elementsiof 7
B leads to special relationship with lexicographic order
(leaves appear automatically sorted)
refined version based on binary trees
yields efficient graph theoretic algorithms
(also for maintaining tree during completion!)

WM. Seiler: Involutive Bases Il — 8



Optimisations and Complexity ISSUg

Overview . “Good Book-Keeping”
Basic Computational o
Problems .

B keep track of history of generators in order to avoid redundancies

Continuous and
Constructive Divisions

Monomial Completion 0 Example: for Pommaret division in k|x, 3,.2]

Polynomial Completion current basis contains f € k|z] ~~ musttreatyfand zf ~~
Minimal Bases : . .
Optimisations.and : assume both p lals must be added unchanged to basis

Complexity Issues

(both of class must later treat both z(y f) and y(z f)

O in7-Q algorith r minimal basis generator may repeatedly move
between 7 and Q ~+ record which non-multiplicative products
have already been considered

B allows for simple extraction of reduced Grobner basis
(without any further computations!)
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Optimisations and Complexity ISSUg

Overview

Basic Computational
Problems

Continuous and
Constructive Divisions

Monomial Completion
Polynomial Completion

Minimal Bases

Optimisations and
Complexity Issues

“Intermediate Expression Swell”

Problem : in- and output small, but intermediate results very large
(quite common in computer algebra)

Example: (Arnold) P = Q[x,y, z|, degrevlex

J1= 8y222 + 5y3’z3 - xyzz f3 = 82° + 12y3 + 22243
fo = 20+ 2x2y3 + a:3y2 — 5aﬁ4y fa = 7y4z2 + 18x2y32 + a:3y3

reduced Grobner basis of Z = (f1, fo, f3, f1)
_ __ .3 — 2
n=z g=y+1/4 g=u

intermediate polynomials have coefficients with about 80.000 digits

Janet basis requires additionally: g4 = z%y, g5 = z%y? @
largest intermediate coefficients have about 400 digits
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