Hilbert Functions and Toric Ideals

Lorenzo Robbiano

University of Genoa
Department of Mathematics

CoCoA, COCOA and Preliminaries

The COCOA Schools

School 1 (COCOA VI): TORINO (Italy) - Sturmfels, Geramita/Robbiano - 1999
School 2 (COCOA VII): Kingston (Canada) - Recio, Peterson - 2001
School 3 (COCOA VIII): Cadiz (Spain) - Kemper, Kreuzer - 2003
School 4: Porto Conte (Italy) - Migliore, Hosten - 2005
School 5: Hagenberg (Austria) - Conca, Robbiano - 2007
School 6: Barcelona (Spain) - Rossi, Geramita - 2009

School 7: Passau (Germany) - Robbiano, Seiler - 2011
Tutors: Anna Bigatti, Alessio Del Padrone Eduardo Sáenz de Cabezón

Preliminaries

- K a computable field $\left(\mathbb{Q}, \mathbb{Q}(\sqrt{5}), \mathbb{Z}_{p}, \ldots\right)$.
- Term orderings on \mathbb{T}^{n} (first non zero element on each column of the associated matrix is positive).
- Gröbner Bases.
- Macaulay's Basis Theorem:
$\mathbb{T}^{n} \backslash \mathrm{LT}_{\sigma}(I)$ is a basis of P / I as a K-vector space.
- $\mathbb{T}^{n} \backslash \mathrm{LT}_{\sigma}(I)$ is computable using Buchberger's Algorithm.

A Simple (Standard) Grading

- Grading on $P=K[x]: \operatorname{deg}\left(x^{i}\right)=i$.
- $P_{i}=\{$ homogeneous polynomials of deg $i\}=\left\{c x^{i} \mid c \in K\right\}$.
- They are K-vector spaces of dimension 1 for all $i \geq 0$.
- We say that the Hilbert function of P, i.e. the function from \mathbb{N} to \mathbb{N} defined by

$$
i \rightarrow \operatorname{dim}_{K}\left(P_{i}\right)
$$

is constant and equal to 1 .

- The associated power series is

$$
\sum_{i=0}^{\infty}\left(\operatorname{dim}_{K}\left(P_{i}\right)\right) z^{i}=\sum_{i=0}^{\infty} z^{i}=\frac{1}{1-z}
$$

Formule di Postulazione

- How many independent linear conditions are requested for a vector to belong to a given subvector space V^{\prime} of V ?
- The answer is $\operatorname{codim}_{V}\left(V^{\prime}\right)=\operatorname{dim}_{K}(V)-\operatorname{dim}_{K}\left(V^{\prime}\right)$.
- If V is the space of forms of a given degree, a linear condition is given for instance by imposing the vanishing at a point p.
- Given a finite set \mathbb{X} of points in \mathbb{P}^{n}, the number of independent conditions imposed to the forms of degree i by the vanishing at \mathbb{X}, is exactly the codimension of $I(\mathbb{X})_{i}$ in $P_{i}=K\left[x_{0}, x_{1}, \ldots, x_{n}\right]_{i}$.
- Let $\mathbb{X}=\left\{p_{1}, p_{2}, p_{3}\right\}$ where $p_{1}=(1,0,0), p_{2}=(0,1,0)$, $p_{3}=(0,0,1)$, then $I(\mathbb{X})_{1}=(0)$, hence $\operatorname{dim}(P / I(\mathbb{X}))_{1}=3$, since the points impose independent conditions on the lines in the projective plane.
- Let $\mathbb{X}=\left\{p_{1}, p_{2}, q_{3}\right\}$ where $q_{3}=(1,1,0)$, then the linear system $a_{1}=0 ; a_{2}=0 ; a_{1}+a_{2}=0$ is equivalent to $a_{1}=0 ; a_{2}=0$. They impose only 2 independent conditions and we see that $\operatorname{dim}(P / I(\mathbb{X}))_{1}=2$.

Graded Rings and Modules

「-Graded Rings and Modules

Definition

- Let $(\Gamma,+)$ be a monoid.
- The ring R is called a 「-graded ring (or a \ulcorner-graded ring, or a ring graded over Γ) if there exists a family of additive subgroups $\left\{R_{\gamma}\right\}_{\gamma \in \Gamma}$ such that
- $R=\oplus_{\gamma \in \mathrm{T}} R_{\gamma}$,
- $\boldsymbol{R}_{\gamma} \cdot \boldsymbol{R}_{\gamma^{\prime}} \subseteq \boldsymbol{R}_{\gamma+\gamma^{\prime}}$ for all $\gamma, \gamma^{\prime} \in \Gamma$.
- The elements of \boldsymbol{R}_{γ} are called homogeneous of degree γ. For $r \in \boldsymbol{R}_{\gamma}$ we write $\operatorname{deg}(r)=\gamma$.
- If $r \in R$ and $r=\sum_{\gamma \in \Gamma} r_{\gamma}$ is the decomposition of r, where $r_{\gamma} \in R_{\gamma}$, then r_{γ} is called the homogeneous component of degree γ of r.
- If R is a Γ-graded ring and M is an R-module, then M is called a (Γ, R) -graded module if if there exists a family of additive subgroups $\left\{M_{\gamma}\right\}_{\gamma \in \Gamma}$ such that $M=\oplus_{\gamma \in \Gamma} M_{\gamma}$, and $R_{\gamma} \cdot M_{\gamma^{\prime}} \subseteq M_{\gamma+\gamma^{\prime}}$ for all $\gamma, \gamma^{\prime} \in \Gamma$.

Graded Submodules and Homogeneous Ideals

Proposition

Let R be a Γ-graded ring and M a graded R-module. Let $N \subseteq M$ be an R-submodule, and let $N_{\gamma}=N \cap M_{\gamma}$ for all $\gamma \in \Gamma$. Then the following conditions are equivalent.

- $N=\oplus_{\gamma \in \Gamma} N_{\gamma}$
- If $n \in N$ and $n=\sum_{\gamma \in \Gamma} n_{\gamma}$ is the decomposition of n into its homogeneous components, then $n_{\gamma} \in N$ for all $\gamma \in \Gamma$.
- There is a system of generators of N which consists of homogeneous elements.

Graded ideals are usually called homogeneous ideals.
Question:
Given an ideal in P, how is it possible to detect if it is homogeneous or not?

Shifting Degrees (1.7.6)

Definition

Let R be a γ-graded ring, M, N graded R-moduled, and $\varphi: M \longrightarrow N$ an R-homomorphism. φ is called a homomorphism of graded modules or a homogeneous P-linear map if $\varphi\left(M_{\gamma}\right) \subseteq N_{\gamma}$ for all γ.

Definition

Let R be a Γ-graded ring M a graded R-module, and $\gamma \in \Gamma$.

- For every $\delta \in \Gamma$ we define $M(\gamma)_{\delta}=M_{\delta+\gamma}$. We say that the Γ-graded R-module $M(\gamma)$ is obtained by shifting the degrees.
- Modules of the form $\oplus_{i \in I} R\left(\gamma_{i}\right)$, where I is a set and $\gamma_{i} \in \Gamma$ for $i \in I$ are called Γ-graded free R-modules. Here we let $\left(\oplus_{i \in I} R\left(\gamma_{i}\right)\right)_{\delta}=\oplus_{i \in I} R\left(\gamma_{i}\right)_{\delta}$ for all $\delta \in \Gamma$.

REMARK. Let R be a Γ-graded ring M a graded R-module. Given homogeneous elements $v_{1}, \ldots, v_{r} \in M$ with $\operatorname{deg}\left(v_{i}\right)=\gamma_{i}$ we consider the graded free module $F=\oplus_{i=1}^{r} R\left(\gamma_{i}\right)$. The R-linear map $\varphi: F \longrightarrow M$ defined by $e_{i} \longrightarrow v_{i}$ is a homomorphism of graded Γ-modules. We say that φ is the map induced by $\left(v_{1}, \ldots, v_{r}\right)$.

Standard Gradings

Definition

A K-algebra R is called a standard graded K-algebra if it is \mathbb{N}-graded, satisfies $R_{0}=K$ and $\operatorname{dim}_{K}\left(R_{1}\right)<\infty$, and if R is generated by the elements of R_{1} as a K-algebra.

Example

$K[x, y] /\left(x^{2}-y^{3}\right)$ is not standard graded, but for instance it is graded by

$$
\operatorname{deg}(x)=3, \operatorname{deg}(y)=2
$$

Example

Let $P=K\left[x_{1}, x_{2}\right]$ be equipped with the standard grading.
Then the K-subalgebra $S=K\left[x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right]$ of P is a finitely generated
\mathbb{N}-graded algebra, but it is not standard graded, since $S_{1}=\{0\}$.

Example

Projective schemes. Closures of affine schemes. Tangent Cones.

Gradings Defined by Matrices I

Definition

Let $m \geq 1$, and let the polynomial ring $P=K\left[x_{1}, \ldots, x_{n}\right]$ be equipped with a \mathbb{Z}^{m}-grading such that $K \subseteq P_{0}$ and x_{1}, \ldots, x_{n} are homogeneous elements.

- For $j=1, \ldots, n$, let $\left(w_{1 j}, \ldots, w_{m j}\right) \in \mathbb{Z}^{m}$ be the degree of x_{j}. The matrix $W=\left(w_{i j}\right) \in \operatorname{Mat}_{m, n}(\mathbb{Z})$ is called the degree matrix of the grading. So, the columns of the degree matrix are the degrees of x_{1}, \ldots, x_{n}. The rows are called the weight vectors of x_{1}, \ldots, x_{n}.
- Conversely, given a matrix $W=\left(W_{i j}\right) \in \operatorname{Mat}_{m, n}(\mathbb{Z})$, we can consider the \mathbb{Z}^{m}-grading on P for which $K \subseteq P_{0}$ and the indeterminates are homogeneous elements whose degrees are given by the columns of W. In this case, we say that P is graded by W.
- Let $d \in \mathbb{Z}^{m}$. The set of homogeneous polynomials of degree d is denoted by $P_{W, d}$ (or simply by P_{d}). A polynomial $f \in P_{W, d}$ is also called homogeneous of degree d, and we write $\operatorname{deg}_{w}(f)=d$.

Gradings Defined by Matrices II

If a grading on P is defined by a matrix $W \in \operatorname{Mat}_{m, n}(\mathbb{Z})$, the degree of a term $t=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ is given by $\operatorname{deg}_{W}(t)=W \cdot\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{\text {tr }}$.
So, we have

$$
\left\{d \in \mathbb{Z}^{m} \mid P_{W, d} \neq 0\right\}=\left\{\boldsymbol{W} \cdot\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{\text {tr }} \mid\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}\right\}
$$

Example

Let $P=K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ be graded by the matrix

$$
W=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

and let $f=x_{1} x_{4}-x_{2} x_{3}$. Then f is homogeneous of degree $(2,1,1)^{\text {tr }}$, because $W \cdot \log \left(x_{1} x_{4}\right)^{\mathrm{tr}}=W \cdot \log \left(x_{2} x_{3}\right)^{\mathrm{tr}}=(2,1,1)^{\mathrm{tr}}$.

Example

Let $P=K\left[x_{1}, \ldots, x_{n}\right]$. Then the standard grading on P is defined by the matrix (1 1...1).

Homogeneous Buchberger (4.5.1)

Proposition

Let M be a graded submodule of F and $\left\{g_{1}, \ldots, g_{s}\right\}$ a set of non-zero homogeneous vectors which generate M.

- Buchberger's Algorithm applied to the tuple $G=\left(g_{1}, \ldots, g_{s}\right)$ returns a homogeneous σ-Gröbner basis of M.
- The reduced σ-Gröbner basis of M consists of homogeneous vectors.

The non-Normal Quartic Curve

Example

We consider the projective curve given parametrically by $x_{0}=s^{4}, x_{1}=s^{3} t, x_{2}=s t^{3}, x_{3}=t^{4} . \ln K\left[s, t, x_{0}, x_{1}, x_{2}, x_{3}\right]$ we take the ideal $J=\left(x_{0}-s^{4}, x_{1}-s^{3} t, x_{2}-s t^{3}, x_{3}-t^{4}\right)$. By assigning arbitrary degrees to s, t we get the corresponding degrees of $x_{0}, x_{1}, x_{2}, x_{3}$. Consequently, the ideal J is W-homogeneous where

$$
W=\left(\begin{array}{llllll}
1 & 0 & 4 & 3 & 1 & 0 \\
0 & 1 & 0 & 1 & 3 & 4
\end{array}\right)
$$

Let $P=k\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ and $I=J \cap P$, the elimination ideal. Then

$$
I=\left(x_{0} x_{3}-x_{1} x_{2}, x_{0}^{2} x_{2}-x_{1}^{3}, x_{1} x_{3}^{2}-x_{2}^{3}, x_{0} x_{2}^{2}-x_{1}^{2} x_{3}\right)
$$

turns out to be W^{\prime}-homogeneous, where

$$
W^{\prime}=\left(\begin{array}{llll}
4 & 3 & 1 & 0 \\
0 & 1 & 3 & 4
\end{array}\right)
$$

Adding the two lines, we see that I is $(4,4,4,4)$ homogeneous, hence also $(1,1,1,1)$, homogeneous. Therefore we may also consider P / I as a standard graded algebra.

Monomial Ideals

A non-trivial class of graded objects is given by the following characterization of monomial ideals as the most homogeneous ideals. Recall that a square matrix is called non-singular if its determinant is different from zero.

Proposition

Let I be an ideal of P. Then the following conditions are equivalent.

- The ideal I is monomial.
- There is a non-singular matrix $W \in \operatorname{Mat}_{n}(\mathbb{Z})$ such that I is homogeneous with respect to the grading on P given by W.
- For every $m \geq 1$ and every matrix $W \in \operatorname{Mat}_{m, n}(\mathbb{Z})$, the ideal I is homogeneous with respect to the grading on P given by W.

Positivity of Matrices

Matrices of Positive Type

Definition

Let $m \geq 1$, let P be graded by a matrix W of rank m in $\operatorname{Mat}_{m, n}(\mathbb{Z})$, and let w_{1}, \ldots, w_{m} be the rows of W.

- The grading on P given by W is called of non-negative type if there exist $a_{1}, \ldots, a_{m} \in \mathbb{Z}$ such that the entries of $v=a_{1} w_{1}+\cdots+a_{m} w_{m}$ corresponding to the non-zero columns of W are positive. In this case, we shall also say that W is a matrix of non-negative type.
- We say that the grading on P given by W is of positive type if there exist $a_{1}, \ldots, a_{m} \in \mathbb{Z}$ such that all entries of $a_{1} w_{1}+\cdots+a_{m} w_{m}$ are positive. In this case, we shall also say that W is a matrix of positive type.

Nakayama's Lemma

Proposition

Let P be graded by $W \in \operatorname{Mat}_{m, n}(\mathbb{Z})$, a matrix of positive type, and let $M \neq 0$ be a finitely generated graded P-module.

- A set of homogeneous elements m_{1}, \ldots, m_{s} generates the P-module M if and only if their residue classes $\bar{m}_{1}, \ldots, \bar{m}_{s}$ generate the K-vector space $M /\left(x_{1}, \ldots, x_{n}\right) M$.
- Every homogeneous system of generators of M contains a minimal one.
- All irredundant systems of homogeneous generators of M are minimal.

This proposition is not true in general if W is of non-negative type.

Example

Let $P=K[x, y]$ be graded by the matrix $W=(01)$, and let
$I=(x y, y-x y)$. Then W is of non-negative type, I is a homogeneous ideal, and $\{x y, y-x y\}$ is an irredundant homogeneous system of generators of I. However, since $I=(y)$, this system of generators is not minimal. Notice that we have $P_{+}=(y)$ and $P_{0} \cong P / P_{+} \cong K[x]$.

A Fundamental Theorem (4.1.19)

Theorem

Let P be graded by a matrix $W \in \operatorname{Mat}_{m, n}(\mathbb{Z})$ of positive type, and let M be a finitely generated graded P-module.

- We have $P_{0}=K$.
- For all $d \in \mathbb{Z}^{m}$, we have $\operatorname{dim}_{K}\left(M_{d}\right)<\infty$.

Proof.

First we show $a)$. Let $V=\left(a_{1} a_{2} \cdots a_{m}\right) \in \operatorname{Mat}_{1, m}(\mathbb{Z})$ be such that $V \cdot W$ has positive entries only. We see that $P_{W, 0} \subseteq P_{V \cdot W, 0}$. Now it suffices to note that every term $t=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \neq 1$ has positive degree $\operatorname{deg}_{v \cdot w}(t)=V \cdot W \cdot\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{\text {tr }}>0$. In order to prove b), we choose a finite homogeneous system of generators of M and consider the corresponding representation $M \cong F / N$ where N is a graded submodule of F. Clearly, it suffices to prove the claim for F. We do this by showing it is true for each $P\left(-\delta_{i}\right)$. Since $P\left(-\delta_{i}\right)_{d}=P_{d-\delta_{i}}$, it suffices to prove that $\operatorname{dim}_{K}\left(P_{d}\right)<\infty$ for all $d \in \mathbb{Z}^{m}$. Since W is of positive type, there exists a matrix $V \in \operatorname{Mat}_{1, m}(\mathbb{Z})$ such that $V \cdot W$ has all entries positive. We have $P_{W, d} \subseteq P_{V \cdot W, V \cdot d}$. Hence we only have to show that the K-vector spaces $P_{V \cdot W, i}$ are finite dimensional for all $i \in \mathbb{Z}$. Their vector space bases $\left\{x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mid V \cdot W \cdot\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{\text {tr }}=i\right\}$ are finite, because $V \cdot W$ has positive entries only.

A Nice Property

Proposition

Let P be graded by a matrix $W \in \operatorname{Mat}_{m, n}(\mathbb{Z})$ of rank m, and let \mathbb{T}^{n} be the set of terms in P. The following conditions are equivalent.

- The first non-zero element in each non-zero column of W is positive.
- For $i=1, \ldots, n$, we have $\operatorname{deg}_{W}\left(x_{i}\right) \geq_{\text {Lex }} 0$.
- The restriction of Lex to the monoid $\Gamma=\left\{d \in \mathbb{Z}^{m} \mid P_{W, d} \neq 0\right\}$ is a well-ordering.
- The restriction of Lex to the monoid $\Gamma=\left\{d \in \mathbb{Z}^{m} \mid P_{W, d} \neq 0\right\}$ is a term ordering.
- There exists a term ordering τ on \mathbb{T}^{n} which is compatible with deg_{w}.

Positive Matrices

Definition

Let $W \in \operatorname{Mat}_{m, n}(\mathbb{Z})$ be a matrix of rank m.

- The grading on P defined by W is called non-negative if the first non-zero element in each non-zero column of W is positive. In this case, we shall also say that W is a non-negative matrix.
- The grading on P defined by W is called positive if no column of W is zero and the first non-zero element in each column is positive. In this case, we shall also say that W is a positive matrix.

REMARK. The above proposition implies that, if W defines a non-negative grading, there exists a term ordering on \mathbb{T}^{n} which is compatible with deg_{w}. If W is positive, then we have $\operatorname{deg}_{W}\left(x_{i}\right)>_{\text {Lex }} 0$ for $i=1, \ldots, n$, and hence $P_{+}=\bigoplus_{d>_{\text {Lex }} 0} P_{W, d}=\left(x_{1}, \ldots, x_{n}\right)$, and $P_{0} \cong P / P_{+} \cong K$.

Proposition

If the grading defined by W is positive, then it is of positive type. In particular, the claims of the Fundamental Theorem are valid under the assumption that W is positive.

Definition of Hilbert Function

Definition

Let M be a finitely generated graded P-module. Let $W \in \operatorname{Mat}_{m, n}(\mathbb{Z})$ be a matrix of rank m of positive type (in particular, positive).
Then there is a well-defined map

$$
\begin{aligned}
\mathrm{HF}_{M}: \mathbb{Z}^{m} & \longrightarrow \mathbb{Z} \\
i & \longmapsto \operatorname{dim}_{K}\left(M_{i}\right)
\end{aligned}
$$

This map is called the Hilbert function of M.

Integer Functions

Integer Functions

Definition

A map $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ is called an integer function. Given an integer function $f: \mathbb{Z} \longrightarrow \mathbb{Z}$, we define the following operators.

- The integer function $\Delta f: \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $\Delta f(i)=f(i)-f(i-1)$ for $i \in \mathbb{Z}$ is called the (first) difference function of f.
- Let $\Delta^{0} f=f$. For $r \geq 1$, we inductively define an integer function $\Delta^{r} f: \mathbb{Z} \longrightarrow \mathbb{Z}$ by $\Delta^{r} f=\Delta\left(\Delta^{r-1} f\right)$ and call it the $\mathrm{r}^{\text {th }}$ difference function of f.
- Given a number $q \in \mathbb{Z}$, we define an integer function $\Delta_{q} f: \mathbb{Z} \longrightarrow \mathbb{Z}$ by $\Delta_{q} f(i)=f(i)-f(i-q)$ for $i \in \mathbb{Z}$ and call it the q-difference function of f.
- An integer function $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ is called an integer Laurent function if there exists a number $i_{0} \in \mathbb{Z}$ such that $f(i)=0$ for all $i<i_{0}$.
- Given an integer Laurent function $f: \mathbb{Z} \longrightarrow \mathbb{Z}$, we define another integer Laurent function $\Sigma f: \mathbb{Z} \longrightarrow \mathbb{Z}$ by $\Sigma f(i)=\sum_{j \leq i} f(j)$ and call it the summation function of f.

Integer Valued Polynomials

Proposition

Let $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ be an integer Laurent function. Then we have $\Sigma \Delta f=\Delta \Sigma f=f$.

Definition

A polynomial $p \in \mathbb{Q}[t]$ is called an integer valued polynomial if we have $p(i) \in \mathbb{Z}$ for all $i \in \mathbb{Z}$. The set of all integer valued polynomials will be denoted by $\mathbb{I P}$. Furthermore, for every $r \geq 0$, we let $\mathbb{I} \mathbb{P}_{\leq r}$ be the set of all integer valued polynomials of degree $\leq r$.

Example

The polynomial $\binom{t}{2}$ is an integer valued polynomial.

Basic Properties of Integer Valued Polynomials

Proposition

Let $a \in \mathbb{Z}, r \in \mathbb{N}$, and let $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ be a sequence of integers.

- For an integer valued polynomial p, we have $\operatorname{deg}(p)=r$ if and only if $\Delta^{r} p(t) \in \mathbb{Z} \backslash\{0\}$. If this holds true, we have $\Delta^{r} p(t)=r!\operatorname{LC}_{\text {Deg }}(p) \in \mathbb{Z}$.
- Let p be an integer valued polynomial of degree r. Then the polynomial $q=p-r!\mathrm{LC}_{\mathrm{Deg}}(p)\binom{t+a}{r}$ is an integer valued polynomial of degree $<r$.
- For every $r \geq 0$, the set of polynomials $\left\{\left.\binom{t+a_{i}}{i} \right\rvert\, 0 \leq i \leq r\right\}$ is a \mathbb{Z}-basis of $\mathbb{I P}_{\leq r}$. Consequently, the set $\left\{\left.\binom{t+a_{i}}{i} \right\rvert\, i \in \mathbb{N}\right\}$ is a \mathbb{Z}-basis of $\mathbb{I P}$.
- For a map $f: \mathbb{Z} \longrightarrow \mathbb{Z}$, the following conditions are equivalent.
- There exists an integer valued polynomial $p \in \mathbb{I P}$ with $f(i)=p(i)$ for all $i \in \mathbb{Z}$.
- There exist a number $i_{0} \in \mathbb{Z}$ and an integer valued polynomial $q \in \mathbb{I P}$ such that $f\left(i_{0}\right) \in \mathbb{Z}$ and $\Delta f(i)=q(i)$ for all $i \in \mathbb{Z}$.

Integer Functions of Polynomial Type

Definition

Let $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ be an integer function.

- The map $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ is called an integer function of polynomial type if there exists a number $i_{0} \in \mathbb{Z}$ and an integer valued polynomial $p \in \mathbb{P}$ such that $f(i)=p(i)$ for all $i \geq i_{0}$. This polynomial is uniquely determined and denoted by HP_{f}.
- For an integer function f of polynomial type, the number

$$
\operatorname{ri}(f)=\min \left\{i \in \mathbb{Z} \mid f(j)=\mathrm{HP}_{f}(j) \text { for all } j \geq i\right\}
$$

is called the regularity index of f. Whenever $f(i)=\operatorname{HP}_{f}(i)$ for all $i \in \mathbb{Z}$, we let $\mathrm{ri}(f)=-\infty$.

Integer Functions of Polynomial Type II

We introduce a fundamental family of integer functions of polynomial type.

Example

For every $i \in \mathbb{N}$, we define a map $\operatorname{bin}_{i}: \mathbb{Z} \longrightarrow \mathbb{Z}$ by $\operatorname{bin}_{i}(j)=\binom{j}{i}$ for $j \geq i$ and by $\operatorname{bin}_{i}(j)=0$ for $j<i$. The map bin_{i} is an integer Laurent function of polynomial type. It satisfies $\mathrm{HP}_{\mathrm{bin}_{i}}(t)=\binom{t}{i}$ and $\mathrm{ri}\left(\mathrm{bin}_{i}\right)=0$. Moreover, if $i>0$, then $\Delta \operatorname{bin}_{i}(j)=\operatorname{bin}_{i-1}(j-1)$ for all $j \in \mathbb{Z}$.
There is no integer valued polynomial $p \in \mathbb{I P}$ such that $\operatorname{bin}_{i}(j)=p(j)$ for all j.

Corollary

Let $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ be an integer Laurent function of polynomial type.

- We have $\operatorname{HP}_{\Delta f}(t)=\Delta \mathrm{HP}_{f}(t)$. In particular, if $\operatorname{deg}\left(\mathrm{HP}_{f}\right)>0$, then we have $\operatorname{deg}\left(\mathrm{HP}_{\Delta f}\right)=\operatorname{deg}\left(\mathrm{HP}_{f}\right)-1$.
- For every $q \geq 1$, we have $\mathrm{ri}\left(\Delta_{q} f\right)=\mathrm{ri}(f)+q$.
- If we write $\operatorname{HP}_{f}(t)=c_{1}\binom{t-1}{0}+\cdots+c_{m}\binom{t-1}{m-1}$ and choose $i_{0} \geq \mathrm{ri}(f)$, then we have $\operatorname{HP}_{\Sigma f}(t)=c_{1}\binom{t}{1}+\cdots+c_{m}\binom{t}{m}+f\left(i_{0}\right)$.
- We have $\mathrm{ri}(\Sigma f)=\operatorname{ri}(f)-1$.

Hilbert Functions

Hilbert Functions in the Standard Case

Definition

Let M be a finitely generated graded P-module.
Then there is a well-defined map

This map is called the Hilbert function of M (with respect to the standard grading).

An isomorphism of vector spaces $\varphi: P_{1} \longrightarrow P_{1}$ extends uniquely to an isomorphism $\Phi: P \longrightarrow P$ of graded K-algebras. Such a map Φ is called a homogeneous linear change of coordinates. We express this fact by saying that the Hilbert function of M is invariant under a homogeneous linear change of coordinates.

Proposition

For every $i \in \mathbb{N}$, we have $\mathrm{HF}_{P}(i)=\binom{i+n-1}{n-1}$.

Hilbert Functions and Exact Sequences

Proposition

Let M, M^{\prime}, and $M^{\prime \prime}$ be three finitely generated graded P-modules.

- Let $j \in \mathbb{Z}$. Then the Hilbert function of the module $M(j)$ obtained by shifting degrees by j is given by $\mathrm{HF}_{M(j)}(i)=\mathrm{HF}_{M}(i+j)$ for all $i \in \mathbb{Z}$.
- Given a homogeneous exact sequence of graded P-modules

we have $\operatorname{HF}_{M}(i)=\operatorname{HF}_{M^{\prime}}(i)+\operatorname{HF}_{M^{\prime \prime}}(i)$ for all $i \in \mathbb{Z}$.

Proposition

Let I be a homogeneous ideal in P, and let $f \in P$ be a non-zero homogeneous polynomial of degree d. Then we have a homogeneous exact sequence

$$
0 \longrightarrow\left[P /\left(I:_{p}(f)\right)\right](-d) \xrightarrow{\cdot f} P / I \longrightarrow P /(I+(f)) \longrightarrow 0
$$

and therefore $\operatorname{HF}_{P /(I+(f))}(i)=\operatorname{HF}_{P / / I}(i)-\operatorname{HF}_{P /\left(l_{p}(f)\right)}(i-d)$ for all $i \in \mathbb{Z}$. In particular, f is a non-zerodivisor for P / I if and only if we have $\mathrm{HF}_{P /(1+(f))}(i)=\Delta_{d} \mathrm{HF}_{P / l}(i)$ for all $i \in \mathbb{Z}$.

Hilbert Functions and Leading Terms

Theorem

Let I be a homogeneous ideal of P and let σ be a term ordering on \mathbb{T}^{n}. Then we have $\mathrm{HF}_{l}(i)=\mathrm{HF}_{\mathrm{LT}_{\sigma}(I)}(i)$ for all $i \in \mathbb{Z}$.

Corollary

Let M be a finitely generated graded P-module, and let $K \subseteq L$ be a field extension. Then we have $\mathrm{HF}_{M}(i)=\mathrm{HF}_{M \otimes_{K} L}(i)$ for all $i \in \mathbb{Z}$.

Theorem

Let M be a finitely generated graded P-module. Then its Hilbert function $\mathrm{HF}_{M}: \mathbb{Z} \longrightarrow \mathbb{Z}$ is an integer function of polynomial type.

Power Series

Rational Power Series

Definition

Let R be an integral domain and K its field of fractions.

- We denote the ring of power series over R by $R[[z]]$.
- The subring $R[[z]] \cap K(z)$ of the field $K[[z]]_{z}$ is called the ring of rational power series over R.
- The localization $R[[z]]_{z}$ of the power series ring $R[[z]]$ in the element z is called the ring of Laurent series in one indeterminate z over R.
- Finally, the ring $R[z]_{z}$ is called the ring of Laurent polynomials over R. It is sometimes also denoted by $R\left[z, z^{-1}\right]$.

Characterization of Rational Power Series (5.2.6)

Theorem

Let $c_{i} \in \mathbb{Z}$ for $i \geq 0$, and let $f=\sum_{i \geq 0} c_{i} z^{i} \in \mathbb{Z}[[z]]$. Then the following conditions are equivalent.

- The power series f is rational.
- There exist a polynomial $g \in \mathbb{Z}[z]$ and integers $a_{1}, \ldots, a_{m} \in \mathbb{Z}$ such that $f=g /\left(1-a_{1} z-a_{2} z^{2}-\cdots-a_{m} z^{m}\right)$.
- There are natural numbers $m, n \in \mathbb{N}$ and integers $a_{1}, \ldots, a_{m} \in \mathbb{Z}$ such that $c_{i}=a_{1} c_{i-1}+a_{2} c_{i-2}+\cdots+a_{m} c_{i-m}$ for all $i>n$.

Example

Let c_{0}, c_{1}, \ldots be the Fibonacci sequence, i.e. let $c_{0}=c_{1}=1$ and $c_{i}=c_{i-1}+c_{i-2}$ for $i \geq 2$. Therefore the Fibonacci numbers are the coefficients of the power series $1 /\left(1-z-z^{2}\right)=c_{0}+c_{1} z+c_{2} z^{2}+\cdots$. The associated integer Laurent function $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $f(i)=c_{i}$ for $i \in \mathbb{Z}$ is not an integer function of polynomial type, because if a polynomial $p \in \mathbb{P}$ satisfies $p(i)=c_{i}$ for large enough i, then $p(i)=p(i-1)+p(i-2)$ implies $\Delta p(i)=p(i-2)$.

Properties of Power Series

Definition

Let $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ be a non-zero integer Laurent function. The number $\min \{i \in \mathbb{Z} \mid f(i) \neq 0\}$ will be denoted by α_{f} or simply α. Moreover, the associated Laurent series $\sum_{i \geq \alpha} f(i) z^{i}$ will be denoted by $\mathrm{HS}_{f}(z)$.

Proposition

Let $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ be a non-zero integer Laurent function.

- For every $q \geq 1$, we have $\mathrm{HS}_{\Delta_{q} f}(z)=\left(1-z^{q}\right) \cdot \mathrm{HS}_{f}(z)$. In particular, we have $\mathrm{HS}_{\Delta f}(z)=(1-z) \cdot \mathrm{HS}_{f}(z)$.
- We have $\mathrm{HS}_{\Sigma f}(z)=\mathrm{HS}_{f}(z) /(1-z)$.

Lemma

For all $n \geq 1$, we have $(1-z)^{-n}=\sum_{i \geq 0}\binom{i+n-1}{n-1} z^{i}$.

Laurent Series and Integer Functions (5.2.10)

Theorem

For a non-zero integer Laurent function $f: \mathbb{Z} \longrightarrow \mathbb{Z}$, TFAE

- The integer function f is of polynomial type.
- The associated Laurent series of f is of the form $\mathrm{HS}_{f}(z)=\frac{p(z)}{(1-z)^{m}}$ where $m \in \mathbb{N}$ and $p(z) \in \mathbb{Z}\left[z, z^{-1}\right]$ is a Laurent polynomial over \mathbb{Z}.
If these conditions are satisfied, we have $m=\operatorname{deg}\left(\operatorname{HP}_{f}(t)\right)+1$.

Corollary

Let $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ be a non-zero integer Laurent function of polynomial type, and let $\alpha=\min \{i \in \mathbb{Z} \mid f(i) \neq 0\}$.

- The associated Laurent series of f has the form $\mathrm{HS}_{f}(z)=p(z) /(1-z)^{m}$, where $m \in \mathbb{N}$ and $p(z) \in \mathbb{Z}\left[z, z^{-1}\right]$ is a Laurent polynomial of the form $p(z)=\sum_{i=\alpha}^{\beta} c_{i} z^{i}$ with $\beta \geq \alpha$, $c_{\alpha}, \ldots, c_{\beta} \in \mathbb{Z}, c_{\alpha} \neq 0$, and $c_{\beta} \neq 0$.
- If $m>0$, then we have $\mathrm{HP}_{f}(t)=\sum_{i=\alpha}^{\beta} c_{i}\binom{t-i+m-1}{m-1}$, and if $m=0$, then we have $\mathrm{HP}_{f}(t)=0$.
- We have $\mathrm{ri}(f)=\beta-m+1$.

The Standard Case

Proposition

The Hilbert series of P is given by $\mathrm{HS}_{P}(z)=\frac{1}{(1-z)^{n}}$.

Proposition

(Basic Properties of Hilbert Series)

Let $M, M^{\prime}, M^{\prime \prime}$ be three finitely generated graded P-modules.

- For all $j \in \mathbb{Z}$, we have $\mathrm{HS}_{M(j)}(z)=z^{-j} \mathrm{HS}_{M}(z)$.
- Given a homogeneous exact sequence $0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0$, we have $\mathrm{HS}_{M}(z)=\mathrm{HS}_{M^{\prime}}(z)+\mathrm{HS}_{M^{\prime \prime}}(z)$.
- Let $M=M_{1} \oplus \cdots \oplus M_{r}$ with finitely generated graded P-modules M_{1}, \ldots, M_{r}. Then we have $\mathrm{HS}_{M}(z)=\mathrm{HS}_{M_{1}}(z)+\cdots+\mathrm{HS}_{M_{r}}(z)$.
- Let $\delta_{1}, \ldots, \delta_{r} \in \mathbb{Z}$. Then the Hilbert series of the graded free module $F=\bigoplus_{j=1}^{r} P\left(-\delta_{i}\right)$ is $\mathrm{HS}_{F}(z)=\left(\sum_{j=1}^{r} z^{\delta_{j}}\right) /(1-z)^{n}$.

Macaulay's Theorem for Hilbert Series

Theorem

Let $\delta_{1}, \ldots, \delta_{r} \in \mathbb{Z}$, let M be a graded submodule of the graded free P-module $\bigoplus_{i=1}^{r} P\left(-\delta_{i}\right)$, and let σ be a module term ordering on $\mathbb{T}^{n}\left\langle e_{1}, \ldots, e_{r}\right\rangle$. Then we have $\mathrm{HS}_{M}(z)=\mathrm{HS}_{\mathrm{LT}_{\sigma}(M)}(z)$.

Corollary

Let M be a graded P-module, and let $K \subseteq L$ be a field extension. Then we have $\mathrm{HS}_{M \otimes K} L(z)=\mathrm{HS}_{M}(z)$.

Theorem

Let M be a non-zero finitely generated graded P-module, and let $\alpha(M)=\min \left\{i \in \mathbb{Z} \mid M_{i} \neq 0\right\}$. Then the Hilbert series of M has the form

$$
\mathrm{HS}_{M}(z)=\frac{z^{\alpha(M)} \mathrm{HN}_{M}(z)}{(1-z)^{n}}
$$

where $\mathrm{HN}_{M}(z) \in \mathbb{Z}[z]$ and $\mathrm{HN}_{M}(0)=\mathrm{HF}_{M}(\alpha(M))>0$. Note that n is the number of indeterminates of P.

Dimension and Multiplicity

Definition

In the Hilbert series $\mathrm{HS}_{M}(z)=\frac{z^{\alpha} H N_{M}(z)}{(1-z)^{n}}$, we simplify the fraction by cancelling $1-z$ as often as possible. We obtain a representation $\mathrm{HS}_{M}(z)=\frac{z^{\alpha} h h_{M}(z)}{(1-z)^{d}}$, where $0 \leq d \leq n$ and where $\mathrm{hn}_{M}(z) \in \mathbb{Z}[z]$ satisfies $\mathrm{hn}_{M}(0)=\mathrm{HF}_{M}(\alpha)>0$.

- The polynomial $\mathrm{hn}_{M}(z) \in \mathbb{Z}[z]$ is called the simplified Hilbert numerator of M.
- Let $\delta=\operatorname{deg}\left(\mathrm{hn}_{M}(z)\right)$, and let $\mathrm{hn}_{M}(z)=h_{0}+h_{1} z+\cdots+h_{\delta} z^{\delta}$. Then the tuple $\operatorname{hv}(M)=\left(h_{0}, h_{1}, \ldots, h_{\delta}\right) \in \mathbb{Z}^{\delta+1}$ is called the h-vector of M.
- The number $\operatorname{dim}(M)=d$ is called the dimension of M.
- The number $\operatorname{mult}(M)=\mathrm{hn}_{M}(1)$ is called the multiplicity of M.

The Hilbert Polynomial

Definition

Let t be an indeterminate over \mathbb{Q}.

- The integer valued polynomial associated to HF_{M} is called the Hilbert polynomial of M and is denoted by $\mathrm{HP}_{M}(t)$. Therefore we have $\mathrm{HP}_{M}(t) \in \mathbb{I P} \subset \mathbb{Q}[t]$ and $\mathrm{HF}_{M}(i)=\mathrm{HP}_{M}(i)$ for $i \gg 0$.
- The regularity index of HF_{M} is called the regularity index of M and is denoted by $\mathrm{ri}(M)$.

Proposition

For a non-zero finitely generated graded P-module M, we have $\operatorname{mult}(M)>0$.

Multivariate Power Series

σ-Laurent Series

Definition

The set $R^{\mathbb{Z}^{m}}$ is an R-module with respect to componentwise addition and scalar multiplication. We denote an element $\left(a_{i}\right)_{i \in \mathbb{Z}^{m}}$ by $\sum_{i \in \mathbb{Z}^{m}} a_{i} \mathbf{z}^{i}$ and the module by $R\left[\left[\mathbf{z}, \mathbf{z}^{-1}\right]\right]$. We call it the module of extended power series.

The module of extended power series is not a ring with respect to the usual multiplication. For instance, the constant coefficient of the product $\left(1+z_{1}+z_{1}^{2}+\cdots\right) \cdot\left(1+z_{1}^{-1}+z_{1}^{-2}+\cdots\right)$ would be an infinite sum. But it is important to be able to multiply Hilbert series.

Definition

Let σ be a monoid ordering on \mathbb{Z}^{m}.

- An extended power series $f=\sum_{i \in \mathbb{Z}^{m}} a_{i} \mathbf{z}^{i}$ is called a σ-Laurent series if its "support" is well-ordered by σ.
- The set of all σ-Laurent series is called the σ-Laurent series ring over R and will be denoted by $R\left[\left[\mathbf{z}, \mathbf{z}^{-1}\right]\right]_{\sigma}$.

σ-Laurent Series and Positive Matrices

Proposition

Let σ be a monoid ordering on \mathbb{Z}^{m}. Then the set $R\left[\left[\mathbf{z}, \mathbf{z}^{-1}\right]\right]_{\sigma}$ of all σ-Laurent series is a ring with respect to componentwise addition and with respect to the multiplication given by the formula

$$
\left(\sum_{i \in \mathbb{Z}^{m}} a_{i} \mathbf{z}^{i}\right) \cdot\left(\sum_{j \in \mathbb{Z}^{m}} b_{j} \mathbf{z}^{j}\right)=\sum_{k \in \mathbb{Z}^{m}}\left(\sum_{i+j=k} a_{i} b_{j}\right) \mathbf{z}^{k}
$$

Corollary

Assume that $W \in \operatorname{Mat}_{m, n}(\mathbb{Z})$ is positive, let M be a finitely generated graded P-module, and let Σ be the set $\left\{d \in \mathbb{Z}^{m} \mid M_{W, d} \neq 0\right\}$.
(a) The relation Lex|ธ is a well-ordering.
(b) The series $\operatorname{HS}_{M}(\mathbf{z})$ is an element of the ring $\mathbb{Z}\left[\left[\mathbf{z}, \mathbf{z}^{-1}\right]\right]_{\text {Lex }}$.

Multigraded Hilbert Functions

Definition

Let $W \in \operatorname{Mat}_{m, n}(\mathbb{Z})$ be positive and let M be a finitely generated W-graded P-module. Then the map $\mathrm{HF}_{M}: \mathbb{Z}^{m} \longrightarrow \mathbb{Z}$ given by the rule $\left(i_{1}, \ldots, i_{m}\right) \mapsto \operatorname{dim}_{K}\left(M_{\left(i_{1}, \ldots, i_{m}\right)}\right)$ for all $\left(i_{1}, \ldots, i_{m}\right) \in \mathbb{Z}^{m}$ is called the multigraded Hilbert function of M.

Proposition

Let $W=\left(w_{i j}\right) \in \operatorname{Mat}_{m, n}(\mathbb{Z})$ and $\left(i_{1}, \ldots, i_{m}\right) \in \mathbb{Z}^{m}$. Then the value $\mathrm{HF}_{P}\left(i_{1}, \ldots, i_{m}\right)$ of the multigraded Hilbert function of P is the number of solutions $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ of the system of Diophantine equations

$$
\left\{\begin{array}{ccc}
w_{11} y_{1}+\cdots+w_{1 n} y_{n} & = & i_{1} \\
w_{21} y_{1}+\cdots+w_{2 n} y_{n} & = & i_{2} \\
\vdots & \vdots & \vdots \\
w_{m 1} y_{1}+\cdots+w_{m n} y_{n} & = & i_{m}
\end{array}\right.
$$

in the indeterminates y_{1}, \ldots, y_{n}.

Hilbert Functions of Polynomial Rings

Example

Let $P=K\left[x_{1}, x_{2}\right]$ be graded by $W=\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)$. We get the equations $y_{2}=i_{1}$, $y_{1}-y_{2}=i_{2}$ to be solved for $y_{1} \geq 0$ and $y_{2} \geq 0$. We find solutions only if $i_{1} \geq 0$ and $i_{1}+i_{2} \geq 0$. Then we have $P_{\left(i_{1}, i_{2}\right)} \neq 0$ if and only if $i_{1} \geq 0$ and $i_{2} \geq-i_{1}$. In these degrees we have $\operatorname{dim}_{K}\left(P_{\left(i_{1}, i_{2}\right)}\right)=1$. Therefore we obtain

$$
\operatorname{HS}_{P}\left(z_{1}, z_{2}\right)=\sum_{i_{1} \geq 0} \sum_{i_{2} \geq-i_{1}} z_{1}^{i_{1}} z_{2}^{i_{2}}=\left(\sum_{i_{1} \geq 0} z_{1}^{i_{1}} z_{2}^{-i_{1}}\right) /\left(1-z_{2}\right)=\frac{1}{\left(1-z_{1} z_{2}^{-1}\right)\left(1-z_{2}\right)}
$$

Theorem

Let $P=K\left[x_{1}, \ldots, x_{n}\right]$ be graded by a matrix $W=\left(w_{i j}\right) \in \operatorname{Mat}_{m, n}(\mathbb{Z})$ of positive type. Then we have

$$
\operatorname{HS}_{P, W}\left(z_{1}, \ldots, z_{m}\right)=\frac{1}{\prod_{j=1}^{n}\left(1-z_{1}^{w_{1 j}} \cdots z_{m}^{w_{m j}}\right)}
$$

An Example

Example

Let $P=\mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ be graded by $W=\left(\begin{array}{lll}1 & 2 & 4 \\ 0 & 0 & 5\end{array}\right)$, and let $I=\left(x_{1}^{2}, x_{2}, x_{3}^{3}\right)$. We want to compute the multivariate Hilbert series of P / I.
In the first step, we form $J=\left(x_{1}^{2}, x_{2}\right)$.
In the second step, we compute the Hilbert numerators of P / J and of $P /\left(J:_{p}\left(x_{3}^{3}\right)\right)$ recursively.
We have $J_{:_{p}}\left(x_{3}^{3}\right)=\left(x_{1}^{2}, x_{2}\right)=J$. When we compute $\operatorname{HN}_{P / J}\left(z_{1}, z_{2}\right)$, we form $J^{\prime}=\left(x_{1}^{2}\right)$ and $J^{\prime \prime}=J_{p_{p}}\left(x_{2}\right)=\left(x_{1}^{2}\right)$ and apply the algorithm recursively to them. Since $J^{\prime}=J^{\prime \prime}=\left(x_{1}^{2}\right)$ is a principal ideal, the algorithm yields $\operatorname{HN}_{P / J^{\prime}}\left(z_{1}, z_{2}\right)=\operatorname{HN}_{P / J^{\prime \prime}}\left(z_{1}, z_{2}\right)=1-z_{1}^{2}$.
Then we find $\operatorname{HN}_{P / J}\left(z_{1}, z_{2}\right)=\operatorname{HN}_{P / J^{\prime}}\left(z_{1}, z_{2}\right)-z_{1}^{2} \operatorname{HN}_{P / J^{\prime \prime}}\left(z_{1}, z_{2}\right)=\left(1-z_{1}^{2}\right)^{2}$
in step 3). Thus the original algorithm computes $\operatorname{HN}_{P / /}\left(z_{1}, z_{2}\right)=$ $\mathrm{HN}_{P / J}\left(z_{1}, z_{2}\right)-z_{1}^{9} z_{2}^{15} \mathrm{HN}{\mathrm{P} /\left(\mathrm{J}_{\mathrm{p}}\left(x_{3}^{3}\right)\right)}\left(z_{1}, z_{2}\right)=\left(1-z_{1}^{2}\right)^{2}\left(1-z_{1}^{9} z_{2}^{15}\right)$.
Altogether, we have

$$
\mathrm{HS}_{P / I}\left(z_{1}, z_{2}\right)=\frac{\left(1-z_{1}^{2}\right)^{2}\left(1-z_{1}^{9} z_{2}^{15}\right)}{\left(1-z_{1}\right)\left(1-z_{1}^{2}\right)\left(1-z_{1}^{3} z_{2}^{5}\right)\left(1-z_{1}^{4} z_{2}^{8}\right)}=\frac{\left(1+z_{1}\right)\left(1+z_{1}^{3} z_{2}^{5}+z_{1}^{6} z_{2}^{10}\right)}{1-z_{1}^{4} z_{2}^{8}}
$$

Another Example

Example

Let $P=\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]$ be graded by $W=\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 0 & -1\end{array}\right)$, and let
$I=\left(x_{1}^{3} x_{2}, x_{2} x_{3}^{2}, x_{2}^{2} x_{3}, x_{3}^{4}\right)$. We want to compute the multivariate Hilbert series of P / I.
We form the ideals $J_{1}=\left(x_{1}^{3} x_{2}, x_{2} x_{3}^{2}, x_{2}^{2} x_{3}\right)$ and $J_{2}=J_{1}:_{p}\left(x_{3}^{4}\right)=\left(x_{2}\right)$ and apply the algorithm recursively to them. For J_{2}, it yields $\mathrm{HN}_{P / J_{2}}\left(z_{1}, z_{2}\right)=1-z_{1}$ in step 1). For J_{1}, we form $J_{11}=\left(x_{1}^{3} x_{2}, x_{2} x_{3}^{2}\right)$ and $J_{12}=J_{1}:_{p}\left(x_{2}^{2} x_{3}\right)=\left(x_{1}^{3}, x_{3}\right)$ and apply the algorithm recursively to these \ldots
... bla bla bla...
... Therefore the multivariate Hilbert series of P / I is

$$
\mathrm{HS}_{P / /}\left(z_{1}, z_{2}\right)=\frac{-z_{1}^{5} z_{2}^{-1}+z_{1}^{3} z_{2}^{-3}+z_{1}^{2} z_{2}^{-2}+z_{1}^{3}+z_{1}^{2} z_{2}^{-1}+z_{1}^{2}+z_{1} z_{2}^{-1}+z_{1}+1}{1-z_{1}}
$$

Change of Grading (Subsection 5.8.C)

Proposition

Let $W \in \operatorname{Mat}_{m, n}(\mathbb{Z})$ and $A=\left(a_{i j}\right) \in \operatorname{Mat}_{\ell, m}(\mathbb{Z})$ be two matrices such that the gradings on $P=K\left[x_{1}, \ldots, x_{n}\right]$ given by W and by $A \cdot W$ are both of positive type. Let M be a finitely generated P-module which is graded with respect to the grading given by W. Then the Hilbert series of M with respect to the grading given by $A \cdot W$ is

$$
\mathrm{HS}_{M, A \cdot W}\left(z_{1}, \ldots, z_{\ell}\right)=\mathrm{HS}_{M, W}\left(z_{1}^{a_{11}} \cdots z_{\ell}^{a_{\ell 1}}, \ldots, z_{1}^{a_{1 m}} \cdots z_{\ell}^{a_{\ell m}}\right)
$$

Example

Let $P=K\left[x_{1}, x_{2}, x_{3}\right]$ be graded by $W=\left(\begin{array}{rrr}-1 & 1 & 2 \\ 2 & 0 & 1\end{array}\right)$, and let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Then $\mathrm{HS}_{P, W}\left(z_{1}, z_{2}\right)=1 /\left(\left(1-z_{1}^{-1} z_{2}^{2}\right)\left(1-z_{1}\right)\left(1-z_{1}^{2} z_{2}\right)\right)$ and $A \cdot W=\left(\begin{array}{lll}1 & 1 & 3 \\ 2 & 0 & 1\end{array}\right)$. The Hilbert series of P with respect to the grading given by $A \cdot W$ is

$$
\operatorname{HS}_{P, A \cdot W}\left(z_{1}, z_{2}\right)=1 /\left(\left(1-z_{1} z_{2}^{2}\right)\left(1-z_{1}\right)\left(1-z_{1}^{3} z_{2}\right)\right)=\operatorname{HS}_{P, W}\left(z_{1}, z_{1} z_{2}\right)
$$

in accordance with the proposition.

Change of Grading II

Corollary

Let $U \in \operatorname{Mat}_{\ell, n}(\mathbb{Z})$ be a matrix of positive type, let $V \in \operatorname{Mat}_{m-\ell, n}(\mathbb{Z})$, and let $W=\binom{U}{v} \in \operatorname{Mat}_{m, n}(\mathbb{Z})$.

- We have $\mathrm{HS}_{M, U}\left(z_{1}, \ldots, z_{\ell}\right)=\mathrm{HS}_{M, W}\left(z_{1}, \ldots, z_{\ell}, 1, \ldots, 1\right)$.
- We have $P_{U, 0}=K$ and for every $d \in \mathbb{Z}^{\ell}$, we have the following equality $\operatorname{dim}_{K}\left(M_{U, d}\right)=\sum_{e \in \mathbb{Z}^{m-\ell}} \operatorname{dim}_{K}\left(M_{(d, e)}\right)$.

Toric Ideals

Toric Ideals Associated to Matrices

Let K be a field and $P=K\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring over K. Given further indeterminates y_{1}, \ldots, y_{m}, we let $L=K\left[y_{1}, \ldots, y_{m}, y_{1}^{-1}, \ldots, y_{m}^{-1}\right]$ be the Laurent polynomial ring in the indeterminates y_{1}, \ldots, y_{m} over K.

Definition

An element of the form $y_{1}^{i_{1}} y_{2}^{i_{2}} \cdots y_{m}^{i_{m}} \in L$ with $i_{1}, \ldots, i_{m} \in \mathbb{Z}$ is called an extended term. The group of all extended terms is denoted by \mathbb{E}^{m}.

Definition

Let $\mathcal{A}=\left(a_{i j}\right) \in \operatorname{Mat}_{m, n}(\mathbb{Z})$, and let $t_{i}=y_{1}^{a_{1 i}} y_{2}^{a_{2 i}} \cdots y_{m}^{a_{m i}}$ for $i=1, \ldots, n$. We define a K-algebra homomorphism $\varphi: P \longrightarrow L$ by $\varphi\left(x_{i}\right)=t_{i}$ for $i=1, \ldots, n$.
Then the ideal $I(\mathcal{A})=\operatorname{Ker}(\varphi)$ in P is called the toric ideal associated to the matrix \mathcal{A}, or to the tuple of extended terms $\left(t_{1}, \ldots, t_{n}\right)$.

Binomial Ideals

Proposition

Every toric ideal is a prime ideal.

Recall that a binomial in P is a polynomial of the form $a t+a^{\prime} t^{\prime}$ with coefficients $a, a^{\prime} \in K \backslash\{0\}$ and distinct terms $t, t^{\prime} \in \mathbb{T}^{n}$. A binomial ideal is an ideal generated by binomials.

Definition

Let $S \subseteq P$ be a set of polynomials.

- A binomial in P is called unitary if it is of the form $t-t^{\prime}$ with $t, t^{\prime} \in \mathbb{T}^{n}$. The set of all unitary binomials in S will be denoted by $\operatorname{UB}(S)$.
- A binomial in P is called pure if it is of the form $t-t^{\prime}$ with coprime terms $t, t^{\prime} \in \mathbb{T}^{n}$. The set of all pure binomials in S will be denoted by $\operatorname{PB}(S)$.

Computing Toric Ideals

For an extended term $t \in \mathbb{E}^{m}$, there exists a unique minimal number $\tau(t) \in \mathbb{N}$ such that $\left(y_{1} \cdots y_{m}\right)^{\tau(t)} \cdot t \in K\left[y_{1}, \ldots, y_{m}\right]$.

Proposition

Let $t_{1}, \ldots, t_{n} \in \mathbb{E}^{m}$, let $I \subseteq P$ be the toric ideal associated to $\left(t_{1}, \ldots, t_{n}\right)$, and let $J \subseteq K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ be the binomial ideal generated by $\left\{\pi^{\tau\left(t_{1}\right)}\left(x_{1}-t_{1}\right), \ldots, \pi^{\tau\left(t_{n}\right)}\left(x_{n}-t_{n}\right)\right\}$ where $\pi=y_{1} \cdots y_{m}$.

- We have $I=\left(J: \pi^{\infty}\right) \cap K\left[x_{1}, \ldots, x_{n}\right]$.
- Let z be a new indeterminate, and let G be a Gröbner basis of the ideal $J+(\pi z-1)$ with respect to an elimination ordering for $\left\{y_{1}, \ldots, y_{m}, z\right\}$. Then the toric ideal I is generated by $G \cap K\left[x_{1}, \ldots, x_{n}\right]$.
- The toric ideal I is generated by pure binomials.

Efficiently Computing Toric Ideals

Theorem

Let $\mathcal{A}=\left(a_{i j}\right) \in \operatorname{Mat}_{m, n}(\mathbb{Z})$, let $\mathcal{L}(\mathcal{A})$ be the kernel of the \mathbb{Z}-linear map $\mathbb{Z}^{n} \longrightarrow \mathbb{Z}^{m}$ defined by \mathcal{A}, and let $V=\left\{v_{1}, \ldots, v_{r}\right\} \subseteq \mathcal{L}(\mathcal{A})$ generate the \mathbb{Z}-module $\mathcal{L}(\mathcal{A})$. Furthermore, let $\pi=x_{1} x_{2} \cdots x_{n}$.
Then we have

$$
I(\mathcal{A})=I_{V}:_{p} \pi^{\infty}
$$

Corollary

Let $\mathcal{A}=\left(a_{i j}\right) \in \operatorname{Mat}_{m, n}(\mathbb{Z})$. Consider the following sequence of instructions.
(1) Compute a system of generators $V=\left\{v_{1}, \ldots, v_{r}\right\}$ of $\mathcal{L}(\mathcal{A})$.
(2) For $i=1, \ldots, r$, write $v_{i}=v_{i}^{+}-v_{i}^{-}$and let $\varrho\left(v_{i}\right)=\mathbf{x}^{v_{i}^{+}}-\mathbf{x}^{v_{i}^{-}} \in P$. Form the lattice ideal $I_{V}=\left(\varrho\left(v_{1}\right), \ldots, \varrho\left(v_{r}\right)\right)$ and compute the saturation $I=I_{V}:_{p}\left(x_{1} \cdots x_{n}\right)^{\infty}$.
(3) Return the ideal I and stop.

This is an algorithm which computes the toric ideal $I(\mathcal{A})$ associated to \mathcal{A}.
A common method ito perform Step (1) s via the computation of the Hermite normal form of \mathcal{A}.

Hilbert Bases

The Hilbert Basis

We let $\mathcal{A}=\left(a_{i j}\right) \in \operatorname{Mat}_{m, n}(\mathbb{Z})$. We consider the homogeneous system of linear Diophantine equations $\mathcal{A} \mathbf{z}=0$ and we recall that $\mathcal{L}(\mathcal{A})$ is the subgroup of \mathbb{Z}^{n} consisting of its solutions.

Then we let $\mathcal{L}_{+}(\mathcal{A})=\mathcal{L}(\mathcal{A}) \cap \mathbb{N}^{n}$ be the set of its componentwise non-negative solutions. Clearly, the set $\mathcal{L}_{+}(\mathcal{A})$ is a submonoid of \mathbb{N}^{n}.

Next we consider the following partial ordering \succ on $\mathcal{L}_{+}(\mathcal{A})$. Given two vectors $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathcal{L}_{+}(\mathcal{A})$, we let $u \succ v$ if $u_{i} \geq v_{i}$ for $i=1, \ldots, n$ and if this inequality is strict for some $i \in\{1, \ldots, n\}$.

The ordering Lex is a term ordering on \mathbb{N}^{n}, hence its restriction to $\mathcal{L}_{+}(\mathcal{A})$ is a well-ordering. Obviously, $u \succ v$ implies $u>_{\text {Lex }} v$. Therefore there exist minimal elements in $\mathcal{L}_{+}(\mathcal{A}) \backslash\{0\}$ with respect to \succ.

Definition

The set of all minimal elements of $\mathcal{L}_{+}(\mathcal{A}) \backslash\{0\}$ with respect to the partial ordering \succ is called the Hilbert basis of $\mathcal{L}_{+}(\mathcal{A})$.

The Hilbert Basis Generates $\mathcal{L}_{+}(\mathcal{A})$

Proposition

Let $\mathcal{A} \in \operatorname{Mat}_{m, n}(\mathbb{Z})$, and let H be the Hilbert basis of $\mathcal{L}_{+}(\mathcal{A})$. Then every element of $\mathcal{L}_{+}(\mathcal{A})$ can be written as a linear combination of elements of H with coefficients in \mathbb{N}.

Proof.

Let $S \subseteq \mathcal{L}_{+}(\mathcal{A})$ be the set of all vectors which can be written as a linear combination of elements of H with coefficients in \mathbb{N}. For a contradiction, assume that $\mathcal{L}_{+}(\mathcal{A}) \backslash S \neq \emptyset$. We have already noted that Lex is a well-ordering on $\mathcal{L}_{+}(\mathcal{A})$. Hence there exists a minimal element $u \in \mathcal{L}_{+}(\mathcal{A}) \backslash S \neq \emptyset$ with respect to Lex. Clearly, we have $u \notin H$. Thus there exists a vector $v \in H$ such that $u \succ v$. Now we use that fact that $u-v \in \mathcal{L}_{+}(\mathcal{A})$ to conclude that $u \succ u-v$. This shows $u>_{\text {Lex }} u-v$, and therefore $u-v \in S$. But this implies $u \in S$, a contradiction.

Lawrence Liftings

Definition

Let $\mathcal{A} \in \operatorname{Mat}_{m, n}(\mathbb{Z})$. Then the matrix $\overline{\mathcal{A}}=\left(\begin{array}{cc}\mathcal{A} & 0 \\ \mathcal{I}_{n} & \mathcal{I}_{n}\end{array}\right)$ where \mathcal{I}_{n} is the identity matrix of size n, is called the Lawrence lifting of \mathcal{A}.

The first connection between \mathcal{A} and $\overline{\mathcal{A}}$ is that the map $\lambda: \mathcal{L}(\mathcal{A}) \longrightarrow \mathcal{L}(\overline{\mathcal{A}})$ defined by $\lambda(u)=(u,-u)$ is clearly bijective. But much more is true.

Proposition

Let $\mathcal{A} \in \operatorname{Mat}_{m, n}(K)$, let $\overline{\mathcal{A}}$ be the Lawrence lifting of \mathcal{A}, and let $Q=K\left[x_{1}, \ldots, x_{n}, w_{1}, \ldots, w_{n}\right]$.

- The toric ideal $I(\overline{\mathcal{A}}) \subseteq Q$ has a system of generators consisting of binomials of the form $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} w_{1}^{\beta_{1}} \cdots w_{n}^{\beta_{n}}-x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}} w_{1}^{\alpha_{1}} \cdots w_{n}^{\alpha_{n}}$ where $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \mathbb{N}$.
- There is a bijection between $\operatorname{PB}(I(\mathcal{A}))$ and $\operatorname{PB}(I(\overline{\mathcal{A}}))$ which maps a binomial $\mathbf{x}^{\alpha}-\mathbf{x}^{\beta}$ to $\mathbf{x}^{\alpha} \mathbf{w}^{\beta}-\mathbf{x}^{\beta} \mathbf{w}^{\alpha}$.
- There is a bijection between $\mathcal{L}_{+}(\mathcal{A})$ and the elements in $\operatorname{PB}(I(\overline{\mathcal{A}}))$ of the form $\mathbf{x}^{\alpha}-\mathbf{w}^{\alpha}$ with $\alpha \in \mathbb{N}^{n}$.

Primitive Separated Binomials

The last part of this proposition yields a bijection between the minimal elements of $\mathcal{L}_{+}(\mathcal{A}) \backslash\{0\}$ with respect to \succ and the elements $\mathbf{x}^{u}-\mathbf{w}^{u}$ in $\operatorname{PB}(I(\overline{\mathcal{A}}))$ with the property that there is no other element $\mathbf{x}^{v}-\mathbf{w}^{v}$
in $\mathrm{PB}(I(\overline{\mathcal{A}}))$ for which $u \succ v$.
Let us call these elements the primitive separated binomials in $\operatorname{PB}(I(\overline{\mathcal{A}}))$.

Corollary

Let $\mathcal{A} \in \operatorname{Mat}_{m, n}(\mathbb{Z})$. Then there exists a bijection between the Hilbert basis of $\mathcal{L}_{+}(\mathcal{A})$ and the set of primitive separated binomials in $\mathrm{PB}(I(\overline{\mathcal{A}}))$.

Finiteness and Computation of Hilbert Bases (6.1.7)

Theorem

Let $\mathcal{A} \in \operatorname{Mat}_{m, n}(\mathbb{Z})$, and let G be a reduced Gröbner basis of $I(\overline{\mathcal{A}})$. Then the set $H=\left\{\alpha \in \mathbb{N}^{n} \mid \mathbf{x}^{\alpha}-\mathbf{w}^{\alpha} \in G\right\}$ is finite, and it is the Hilbert basis of the monoid $\mathcal{L}_{+}(\mathcal{A})$.

Corollary

Let P be graded by a matrix $W \in \operatorname{Mat}_{m, n}(\mathbb{Z})$. Then the K-vector space $P_{W, 0}$ is a finitely generated K-algebra.

Proof.

A K-basis of $P_{W, 0}$ is given by the set of terms $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ such that $W \cdot\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{\mathrm{tr}}=0$. Therefore the Hilbert basis of $\mathcal{L}_{+}(W)$ generates $P_{W, 0}$ as a K-algebra. This Hilbert basis is finite by the theorem.

Examples

Example 1

Example

Consider the Diophantine equation $3 z_{1}-5 z_{2}+4 z_{3}=0$.
We want to find all triples $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{N}^{3}$ which satisfy this equation.
Let $\mathcal{A}=(3-54)$. We compute the reduced DegRevLex-Gröbner basis of the toric ideal of the Lawrence lifting of \mathcal{A}. The result is
$\left\{x_{2} x_{3}^{2} w_{1}-x_{1} w_{2} w_{3}^{2}, x_{3} w_{1}^{3} w_{2}-x_{1}^{3} x_{2} w_{3}, x_{1}^{2} x_{2}^{2} x_{3}-w_{1}^{2} w_{2}^{2} w_{3}\right.$,
$\left.x_{3}^{3} w_{1}^{4}-x_{1}^{4} w_{3}^{3}, x_{1}^{5} x_{2}^{3}-w_{1}^{5} w_{2}^{3}, x_{2}^{4} x_{3}^{5}-w_{2}^{4} w_{3}^{5}, x_{1} x_{2}^{3} x_{3}^{3}-w_{1} w_{2}^{3} w_{3}^{3}\right\}$.
Thus the set of primitive separated binomials in $\operatorname{PB}(I(\overline{\mathcal{A}}))$ is $\left\{x_{1}^{2} x_{2}^{2} x_{3}-w_{1}^{2} w_{2}^{2} w_{3}, x_{1}^{5} x_{2}^{3}-w_{1}^{5} w_{2}^{3}, x_{2}^{4} x_{3}^{5}-w_{2}^{4} w_{3}^{5}, x_{1} x_{2}^{3} x_{3}^{3}-w_{1} w_{2}^{3} w_{3}^{3}\right\}$
The Hilbert basis of $\mathcal{L}_{+}(\mathcal{A})$ is $\{(2,2,1),(5,3,0),(0,4,5),(1,3,3)\}$.
So, the non-negative solutions of $3 z_{1}-5 z_{2}+4 z_{3}=0$ are precisely the triples $\left(a_{1}, a_{2}, a_{3}\right)=n_{1}(2,2,1)+n_{2}(5,3,0)+n_{3}(0,4,5)+n_{4}(1,3,3)$
with $n_{1}, n_{2}, n_{3}, n_{4} \in \mathbb{N}$.
This Hilbert basis can also be used to determine the subring $P_{\mathcal{A}, 0}$ where $P=K\left[x_{1}, x_{2}, x_{3}\right]$ is equipped with the \mathbb{Z}-grading given by \mathcal{A}. The above corollary yields $P_{\mathcal{A}, 0}=K\left[x_{1}^{2} x_{2}^{2} x_{3}, x_{1}^{5} x_{2}^{3}, x_{2}^{4} x_{3}^{5}, x_{1} x_{2}^{3} x_{3}^{3}\right]$.

Example 2

Inhomogeneous Diophantine equations can be solved using a similar technique, but require an extra trick.

Example

We want to find the non-negative integer solutions of the Diophantine equation $2 z_{1}+5 z_{2}+3 z_{3}=11$.
They are the non-negative integer solutions of the homogeneous equation $2 z_{1}+5 z_{2}+3 z_{3}-11 z_{4}=0$ having fourth coordinate one. Let
$\mathcal{A}=\left(\begin{array}{ll}2 & 5 \\ 3\end{array}\right.$-11). We compute the reduced DegRevLex -Gröbner basis of the toric ideal of the Lawrence lifting of \mathcal{A} and get the following primitive separated binomials:

$$
\begin{aligned}
& \left\{x_{2} x_{3}^{2} x_{4}-w_{2} w_{3}^{2} w_{4}, x_{1} x_{3}^{3} x_{4}-w_{1} w_{3}^{3} w_{4}, x_{1}^{3} x_{2} x_{4}-w_{1}^{3} w_{2} w_{4}, x_{1}^{4} x_{3} x_{4}-w_{1}^{4} w_{3} w_{4},\right. \\
& x_{1} x_{2}^{4} x_{4}^{2}-w_{1} w_{2}^{4} w_{4}^{2}, x_{1}^{2} x_{2}^{3} x_{3} x_{4}^{2}-w_{1}^{2} w_{2}^{3} w_{3} w_{4}^{2}, x_{2}^{6} x_{3} x_{4}^{3}-w_{2}^{6} w_{3} w_{4}^{3}, x_{1}^{11} x_{4}^{2}-w_{1}^{11} w_{4}^{2} \\
& \left.x_{3}^{11} x_{4}^{3}-w_{3}^{11} w_{4}^{3}, x_{2}^{11} x_{4}^{5}-w_{2}^{11} w_{4}^{5}\right\}
\end{aligned}
$$

So, the Hilbert basis of $\mathcal{L}_{+}(\mathcal{A})$ is the set $\{(0,1,2,1),(1,0,3,1),(3,1,0,1),(4,0,1,1)$,
$(1,4,0,2),(2,3,1,2),(0,6,1,3),(11,0,0,2),(0,0,11,3),(0,11,0,5)\}$.

The solutions are $(0,1,2),(1,0,3),(3,1,0)$, and $(4,0,1)$.

Example 3

Example

Consider the system of Diophantine equations

$$
\left\{\begin{aligned}
z_{1}+4 z_{2}+z_{3}-2 z_{4} & =5 \\
2 z_{1}-z_{2}+z_{3}-3 z_{4} & =0
\end{aligned}\right.
$$

To find its non-negative integer solutions, we determine the non-negative integer solutions of the associated homogeneous system

$$
\left\{\begin{array}{ccc}
z_{1}+4 z_{2}+z_{3}-2 z_{4}-5 z_{5} & =0 \\
2 z_{1}-z_{2}+z_{3}-3 z_{4} & =0
\end{array}\right.
$$

which have last coordinate one. Let $\mathcal{A}=\left(\begin{array}{llll}1 & 4 & 1 & -2 \\ 2 & -1 & -5 \\ 2 & -3 & 0\end{array}\right)$. We get the following Hilbert basis of $\mathcal{L}_{+}(\mathcal{A})$:

$$
\begin{gathered}
\{(0,1,1,0,1),(1,0,1,1,0),(0,0,15,5,1),(5,10,0,0,9),(6,9,0,1,8), \\
(7,8,0,2,7),(8,7,0,3,6),(9,6,0,4,5),(10,5,0,5,4),(11,4,0,6,3), \\
(12,3,0,7,2),(13,2,0,8,1),(14,1,0,9,0)\}
\end{gathered}
$$

Since we are interested in elements of $\mathcal{L}_{+}(\mathcal{A})$ whose last coordinate is one, the relevant solutions are those whose last coordinate is zero or one. Let $Z=\left\{n_{1}(1,0,1,1)+n_{2}(14,1,0,9) \mid n_{1}, n_{2} \in \mathbb{N}\right\}$. Then we have three families of solutions, namely $(0,1,1,0)+Z,(0,0,15,5)+Z$, and $(13,2,0,8)+Z$.

Example 4

Example

How many matrices in $\operatorname{Mat}_{2}(\mathbb{N})$ have both row sums equal to two?

METHOD 1

We label each position in the matrix by an indeterminate.
Then we notice that the matrices $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ with $a_{11}+a_{12}=a_{21}+a_{22}=2$ are in 1-1 correspondence with the power products $x_{1}^{a_{11}} x_{2}^{a_{12}} x_{3}^{a_{21}} x_{4}^{a_{22}}$ in $P=\mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ which have degree $\binom{2}{2}$ with respect to the grading given by $\left(\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$.
The bivariate Hilbert series of P with respect to this grading is

$$
\operatorname{HS}_{P}\left(z_{1}, z_{2}\right)=\frac{1}{\left(1-z_{1}\right)^{2}\left(1-z_{2}\right)^{2}}
$$

Therefore the answer is simply the coefficient of $z_{1}^{2} z_{2}^{2}$ in the expansion of this series. By expanding the product $\left(1+z_{1}+z_{1}^{2}+\cdots\right)^{2}\left(1+z_{2}+z_{2}^{2}+\cdots\right)^{2}$, we see that the answer is nine.

Example 4 continued

METHOD 2

Example

First we solve the homogeneous Diophantine equation $z_{1}+z_{2}=z_{3}+z_{4}$ as in the previous examples.
Using $\mathcal{A}=(11-1-1)$, the Hilbert basis of $\mathcal{L}_{+}(\mathcal{A})$ turns out to be $\{(1,0,1,0),(1,0,0,1),(0,1,0,1),(0,1,1,0)\}$.
The corresponding matrices $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array} 0\right),\left(\begin{array}{lll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ have row sums one. We are looking for all their \mathbb{N}-linear combinations with row sums equal to two.
For this purpose, we use the above correspondence and represent them as power products $t_{1}=x_{1} x_{3}, t_{2}=x_{1} x_{4}, t_{3}=x_{2} x_{4}$, and $t_{4}=x_{2} x_{3}$ in P. Since their row sums are one, we need to determine the power products of degree two in the terms t_{i}.

Example 4 continued

Example

To compute the value of the Hilbert function of the ring $Q=\mathbb{Q}\left[t_{1}, t_{2}, t_{3}, t_{4}\right]$ in degree two, we use the surjective \mathbb{Q}-algebra homomorphism $\varphi: \mathbb{Q}\left[y_{1}, y_{2}, y_{3}, y_{4}\right] \longrightarrow Q$ defined by $y_{i} \mapsto t_{i}$.
Its kernel I is the toric ideal of $\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ and turns out to be $I=\left(y_{1} y_{3}-y_{2} y_{4}\right)$. Therefore we get

$$
\mathrm{HS}_{Q}(z)=\mathrm{HS}_{\mathbb{Q}\left[y_{1}, y_{2}, y_{3}, y_{4}\right] / /}(z)=\frac{1+z}{(1-z)^{3}}=1+4 z+9 z^{2}+\cdots
$$

and hence the desired number is $\mathrm{HF}_{Q}(2)=9$. Using this method, we can even list the nine solution matrices. They correspond to the images under φ of the nine terms of degree two in $\mathbb{Q}\left[y_{1}, y_{2}, y_{3}, y_{4}\right]$ whose residue classes form a \mathbb{Q}-basis of $\left(\mathbb{Q}\left[y_{1}, y_{2}, y_{3}, y_{4}\right] / I\right)_{2}$. We find the following nine matrices:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
2 & 0
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right)
$$

Example 4 continued

METHOD 3

Example

The third method is to solve the system of inhomogeneous Diophantine equations

$$
\left\{\begin{array}{l}
z_{1}+z_{2}=2 \\
z_{3}+z_{4}=2
\end{array}\right.
$$

using the technique explained in the preceding example. The Hilbert basis of the associated homogeneous system is

$$
\begin{gathered}
\{(1,1,0,2,1),(0,2,1,1,1),(1,1,2,0,1),(1,1,1,1,1),(2,0,1,1,1), \\
(2,0,0,2,1),(0,2,0,2,1),(2,0,2,0,1),(0,2,2,0,1)\}
\end{gathered}
$$

It yields the same nine solution matrices.

METHOD 4

Example

Finally, we present the fourth method: hand calculation! Unfortunately, this method does not work in complicated examples. Guess what you need!!!

Bounds for Hilbert Functions

Binomial Representations

Proposition

Let $n, i \in \mathbb{N}_{+}$. The number n has a unique representation of the form

$$
n=\binom{n(i)}{i}+\binom{n(i-1)}{i-1}+\cdots+\binom{n(j)}{j}
$$

such that $1 \leq j \leq i$ and such that $n(i), \ldots, n(j) \in \mathbb{N}$ are natural numbers which satisfy $n(i)>n(i-1)>\cdots>n(j) \geq j$.

Definition

Let $n, i \in \mathbb{N}_{+}$.

- The representation $n=\binom{n(i)}{i}+\cdots+\binom{n(j)}{j}$ with the property that $1 \leq j \leq i$ and $n(i)>n(i-1)>\cdots>n(j) \geq j$ is called the binomial representation of n in base i, or the $i^{\text {th }}$ Macaulay representation of n. We shall also denote it by $n_{[i]}$.
- The i-tuple $(n(i), \ldots, n(j), 0, \ldots, 0)$ is called the top binomial representation of n in base i and is denoted by $\operatorname{Top}_{i}(n)$. We also let $\operatorname{Top}_{i}(0)=(0, \ldots, 0)$.

Examples

Example

The binomial representation of 102 in base 5 satisfies $102_{[5]}=\binom{8}{5}+46_{[4]}$, since $\binom{8}{5}=56 \leq 102<126=\binom{9}{5}$. Similarly, $\binom{7}{4}=35 \leq 46<70=\binom{8}{4}$ yields $46_{[4]}=\binom{7}{4}+11_{[3]}$. Continuing this way, we finally get $102_{[5]}=\binom{8}{5}+\binom{7}{4}+\binom{5}{3}+\binom{2}{2}$ and thus $\operatorname{Top}_{5}(102)=(8,7,5,2,0)$. Similarly, we have ${13984_{[10]}}^{[16}\binom{16}{10}+\binom{15}{9}+\binom{12}{8}+\binom{11}{7}+\binom{9}{6}+\binom{8}{5}+\binom{5}{4}+\binom{3}{3}$ and $\mathrm{Top}_{11}(13984)=(16,15,12,11,9,8,5,3,0,0)$.

Some Functions

Definition

Let $n, i \in \mathbb{N}_{+}$and consider the binomial representation $n_{[i]}=\binom{n(i)}{i}+\cdots+\binom{n(j)}{j}$ of n in base i.

- We let $\left(n_{[i]}\right)^{+}=\binom{n(i)+1}{i}+\cdots+\binom{n(j)+1}{j}$.
- We let $\left(n_{[i]}\right)^{-}=\binom{n(i)-1}{i}+\cdots+\binom{n(j)-1}{j}$.
- We let $\left(n_{[j]}\right)_{+}^{+}=\binom{n(i)+1}{i+1}+\cdots+\binom{n(j)+1}{j+1}$.
- We let $\left(n_{[j]}\right)_{-}^{-}=\binom{n(i)-1}{i-1}+\cdots+\binom{n(j)-1}{j-1}$.

Moreover, we let $\left(0_{[j]}\right)^{+}=0,\left(0_{[j]}\right)^{-}=0,\left(0_{[j]}\right)_{+}^{+}=0$, and $\left(0_{[i]}\right)_{-}^{-}=0$.

Example

The binomial representation of the number 4 in base 2 is $4_{[2]}=\binom{3}{2}+\binom{1}{1}$. Therefore we have $\left(4_{[2]}\right)^{-}=\binom{2}{2}+\binom{0}{1}=1$, but $1_{[2]}=\binom{2}{2}$. Similarly, we have $\left(4_{[2]}\right)_{-}^{-}=\binom{2}{1}+\binom{0}{0}=3$, but $3_{[1]}=\binom{3}{1}$.

Some Inequalities

Proposition

Let $n, i \in \mathbb{N}_{+}, i>1$. Then we have the inequality $\left(\left(\left(n_{[i]}\right)_{-}^{-}\right)_{[i-1]}\right)_{+}^{+} \geq n$.

Theorem

Let $m>n>0$ and $i>1$.

- We have $\left(n_{[i]}\right)^{+} \leq m$ if and only if $n \leq\left(m_{[i]}\right)^{-}$.
- The conditions above are satisfied if $n \leq\left(n_{[j]}\right)^{-}+\left((m-n)_{[i-1]}\right)^{-}$.

Lex-Segments Spaces and Ideals

Definition

Let $d \in \mathbb{N}$, and let $t \in \mathbb{T}^{n}$ be a term of degree d.

- A set of terms of the form $\left\{t^{\prime} \in \mathbb{T}^{n} \mid \operatorname{deg}\left(t^{\prime}\right)=d, t^{\prime} \geq_{\text {Lex }} t\right\}$ is called a Lex-segment. The empty set is also considered a Lex-segment.
- A K-vector subspace V of P_{d} is called a Lex-segment space if $V \cap \mathbb{T}^{n}$ is both a K-basis of V and a Lex-segment. In this case we denote the K-basis $V \cap \mathbb{T}^{n}$ by $\mathbb{T}(V)$.

Lex-Segments Spaces and Ideals II

Proposition

(Basic Properties of Lex-Segment Spaces)
Let $n \geq 2$, let $d \in \mathbb{N}$, let $V \subset P_{d}$ be a non-zero Lex-segment space, and let t be the lexicographically biggest term of degree d which is not in $\mathbb{T}(V)$. We write $t=x_{1}^{\alpha_{1}} \cdots x_{r}^{\alpha_{r}} x_{r+1}^{\alpha_{r+1}}$ where $r \in\{1, \ldots, n-1\}$ and $\alpha_{r+1}>0$, and we let $d_{i}=d-\sum_{j=1}^{i} \alpha_{j}$ for $i=1, \ldots, r$.

- The K-vector space V is the $d^{\text {th }}$ homogeneous component of the ideal

$$
\begin{aligned}
x_{1}^{\alpha_{1}+1} \cdot\left(x_{1}, \ldots, x_{n}\right)^{d_{1}-1} & +x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}+1} \cdot\left(x_{2}, \ldots, x_{n}\right)^{d_{2}-1}+\cdots \\
\cdots & +x_{1}^{\alpha_{1}} \cdots x_{r-1}^{\alpha_{r}-1} x_{r}^{\alpha_{r}+1} \cdot\left(x_{r}, \ldots, x_{n}\right)^{d_{r}-1}
\end{aligned}
$$

Conversely, the $d^{\text {th }}$ homogeneous component of this ideal is the Lex-segment space such that the biggest term of degree d which is not contained in it is $x_{1}^{\alpha_{1}} \cdots x_{r}^{\alpha_{r}} x_{r+1}^{\alpha_{r+1}}$.

- The binomial representation of $\operatorname{dim}_{K}(V)$ in base $n-1$ is given by

$$
\operatorname{dim}_{K}(V)=\binom{n-1+d_{1}-1}{n-1}+\binom{n-2+d_{2}-1}{n-2}+\cdots+\binom{n-r+d_{r}-1}{n-r}
$$

Lex-Segments Spaces in the Next Degree

The following proposition shows that we can find explicit expressions for the dimension and codimension of the vector space generated by a Lex-segment space in the next degree.

Proposition

Let $d \in \mathbb{N}$ and let $V \subset P_{d}$ be a non-zero Lex-segment space.

- We have $\operatorname{dim}_{K}\left(P_{1} \cdot V\right)=\left(\left(\operatorname{dim}_{K}(V)\right)_{[n-1]}\right)^{+}$.
- We have $\operatorname{codim}_{K}\left(P_{1} \cdot V\right)=\left(\left(\operatorname{codim}_{K}(V)\right)_{[d]}\right)_{+}^{+}$.

Lex-Segments Spaces and Hyperplane Sections

Definition

Let V be a K-vector subspace of P, and let $\ell \in P_{1}$. Then the image of V in $\bar{P}^{\ell}=P /(\ell)$ is called the ℓ-reduction of V and denoted by \bar{V}^{ℓ}.

For the next proposition, we are only interested in the x_{n}-reduction of a Lex-segment space. We identify $\bar{P}^{x_{n}}$ with $K\left[x_{1}, \ldots, x_{n-1}\right]$ and let $\bar{V}=\bar{V}^{x_{n}}$.

Proposition

Let $d \in \mathbb{N}$, let $V \subset P_{d}$ be a non-zero Lex-segment space.

- We have $\operatorname{dim}_{K}(\bar{V})=\left(\left(\operatorname{dim}_{K}(V)\right)_{[n-1]}\right)_{-}^{-}$.
- We have $\operatorname{codim}_{K}(\bar{V})=\left(\left(\operatorname{codim}_{K}(V)\right)_{[d]}\right)^{-}$.

The Theorem of Green

Theorem

(Green's Reduction Theorem)
Let K be an infinite field, let $P=K\left[x_{1}, \ldots, x_{n}\right]$ be standard graded, let $d \in \mathbb{N}$, and let $V \subseteq P_{d}$ be a K-vector subspace. For a generic linear form $\ell \in P_{1}$, we have

$$
\operatorname{codim}_{K}\left(\bar{V}^{\ell}\right) \leq\left(\left(\operatorname{codim}_{K}(V)\right)_{[d]}\right)^{-}
$$

Here equality holds if V is a Lex-segment space.

Corollary

Let K be an infinite field, let $P=K\left[x_{1}, \ldots, x_{n}\right]$ be standard graded, and let I be a homogeneous ideal in P. For a generic linear form $\ell \in P_{1}$ and $d \in \mathbb{N}_{+}$, we have

$$
\mathrm{HF}_{\bar{P}^{e} / l^{\ell}}(d)=\mathrm{HF}_{P /(l+(\ell))}(d) \leq\left(\left(\mathrm{HF}_{P / /}(d)\right)_{[d]}\right)^{-}
$$

Here equality holds if l_{d} is a Lex-segment space.

The Theorem of Macaulay

Theorem

(Macaulay's Growth Theorem)
Let K be a field, let $d \in \mathbb{N}_{+}$, and let V be a K-vector subspace of P_{d}.
Then we have

$$
\operatorname{codim}_{K}\left(P_{1} \cdot V\right) \leq\left(\left(\operatorname{codim}_{K}(V)\right)_{[d]}\right)_{+}^{+}
$$

Here equality holds if V is a Lex-segment space.
Notice that this version provides us with a sharp bound on the growth of the Hilbert function of a standard graded K-algebra.

Corollary

Let K be a field, let $P=K\left[x_{1}, \ldots, x_{n}\right]$ be standard graded, let $I \subseteq P$ be a homogeneous ideal, and let $d \in \mathbb{N}_{+}$. Then we have

$$
\mathrm{HF}_{P / /}(d+1) \leq\left(\left(\mathrm{HF}_{P / /}(d)\right)_{[d]}\right)_{+}^{+}
$$

Here equality holds if I_{d} is a Lex-segment space which satisfies $I_{d+1}=P_{1} \cdot I_{d}$.

An Example

Example

There is no standard graded K-algebra R for which $\mathrm{HF}_{R}(1)=3$ and $\mathrm{HF}_{R}(2)=5$ and $\mathrm{HF}_{R}(3)=8$.
To see why this is true, we suppose that $R=P / I$ is such an algebra, where $P=K\left[x_{1}, \ldots, x_{n}\right]$ is standard graded and $I \subseteq P$ is a homogeneous ideal.

Then the corollary yields
$8=\mathrm{HF}_{P / / 1}(3) \leq\left(\left(\mathrm{HF}_{P / /}(2)\right)_{[2]}\right)_{+}^{+}=\left(5_{[2]}\right)_{+}^{+}=\left(\binom{3}{2}+\binom{2}{1}\right)_{+}^{+}=\binom{4}{3}+\binom{3}{2}=7$, a contradiction.

