## Inva ve Bases I

Werner M. Seiler<br>Institut für Mathematik<br>Universität Kassel

- General Involutive Bases


Shortcomings of Gröbner Bases Involutive Divisions with Examples Involutive Bases: The Monomial Case $\square$ Involutive Bases: The Polynomial Case
$\square$ Elementary Properties

- Basic Algorithms
- Pommaret Bases and $\delta$-Regularity
- Combinatorial Decompositions and Applications
- Syzygy Theory and Applications


## Basic References

## Basic References

## Werner M. Seiler

## Involution

The Formal Theory of
Differential Equations and
its Applications in Computer Algebra


Springer

- V.P. Gerdt, Yu.A. Blinkov: Involutive Bases of Polynomial Ideals
Math. Comp. Simul. 45 (1998) 519-542
$\square$ V.P. Gerdt, Yu.A. Blinkov: Minimal Involutive Bases
Math. Comp. Simul. 45 (1998) 543-560
- W.M. Seiler: A combinatorial approach to involution and $\delta$-regularity I \& II AAECC 20 (2009) 207-338
- W.M. Seiler: Involution - The Formal Theory of Differential Equations and its Applications in Computer Algebra
Springer-Verlag 2009 (Chapts. 2-5)


## Gröbner Bases vs. Involutive Bases

## Overview

## Basic References

Gröbner Bases vs. Involutive Bases

History
Notations and

## Shortcomings of Gröbner bases:

- definition not intrinsic:arbitrary choice of variables and term orderin principle: $\quad \mathcal{P} \cong S \mathcal{V}$ for $n$-dimensional $\mathbb{k}$-linear space $\mathcal{V}$ with basis $\left\{x_{1}, \ldots, x_{n}\right\}$
$\square$ change of basis or term order can affect Gröbner basis drastically
purely technical definition
algebraic properties of ideal hardly enter
- determination of algebraic structure of ideal requires additional computations (often several Gröbner bases)


## Gröbner Bases vs. Involutive Bases

## Overview

Basic References Gröbner Bases vs. Involutive Bases

History
Notations and
Conventions
Involutive Divisions Monomial Involutive Bases

Example: consider

$$
\mathcal{I}=\left\langle z^{8}-w x y^{6}, y^{7}-x^{6} z, y z^{7}-w x^{7}\right\rangle \triangleleft \mathbb{k}[w, x, y, z]
$$

(reduced) Gröbner basis for degrevlex
Consider $\mathcal{I}$ as ideal in $\mathbb{k}[w, y, x, z]$ :
(reduced) Gröbner basis for degrevlex

$$
\begin{gathered}
\left\{y^{7}-x^{6} z, y z^{7}-w x^{7}, z^{8}-w x y^{6}, y^{8} z^{6}-w x^{13}\right. \\
y^{15} z^{5}-w x^{19}, y^{22} z^{4}-w x^{25}, y^{29} z^{3}-w x^{31} \\
\left.y^{36} z^{2}-w x^{37}, y^{43} z-w x^{43}, y^{50}-w x^{49}\right\}
\end{gathered}
$$

## Gröbner Bases vs. Involutive Bases

## Involutive Bases:

- Special type of (generally non-reduced) Gröbner bases with additional combinatorial properties
- Provide alternative algorithm for construction of Gröbner bases (often superior to Buchberger algorithm)
- Pommaret bases for degrevlex particularly interesting for applications in algebraic geometry $\rightsquigarrow$ many characteristics (e.g. degree of basis) intrinsically determined by homological invariants of ideal
- Pommaret bases not only computationally of interest; allow for theoretical applications, too.


## Differential Equations

Commutative Algebra

```
Jacobi \leq1862
Riquier 1890-1910
(Cartan 1900-1930)
```

Janet 1920

## Differential Equations

Jacobi $\leq 1862$
Riquier 1890-1910
(Cartan 1900-1930)
Janet 1920

Spencer 1962
Quillen 1964
Goldschmidt 1965
Pommaret 1978

## Commutative Algebra

(Gordan 1900)

Rees 1956 ( $P$ )
Hironaka 1964/77 ( $P$ )
Buchberger 1965
Grauert 1972 (P)
Stanley 1978
Baclawski/Garcia 1981

## Differential Equations

## Commutative Algebra

Jacobi <1862
Riquier 1890-1910
(Cartan 1900-1930)
Janet 1920

Spencer 1962
Quillen 1964
Goldschmidt 1965
Pommaret 1978
(Gröbner *1899)
(Gordan 1900)

Rees 1956 ( $P$ )
Hironaka 1964/77 (P)
Buchberger 1965
Grauert 1972 (P)
Stanley 1978
Baclawski/Garcia 1981

Amasaki 1990 ( $P$ )
Wu 1991
Gerdt, Blinkov, Zharkov $\geq 1993$ (1998)
Malgrange, Seiler (2002)

## Notationsernd Conventions

- field $\mathbb{k}$ of arbitrary characteristic (later: "sufficiently large" for Pommaret bases)
- set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ (ordering of variables relevant for many purposes!)
- polynomial ring $\mathcal{P}=\mathbb{k}[X]$
ideals $\mathcal{I} \triangleleft \mathcal{P}$, submodules $\mathcal{M} \subseteq \mathcal{P}^{m}$ of free $\mathcal{P}$-module
- subset of variables $X^{\prime} \subseteq X$
$\mathbb{T}\left(X^{\prime}\right)$ monoid of terms containing only variables in $X^{\prime}$
■ multi indices $\mu, \nu \in \mathbb{N}_{0}^{n} \rightsquigarrow$ terms $x^{\mu}, x^{\nu} \in \mathbb{T}(X)$


## Notationsand Conventions

Caution: the following conventions are non-standard; the standard ones are obtained by reverting the ordering of the variables

## Involutive Divisions

Basic idea: every generator in involutive basis may only be multiplied by polynomials in its multiplicative variables $\rightsquigarrow$ two ingredients required:

- term order (like any Gröbner basis)
- involutive division for assignment of multiplicative variables (based on the leading terms of the generators)

Difficulty: assignment is generally made "context sensitive": multiplicative variables for term $t \in \mathbb{T}(X)$ not absolutely defined, but $t$ must always be considered in "context" of finite set $\mathcal{T} \subset \mathbb{T}(X)$ (say, all leading terms in a basis) containing $t$

Def: involutive division $L$ on $\mathbb{T}(X)$
rule to assign to every term $t$ in any finite set $\mathcal{T} \subset \mathbb{T}(X)$ multiplicative variables $X_{L, \mathcal{T}}(t)$ and thus involutive cone $\mathcal{C}_{L, \mathcal{T}}(t)=\mathbb{T}\left(X_{L, \mathcal{T}}(t)\right) \cdot t$ such that:
(i) $s, t \in \mathcal{T}$ with $\mathcal{C}_{L, \mathcal{T}}(s) \cap \mathcal{C}_{L, \mathcal{T}}(t) \neq \emptyset \Longrightarrow$

$$
\mathcal{C}_{L, \mathcal{T}}(s) \subseteq \mathcal{C}_{L, \mathcal{T}}(t) \text { or vice versa }
$$

(ii) $\mathcal{S} \subseteq \mathcal{T} \Longrightarrow \forall s \in \mathcal{S}: X_{L, \mathcal{T}}(s) \subseteq X_{L, \mathcal{S}}(s)$

Def: $\quad s \in \mathbb{T}(X)$ involutively divisible by $t \in \mathcal{T}$ (written $\left.\left.t\right|_{L, \mathcal{T}} s\right) \rightsquigarrow$ $s \in \mathcal{C}_{L, \mathcal{T}}(t)$

## Involutive Divisions

Example: Thomas division $T$
$x_{i} \in X_{T, \mathcal{T}}(t) \Longleftrightarrow \operatorname{deg}_{x_{i}} t=\max \left\{\operatorname{deg}_{x_{i}} s \mid s \in \mathcal{T}\right\}$
(independent of ordering of variables;
not relevant for practice; sometimes theoretically useful)

## Involutive Divisions

Example: Thomas division $T$
$x_{i} \in X_{T, \mathcal{T}}(t) \Longleftrightarrow \operatorname{deg}_{x_{i}} t=\max \left\{\operatorname{deg}_{x_{i}} s \mid s \in \mathcal{T}\right\}$
(independent of ordering of variables;
not relevant for practice; sometimes theoretically useful)
Example: Janet division $J$
given $\mathcal{T} \subset \mathbb{T}(X)$, introduce for arbitrary $d_{i} \in \mathbb{N}_{0}^{n}$ subsets

$$
\left(d_{k}, \ldots, d_{n}\right)=\left\{x^{\mu} \in \mathcal{T} \mid \mu_{k}=d_{k}, \ldots, \mu_{n}=d_{n}\right\} \subseteq \mathcal{T}
$$

then for term $t=x^{\mu} \in \mathcal{T}$
■ $x_{n} \in X_{J, \mathcal{T}}(t) \Longleftrightarrow \operatorname{deg}_{x_{n}} t=\max \left\{\operatorname{deg}_{x_{n}} s \mid s \in \mathcal{T}=()\right\}$
■ for $1 \leq k<n: \quad x_{k} \in X_{J, \mathcal{T}}(t) \Longleftrightarrow$

$$
\operatorname{deg}_{x_{k}} t=\max \left\{\operatorname{deg}_{x_{k}} s \mid s \in\left(\mu_{k+1}, \ldots, \mu_{n}\right)\right\}
$$

("refinement" of Thomas division; depends on ordering of variables)

## Involutive Divisions

Example: Pommaret division $P$
$t=x^{\mu} \in \mathcal{T}, \operatorname{cls} \mu=k \quad \Longrightarrow \quad X_{P}(t)=\left\{x_{1}, \ldots, x_{k}\right\}$
(depends on ordering of variables, too)
global division: no dependence on $\mathcal{T}$

## Involutive Divisions

Example: Pommaret division $P$
$t=x^{\mu} \in \mathcal{T}, \operatorname{cls} \mu=k \quad \Longrightarrow \quad X_{P}(t)=\left\{x_{1}, \ldots, x_{k}\right\}$
(depends on ordering of variables, too)
global division: no dependence on $\mathcal{T}$
Example: bizarre global division on $\mathbb{T}(x, y, z)$

$$
\begin{gathered}
X_{L}(1)=\{x, y, z\} \\
X_{L}(x)=\{x, z\}, \quad X_{L}(y)=\{x, y\}, \quad X_{L}(z)=\{y, z\}, \\
X_{L}(t)=\emptyset \text { for all other } t \in \mathbb{T}(x, y, z)
\end{gathered}
$$

## Involutive Divisions

Example: $\mathcal{T}=\left\{z^{3}, y^{2} z, y z^{2}, x z^{2}, x y z\right\} \subset \mathbb{T}(x, y, z)$
multiplicative variables for different involutive divisions

|  | $z^{3}$ | $y^{2} z$ | $y z^{2}$ | $x z^{2}$ | $x y z$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{T}$ | $z$ | $y$ | - | $x$ | $x$ |
| $\mathbf{J}$ | $x, y, z$ | $x, y$ | $x, y$ | $x$ | $x$ |
| $\mathbf{P}$ | $x, y, z$ | $x, y$ | $x, y$ | $x$ | $x$ |
|  |  |  |  |  |  |

(note: despite very different definitions, Janet and Pommaret division yield here same multiplicative variables $\rightsquigarrow$ more in Lecture 3!)

## Monomial Involutive Bases

## Overview



Notations and Conventions

Def: $\quad \mathcal{T} \subset \mathbb{T}(X)$ finite, involutive division $L$
■ involutive span of $\mathcal{T} \rightsquigarrow\langle\mathcal{T}\rangle_{L}=\left\langle\bigcup_{t \in \mathcal{T}} \mathcal{C}_{L, \mathcal{T}}(t)\right\rangle_{\mathbb{k}}$

- I weakly involutive $\rightsquigarrow\langle\mathcal{T}\rangle_{L}=\langle\mathcal{T}\rangle$
- $\mathcal{T}$ (strongly) involutive $\rightsquigarrow$ additionally

$$
\forall t \neq t^{\prime} \in \mathcal{T}: \mathcal{C}_{L, \mathcal{T}}(t) \cap \mathcal{C}_{L, \mathcal{T}}\left(t^{\prime}\right)=\emptyset
$$

(provides $\mathbb{k}$-linear direct sum decomposition of ideal $\langle\mathcal{T}\rangle$ !)

- $\mathcal{I} \subseteq \hat{\mathcal{I}}$ (finite) weakly involutive completion $\rightsquigarrow\langle\hat{\mathcal{I}}\rangle_{L}=\langle\mathcal{I}\rangle$
- I (weakly) involutive basis of monomial ideal $\mathcal{I} \triangleleft \mathcal{P} \rightsquigarrow$ $\mathcal{T}$ (weakly) involutive and $\langle\mathcal{T}\rangle_{L}=\mathcal{I}$


## Monomial Involutive Bases

## Overview



Notations and Conventions

Def: $\quad \mathcal{T} \subset \mathbb{T}(X)$ finite, involutive division $L$
■ involutive span of $\mathcal{T} \rightsquigarrow\langle\mathcal{T}\rangle_{L}=\left\langle\bigcup_{t \in \mathcal{T}} \mathcal{C}_{L, \mathcal{T}}(t)\right\rangle_{\mathbb{k}}$
■ $\mathcal{T}$ weakly involutive $\rightsquigarrow\langle\mathcal{T}\rangle_{L}=\langle\mathcal{T}\rangle$

- $\mathcal{T}$ (strongly) involutive $\rightsquigarrow$ additionally

$$
\forall t \neq t^{\prime} \in \mathcal{T}: \mathcal{C}_{L, \mathcal{T}}(t) \cap \mathcal{C}_{L, \mathcal{T}}\left(t^{\prime}\right)=\emptyset
$$

(provides $\mathbb{k}$-linear direct sum decomposition of ideal $\langle\mathcal{T}\rangle$ !)

- $\mathcal{I} \subseteq \hat{\mathcal{I}}$ (finite) weakly involutive completion $\rightsquigarrow\langle\hat{\mathcal{I}}\rangle_{L}=\langle\mathcal{I}\rangle$
- I (weakly) involutive basis of monomial ideal $\mathcal{I} \triangleleft \mathcal{P} \rightsquigarrow$ $\mathcal{T}$ (weakly) involutive and $\langle\mathcal{T}\rangle_{L}=\mathcal{I}$


## Monomial Involutive Bases

## Overview

Notations and
Conventions
Involutive Divisions Monomial Involutive Bases

Def: $\quad \mathcal{T} \subset \mathbb{T}(X)$ finite, involutive division $L$
■ involutive span of $\mathcal{T} \rightsquigarrow\langle\mathcal{T}\rangle_{L}=\left\langle\bigcup_{t \in \mathcal{T}} \mathcal{C}_{L, \mathcal{T}}(t)\right\rangle_{\mathbb{k}}$
■ $\mathcal{T}$ weakly involutive $\rightsquigarrow\langle\mathcal{T}\rangle_{L}=\langle\mathcal{T}\rangle$

- $\mathcal{T}$ (strongly) involutive $\rightsquigarrow$ additionally

$$
\forall t \neq t^{\prime} \in \mathcal{T}: \mathcal{C}_{L, \mathcal{T}}(t) \cap \mathcal{C}_{L, \mathcal{T}}\left(t^{\prime}\right)=\emptyset
$$

(provides $\mathbb{k}$-linear direct sum decomposition of ideal $\langle\mathcal{T}\rangle$ !)

- $\mathcal{T} \subseteq \hat{\mathcal{T}}$ (finite) weakly involutive completion $\rightsquigarrow\langle\hat{\mathcal{I}}\rangle_{L}=\langle\mathcal{T}\rangle$
- I (weakly) involutive basis of monomial ideal $\mathcal{I} \triangleleft \mathcal{P} \rightsquigarrow$ $\mathcal{T}$ (weakly) involutive and $\langle\mathcal{T}\rangle_{L}=\mathcal{I}$


## Monomial Involutive Bases

## Overview

Notations and
Conventions
Involutive Divisions Monomial Involutive Bases

Def: $\quad \mathcal{T} \subset \mathbb{T}(X)$ finite, involutive division $L$
■ involutive span of $\mathcal{T} \rightsquigarrow\langle\mathcal{T}\rangle_{L}=\left\langle\bigcup_{t \in \mathcal{T}} \mathcal{C}_{L, \mathcal{T}}(t)\right\rangle_{\mathbb{k}}$

- $\mathcal{T}$ weakly involutive $\rightsquigarrow\langle\mathcal{T}\rangle_{L}=\langle\mathcal{T}\rangle$
- $\mathcal{T}$ (strongly) involutive $\rightsquigarrow$ additionally

$$
\forall t \neq t^{\prime} \in \mathcal{T}: \mathcal{C}_{L, \mathcal{T}}(t) \cap \mathcal{C}_{L, \mathcal{T}}\left(t^{\prime}\right)=\emptyset
$$

(provides $\mathbb{k}$-linear direct sum decomposition of ideal $\langle\mathcal{T}\rangle$ !)

- $\mathcal{T} \subseteq \hat{\mathcal{T}}$ (finite) weakly involutive completion $\rightsquigarrow\langle\hat{\mathcal{I}}\rangle_{L}=\langle\mathcal{T}\rangle$
- I (weakly) involutive basis of monomial ideal $\mathcal{I} \triangleleft \mathcal{P} \rightsquigarrow$ $\mathcal{T}$ (weakly) involutive and $\langle\mathcal{I}\rangle_{L}=\mathcal{I}$


## Monomial Involutive Bases

## Overview

Notations and

Def: $\quad \mathcal{T} \subset \mathbb{T}(X)$ finite, involutive division $L$
■ involutive span of $\mathcal{T} \rightsquigarrow\langle\mathcal{T}\rangle_{L}=\left\langle\bigcup_{t \in \mathcal{T}} \mathcal{C}_{L, \mathcal{T}}(t)\right\rangle_{\mathbb{k}}$

- $\mathcal{T}$ weakly involutive $\rightsquigarrow\langle\mathcal{T}\rangle_{L}=\langle\mathcal{T}\rangle$
- $\mathcal{T}$ (strongly) involutive $\rightsquigarrow$ additionally

$$
\forall t \neq t^{\prime} \in \mathcal{T}: \mathcal{C}_{L, \mathcal{T}}(t) \cap \mathcal{C}_{L, \mathcal{T}}\left(t^{\prime}\right)=\emptyset
$$

(provides $\mathbb{k}$-linear direct sum decomposition of ideal $\langle\mathcal{T}\rangle$ !)

- $\mathcal{T} \subseteq \hat{\mathcal{T}}$ (finite) weakly involutive completion $\rightsquigarrow\langle\hat{\mathcal{I}}\rangle_{L}=\langle\mathcal{T}\rangle$

■ $\mathcal{I}$ (weakly) involutive basis of monomial ideal $\mathcal{I} \triangleleft \mathcal{P} \rightsquigarrow$ $\mathcal{T}$ (weakly) involutive and $\langle\mathcal{T}\rangle_{L}=\mathcal{I}$

## Monomial Involutive Bases

## Overview

Baste periences Gröbner Bases vs.

History
Notations and
Conventions
Involutive Divisions Monomial Involutive Bases
Polynomial Involutive Bases


## Monomial Involutive Bases

## Overview

Basit mererences Gröbner Bases vs.
Involutive Bases
History
Notations and Conventions

Involutive Divisions Monomial Involutive Bases
Polynomial Involutive Bases


## Monomial Involutive Bases

## Overview

Notations and
Notations and
Involutive Divisions Monomial Involutive

$\mathbb{k}$-linear isomorphism: (Stanley decomposition $\rightsquigarrow$ Lecture 4)

$$
\mathcal{I}=\left\langle x^{2}, y^{2}\right\rangle \cong \mathbb{k}[x, y] \cdot y^{2} \oplus \mathbb{k}[x] \cdot x^{2} \oplus \mathbb{k}[x] \cdot x^{2} y
$$

## Monomial Involutive Bases

## Overview

Notations and
Conventions
Involutive Divisions Monomial Involutive

Prop: $\mathcal{T}$ weakly involutive basis $\Longrightarrow \exists \mathcal{T}^{\prime} \subseteq \mathcal{T}$ strongly involutive basis

## Proof:

$$
\begin{gathered}
\mathcal{T} \text { weakly but not strongly involutive basis } \Longrightarrow \\
\exists s \neq t \in \mathcal{T}: \mathcal{C}_{L, \mathcal{T}}(s) \cap \mathcal{C}_{L, \mathcal{T}}(t) \neq \emptyset \stackrel{\text { (i) }}{\Longrightarrow} \\
\text { (wlog) } \quad \mathcal{C}_{L, \mathcal{T}}(s) \subseteq \mathcal{C}_{L, \mathcal{T}}(t) \rightsquigarrow \text { set } \mathcal{T}^{\prime}=\mathcal{T} \backslash\{s\} \\
\stackrel{\text { (i) })}{\Longrightarrow} \mathcal{T}^{\prime} \text { still weakly involutive basis } \rightsquigarrow \text { iterate }
\end{gathered}
$$

## Monomial Involutive Bases

## Overview

Notations and

Example: minimal basis of irreducible monomial ideal of the form

$$
\mathcal{T}=\left\{x_{i_{r}}^{\ell_{i_{r}}}, \ldots, x_{i_{2}}^{\ell_{i_{2}}}, x_{i_{1}}^{\ell_{i_{1}}}\right\}
$$

with $1 \leq r \leq n$ generators sorted according to $i_{r}>\cdots>i_{2}>i_{1}$
$\mathcal{T}$ has finite Pommaret completion $\hat{\mathcal{T}}$

$i_{r}=n, i_{r-1}=n-1, \ldots, i_{1}=n-r+1 \quad$ (i.e. no "gaps") (note: always achievable by renumbering!)
completion $\hat{\mathcal{T}}$ consists then of all terms of the form

$$
x_{i_{j}}^{\ell_{i_{j}}} x_{i_{j}+1}^{k_{i_{j}+1}} \cdots x_{n}^{k_{n}} \quad \text { with } \quad \forall m>i_{j}: k_{m}<\ell_{m}
$$

(thus maximal degree of generator: $1-r+\sum_{j=1}^{r} \ell_{i_{j}}$ )
if "gap" exists at position $m \rightsquigarrow$ no bound for $k_{m}$

## Monomial Involutive Bases

## Overview

Notations and
Notations and
Conventions
Involutive Divisions Monomial Involutive Bases

Def: involutive division $L$ Noetherian
every finite $\mathcal{T} \subset \mathbb{T}(X)$ possesses involutive completion

Lemma: Janet division Noetherian
Proof: $s=\operatorname{lcm} \mathcal{T} \Longrightarrow \hat{\mathcal{T}}=\{t \in\langle\mathcal{T}\rangle: t \mid s\}$ Janet basis of $\langle\mathcal{T}\rangle$
Remark: Pommaret division not Noetherian by example above simplest counterexample: $\mathcal{T}=\{x y\} \subset \mathbb{T}(x, y)$ ideal $\langle\mathcal{T}\rangle$ contains only terms of class 1 infinite Pommaret "basis" $\left\{x y^{k} \mid k \in \mathbb{N}\right\}$

## Polynomial Involutive Bases

Overview
Basic References
Gröbner Bases vs.
Involutive Bases
History
Notations and
Conventions
Involutive Divisions Monomial Involutive Bases
Polynomial Involutive Bases

Def: $\mathcal{I} \triangleleft \mathcal{P}$ polynomial ideal, finite set $\mathcal{H} \subset \mathcal{I}$
(term order $\prec$, involutive division $L$ )

- $\mathcal{H}$ weakly involutive basis of $\mathcal{I}$
lt $\mathcal{H}$ weakly involutive basis of $\operatorname{lt} \mathcal{I}$
- $\mathcal{H}$ involutive basis of $\mathcal{I}$
lt $\mathcal{H}$ involutive basis of $\operatorname{lt} \mathcal{I}$ and all leading terms pairwise distinct

Lemma: $\mathcal{H}$ (weakly) involutive basis $\Longrightarrow \mathcal{H}$ Gröbner basis

## Polynomial Involutive Bases

Def: $\mathcal{I} \triangleleft \mathcal{P}$ polynomial ideal, finite set $\mathcal{H} \subset \mathcal{I}$
(term order $\prec$, involutive division $L$ )

- $\mathcal{H}$ weakly involutive basis of $\mathcal{I}$
lt $\mathcal{H}$ weakly involutive basis of $\operatorname{lt} \mathcal{I}$
- $\mathcal{H}$ involutive basis of $\mathcal{I}$
lt $\mathcal{H}$ involutive basis of $\operatorname{lt} \mathcal{I}$ and all leading terms pairwise distinct

Lemma: $\mathcal{H}$ (weakly) involutive basis $\Longrightarrow \mathcal{H}$ Gröbner basis
Prop: $\mathcal{H}$ weakly involutive basis $\Longrightarrow \exists \mathcal{H}^{\prime} \subseteq \mathcal{H}$ strongly involutive basis
Proof: as in monomial case
(weakly involutive bases required for generalisations like semigroup orders or polynomials over rings where stongly involutive bases generally do not exist)

## Polynomial Involutive Bases

## Overview

Basic References Gröbner Bases vs. Involutive Bases

History
Notations and
Conventions
Involutive Divisions Monomial Involutive Bases
Polynomial Involutive Bases

Def: $\mathcal{F} \subset \mathcal{P}$ finite set of polynomials
■ multiplicative variables $\rightsquigarrow \forall f \in \mathcal{F}: X_{L, \mathcal{F}, \prec}(f)=X_{L, \mathrm{lt} \mathcal{F}}(\mathrm{lt} f)$

- involutive span $\rightsquigarrow\langle\mathcal{F}\rangle_{L}=\sum_{f \in \mathcal{F}} \mathbb{k}\left[X_{L, \mathcal{F}, \prec}(f)\right] \cdot f$


## Polynomial Involutive Bases

Def: $\mathcal{F} \subset \mathcal{P}$ finite set of polynomials
■ multiplicative variables $\rightsquigarrow \forall f \in \mathcal{F}: X_{L, \mathcal{F}, \prec}(f)=X_{L, \mathrm{lt} \mathcal{F}}(\mathrm{lt} f)$

(algorithms for computing involutive normal forms or for involutive head autoreduction are obtained by trivial modifications of usual algorithms)

## Polynomial Involutive Bases

Overview
Basic References Gröbner Bases vs. Involutive Bases

History
Notations and
Conventions
Involutive Divisions Monomial Involutive Bases
Polynomial Involutive Bases

Theorem: The following are equivalent:
(i) $\mathcal{H}$ weakly involutive basis of ideal $\mathcal{I} \triangleleft \mathcal{P}$
(ii) every $f \in \mathcal{I}$ possesses involutive standard representation

$$
f=\sum_{h \in \mathcal{H}} P_{h} \cdot h \quad \text { with } \operatorname{lt}\left(P_{h} h\right) \preceq \operatorname{lt} f \wedge P_{h} \in \mathbb{k}\left[X_{L, \mathcal{H}, \prec}(h)\right]
$$

## Polynomial Involutive Bases

Theorem: The following are equivalent:
(i) $\mathcal{H}$ weakly involutive basis of ideal $\mathcal{I} \triangleleft \mathcal{P}$
(ii) every $f \in \mathcal{I}$ possesses involutive standard representation

$$
f=\sum_{h \in \mathcal{H}} P_{h} \cdot h \quad \text { with } \operatorname{lt}\left(P_{h} h\right) \preceq \operatorname{lt} f \wedge P_{h} \in \mathbb{k}\left[X_{L, \mathcal{H}, \prec}(h)\right]
$$

$\mathcal{H}$ strongly involutive basis $\Longleftrightarrow$ involutive standard representation unique

## Polynomial Involutive Bases

Theorem: The following are equivalent:
(i) $\mathcal{H}$ weakly involutive basis of ideal $\mathcal{I} \triangleleft \mathcal{P}$
(ii) every $f \in \mathcal{I}$ possesses involutive standard representation

$$
f=\sum_{h \in \mathcal{H}} P_{h} \cdot h \quad \text { with } \operatorname{lt}\left(P_{h} h\right) \preceq \operatorname{lt} f \wedge P_{h} \in \mathbb{k}\left[X_{L, \mathcal{H}, \prec}(h)\right]
$$

$\mathcal{H}$ strongly involutive basis $\Longleftrightarrow$ involutive standard representation unique

## Proof:

- " $\Rightarrow$ " compute involutive normal form
$" \Leftarrow$ " leading terms show that $\langle\mathrm{lt} \mathcal{H}\rangle_{L}=\operatorname{lt} \mathcal{I}$
- uniqueness follows from direct sum decomposition (at each step of normal form computation only one possible divisor!)


## Polynomial Involutive Bases

Theorem: The following are equivalent:
(i) $\mathcal{H}$ weakly involutive basis of ideal $\mathcal{I} \triangleleft \mathcal{P}$
(ii) every $f \in \mathcal{I}$ possesses involutive standard representation

$$
f=\sum_{h \in \mathcal{H}} P_{h} \cdot h \quad \text { with } \operatorname{lt}\left(P_{h} h\right) \preceq \operatorname{lt} f \wedge P_{h} \in \mathbb{k}\left[X_{L, \mathcal{H}, \prec}(h)\right]
$$

$\mathcal{H}$ strongly involutive basis $\Longleftrightarrow$ involutive standard representation unique

## Corollary:

- $\mathcal{H}$ weakly involutive basis $\Longrightarrow\langle\mathcal{H}\rangle_{L, \prec}=\mathcal{I}$

■ $\mathcal{H}$ strongly involutive basis $\Longrightarrow \mathcal{I}=\bigoplus_{h \in \mathcal{H}} \mathbb{k}\left[X_{L, \mathcal{H}, \prec}(h)\right] \cdot h$ ( $\mathbb{k}$-linear direct sum decomposition)

## Polynomial Involutive Bases

Theorem: The following are equivalent:
(i) $\mathcal{H}$ weakly involutive basis of ideal $\mathcal{I} \triangleleft \mathcal{P}$
(ii) every $f \in \mathcal{I}$ possesses involutive standard representation

$$
f=\sum_{h \in \mathcal{H}} P_{h} \cdot h \quad \text { with } \operatorname{lt}\left(P_{h} h\right) \preceq \operatorname{lt} f \wedge P_{h} \in \mathbb{k}\left[X_{L, \mathcal{H}, \prec}(h)\right]
$$

$\mathcal{H}$ strongly involutive basis $\Longleftrightarrow$ involutive standard representation unique

Caution: $\langle\mathcal{H}\rangle_{L, \prec}=\mathcal{I} \quad \nRightarrow \mathcal{H}$ weakly involutive basis
Example: $\mathcal{H}=\left\{y^{2}, y^{2}+x^{2}\right\}$ and $L=J$ (Janet division) $\langle\mathcal{H}\rangle_{J, \prec}=\mathcal{I}=\langle\mathcal{H}\rangle \quad$ but $x^{2} \in \operatorname{lt} \mathcal{I} \backslash\langle\operatorname{lt} \mathcal{H}\rangle_{J}$

## Polynomial Involutive Bases

Example: $\prec$ degree compatible order

- It $f_{1}=z^{2} \Longrightarrow \mathcal{F}$ Janet basis
- lt $f_{1}=x y \quad \Longrightarrow \quad f_{4}=z f_{1}+x f_{2}=z^{3}-x^{2}$
has no standard representation
$\square \mathcal{F} \cup\left\{f_{4}\right\}$ Gröbner basis, but not Janet basis
$\square \mathcal{F} \cup\left\{f_{4}, f_{5}=z f_{2}\right\}$ Janet basis

Involutive bases are generally non-reduced Gröbner bases!

## Polynomial Involutive Bases

Prop: $\quad \mathcal{F} \subset \mathcal{P}$ finite, involutively head autoreduced set $\Longrightarrow$ involutive normal form of any polynomial $g \in \mathcal{P}$ wrt $\mathcal{F}$ unique
Proof: $\mathcal{F}$ induces direct sum decomposition of $\langle\mathcal{F}\rangle_{L, \prec} \rightsquigarrow$ claim clear for $g \in\langle\mathcal{F}\rangle_{L, \triangleleft ;} \quad$ always involutive normal form $0 \rightsquigarrow$ $g_{1}, g_{2}$ two different involutive normal forms of $g \Longrightarrow$ $g_{1}-g_{2} \in\langle\mathcal{F}\rangle_{L, \prec}$ in involutive normal form

## Polynomial Involutive Bases

Overview

Prop: $\mathcal{F} \subset \mathcal{P}$ finite, involutively head autoreduced set $\Longrightarrow$ involutive normal form of any polynomial $g \in \mathcal{P}$ wrt $\mathcal{F}$ unique Proof: $\mathcal{F}$ induces direct sum decomposition of $\langle\mathcal{F}\rangle_{L, \prec} \rightsquigarrow$ claim clear for $g \in\langle\mathcal{F}\rangle_{L, \varsigma ;}$; always involutive normal form $0 \rightsquigarrow$ $g_{1}, g_{2}$ two different involutive normal forms of $g \Longrightarrow$ $g_{1}-g_{2} \in\langle\mathcal{F}\rangle_{L, \prec}$ in involutive normal form

Prop: $\quad \mathcal{F} \subset \mathcal{P}$ finite, weakly involutive set $\Longrightarrow$
involutive and usual normal form of any polynomial $g \in \mathcal{P}$ wrt $\mathcal{F}$ coincide

## Proof:

■ involutive normal form wrt weakly involutive basis unique (similar argument as above)

- usual normal form wrt Gröbner basis unique
- weakly involutive basis is Gröbner basis
- usual normal form trivially involutive normal form

