Hilbert Functions and Toric Ideals

Lorenzo Robbiano

University of Genoa Department of Mathematics

CoCoA, COCOA and Preliminaries

School 1 (COCOA VI): TORINO (Italy) - Sturmfels, Geramita/Robbiano - 1999 School 2 (COCOA VII): Kingston (Canada) - Recio, Peterson - 2001 School 3 (COCOA VIII): Cadiz (Spain) - Kemper, Kreuzer - 2003 School 4: Porto Conte (Italy) - Migliore, Hosten - 2005 School 5: Hagenberg (Austria) - Conca, Robbiano - 2007 School 6: Barcelona (Spain) - Rossi, Geramita - 2009

School 7: Passau (Germany) - Robbiano, Seiler - 2011 Tutors: Anna Bigatti, Alessio Del Padrone Eduardo Sáenz de Cabezón

- *K* a computable field (\mathbb{Q} , $\mathbb{Q}(\sqrt{5})$, \mathbb{Z}_p , ...).
- Term orderings on \mathbb{T}^n (first non zero element on each column of the associated matrix is positive).
- Gröbner Bases.
- Macaulay's Basis Theorem:

 $\mathbb{T}^n \setminus LT_{\sigma}(I)$ is a basis of P/I as a *K*-vector space.

• $\mathbb{T}^n \setminus LT_{\sigma}(I)$ is computable using Buchberger's Algorithm.

A Simple (Standard) Grading

- Grading on P = K[x]: deg $(x^i) = i$.
- P_i = {homogeneous polynomials of deg i} = { $cx^i | c \in K$ }.
- They are *K* -vector spaces of dimension 1 for all $i \ge 0$.
- We say that the Hilbert function of P, i.e. the function from $\,\mathbb{N}\,$ to $\,\mathbb{N}\,$ defined by

 $i \rightarrow \dim_{\mathcal{K}}(P_i)$

is constant and equal to 1.

The associated power series is

$$\sum_{i=0}^{\infty} (\dim_{\mathcal{K}}(\boldsymbol{P}_i)) z^i = \sum_{i=0}^{\infty} z^i = \frac{1}{1-z}$$

Formule di Postulazione

- How many independent linear conditions are requested for a vector to belong to a given subvector space V' of V ?
- The answer is $\operatorname{codim}_V(V') = \dim_K(V) \dim_K(V')$.
- If *V* is the space of forms of a given degree, a linear condition is given for instance by imposing the vanishing at a point *p*.
- Given a finite set X of points in Pⁿ, the number of independent conditions imposed to the forms of degree *i* by the vanishing at X, is exactly the codimension of *I*(X)_{*i*} in P_{*i*} = K[x₀, x₁,...,x_n]_{*i*}.
- Let $\mathbb{X} = \{p_1, p_2, p_3\}$ where $p_1 = (1, 0, 0)$, $p_2 = (0, 1, 0)$, $p_3 = (0, 0, 1)$, then $I(\mathbb{X})_1 = (0)$, hence $\dim(P/I(\mathbb{X}))_1 = 3$, since the points impose independent conditions on the lines in the projective plane.
- Let $\mathbb{X} = \{p_1, p_2, q_3\}$ where $q_3 = (1, 1, 0)$, then the linear system $a_1 = 0$; $a_2 = 0$; $a_1 + a_2 = 0$ is equivalent to $a_1 = 0$; $a_2 = 0$. They impose only 2 independent conditions and we see that $\dim(P/I(\mathbb{X}))_1 = 2$.

Graded Rings and Modules

Graded Rings and Modules

Definition

- Let $(\Gamma, +)$ be a monoid.
- The ring *R* is called a Γ-graded ring (or a Γ-graded ring, or a ring graded over Γ) if there exists a family of additive subgroups {*R*_γ}_{γ∈Γ} such that
 - $R = \oplus_{\gamma \in \Gamma} R_{\gamma}$,
 - $R_{\gamma} \cdot R_{\gamma'} \subseteq R_{\gamma+\gamma'}$ for all $\gamma, \gamma' \in \Gamma$.
- The elements of R_{γ} are called homogeneous of degree γ . For $r \in R_{\gamma}$ we write $\deg(r) = \gamma$.
- If $r \in R$ and $r = \sum_{\gamma \in \Gamma} r_{\gamma}$ is the decomposition of r, where $r_{\gamma} \in R_{\gamma}$, then r_{γ} is called the homogeneous component of degree γ of r.
- If *R* is a Γ -graded ring and *M* is an *R*-module, then *M* is called a (Γ, R) -graded module if if there exists a family of additive subgroups $\{M_{\gamma}\}_{\gamma \in \Gamma}$ such that $M = \bigoplus_{\gamma \in \Gamma} M_{\gamma}$, and $R_{\gamma} \cdot M_{\gamma'} \subseteq M_{\gamma + \gamma'}$ for all $\gamma, \gamma' \in \Gamma$.

Proposition

Let *R* be a Γ -graded ring and *M* a graded *R*-module. Let $N \subseteq M$ be an *R*-submodule, and let $N_{\gamma} = N \cap M_{\gamma}$ for all $\gamma \in \Gamma$. Then the following conditions are equivalent.

- $N = \bigoplus_{\gamma \in \Gamma} N_{\gamma}$
- If n ∈ N and n = Σ_{γ∈Γ} n_γ is the decomposition of n into its homogeneous components, then n_γ ∈ N for all γ ∈ Γ.

• There is a system of generators of N which consists of homogeneous elements.

Graded ideals are usually called homogeneous ideals.

Question: Given an ideal in P, how is it possible to detect if it is homogeneous or not?

Shifting Degrees (1.7.6)

Definition

Let *R* be a γ -graded ring, *M*, *N* graded *R*-moduled, and $\varphi : M \longrightarrow N$ an *R*-homomorphism. φ is called a homomorphism of graded modules or a homogeneous *P*-linear map if $\varphi(M_{\gamma}) \subseteq N_{\gamma}$ for all γ .

Definition

Let R be a Γ -graded ring M a graded R-module, and $\gamma \in \Gamma$.

• For every $\delta \in \Gamma$ we define $M(\gamma)_{\delta} = M_{\delta+\gamma}$. We say that the Γ -graded R-module $M(\gamma)$ is obtained by shifting the degrees.

 Modules of the form ⊕_{i∈I}R(γ_i), where *I* is a set and γ_i ∈ Γ for *i* ∈ *I* are called Γ -graded free *R* -modules. Here we let (⊕_{i∈I} R(γ_i))_δ = ⊕_{i∈I}R(γ_i)_δ for all δ ∈ Γ.

REMARK. Let *R* be a Γ -graded ring *M* a graded *R*-module. Given homogeneous elements $v_1, \ldots, v_r \in M$ with $\deg(v_i) = \gamma_i$ we consider the graded free module $F = \bigoplus_{i=1}^r R(\gamma_i)$. The *R*-linear map $\varphi : F \longrightarrow M$ defined by $e_i \longrightarrow v_i$ is a homomorphism of graded Γ -modules. We say that φ is the map induced by (v_1, \ldots, v_r) .

Standard Gradings

Definition

A *K*-algebra *R* is called a standard graded *K*-algebra if it is \mathbb{N} -graded, satisfies $R_0 = K$ and $\dim_{\mathcal{K}}(R_1) < \infty$, and if *R* is generated by the elements of R_1 as a *K*-algebra.

Example

 $K[x, y]/(x^2 - y^3)$ is not standard graded, but for instance it is graded by

 $\deg(x)=3, \ \deg(y)=2$

Example

Let $P = K[x_1, x_2]$ be equipped with the standard grading. Then the *K*-subalgebra $S = K[x_1^2, x_1x_2, x_2^2]$ of *P* is a finitely generated \mathbb{N} -graded algebra, but it is not standard graded, since $S_1 = \{0\}$.

Example

Projective schemes. Closures of affine schemes. Tangent Cones.

Lorenzo Robbiano (Università di Genova)

Definition

Let $m \ge 1$, and let the polynomial ring $P = K[x_1, ..., x_n]$ be equipped with a \mathbb{Z}^m -grading such that $K \subseteq P_0$ and $x_1, ..., x_n$ are homogeneous elements.

- For j = 1, ..., n, let $(w_{1j}, ..., w_{mj}) \in \mathbb{Z}^m$ be the degree of x_j . The matrix $W = (w_{ij}) \in \text{Mat}_{m,n}(\mathbb{Z})$ is called the degree matrix of the grading. So, the columns of the degree matrix are the degrees of $x_1, ..., x_n$. The rows are called the weight vectors of $x_1, ..., x_n$.
- Conversely, given a matrix $W = (w_{ij}) \in \text{Mat}_{m,n}(\mathbb{Z})$, we can consider the \mathbb{Z}^m -grading on P for which $K \subseteq P_0$ and the indeterminates are homogeneous elements whose degrees are given by the columns of W. In this case, we say that P is graded by W.
- Let $d \in \mathbb{Z}^m$. The set of homogeneous polynomials of degree d is denoted by $P_{W,d}$ (or simply by P_d). A polynomial $f \in P_{W,d}$ is also called homogeneous of degree d, and we write $\deg_W(f) = d$.

Gradings Defined by Matrices II

If a grading on P is defined by a matrix $W \in \operatorname{Mat}_{m,n}(\mathbb{Z})$, the degree of a term $t = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is given by $\deg_W(t) = W \cdot (\alpha_1, \dots, \alpha_n)^{\operatorname{tr}}$. So, we have

$$\{\boldsymbol{d} \in \mathbb{Z}^m \mid \boldsymbol{P}_{\boldsymbol{W},\boldsymbol{d}} \neq \boldsymbol{0}\} = \{\boldsymbol{W} \cdot (\alpha_1, \dots, \alpha_n)^{\mathrm{tr}} \mid (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n\}$$

Example

Let $P = K[x_1, x_2, x_3, x_4]$ be graded by the matrix

$$W = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

and let $f = x_1x_4 - x_2x_3$. Then f is homogeneous of degree $(2, 1, 1)^{tr}$, because $W \cdot \log(x_1x_4)^{tr} = W \cdot \log(x_2x_3)^{tr} = (2, 1, 1)^{tr}$.

Example

Let $P = K[x_1, ..., x_n]$. Then the standard grading on P is defined by the matrix $(1 \ 1 \dots 1)$.

Proposition

Let *M* be a graded submodule of *F* and $\{g_1, \ldots, g_s\}$ a set of non-zero homogeneous vectors which generate *M*.

- Buchberger's Algorithm applied to the tuple G = (g₁,...,g_s) returns a homogeneous σ -Gröbner basis of M.
- The reduced σ -Gröbner basis of M consists of homogeneous vectors.

The non-Normal Quartic Curve

Example

We consider the projective curve given parametrically by $x_0 = s^4$, $x_1 = s^3 t$, $x_2 = st^3$, $x_3 = t^4$. In $K[s, t, x_0, x_1, x_2, x_3]$ we take the ideal $J = (x_0 - s^4, x_1 - s^3 t, x_2 - st^3, x_3 - t^4)$. By assigning arbitrary degrees to *s*, *t* we get the corresponding degrees of x_0 , x_1 , x_2 , x_3 . Consequently, the ideal *J* is *W*-homogeneous where

$$W = egin{pmatrix} 1 & 0 & 4 & 3 & 1 & 0 \ 0 & 1 & 0 & 1 & 3 & 4 \end{pmatrix}$$

Let $P = k[x_0, x_1, x_2, x_3]$ and $I = J \cap P$, the elimination ideal. Then $I = (x_0x_3 - x_1x_2, x_0^2x_2 - x_1^3, x_1x_3^2 - x_2^3, x_0x_2^2 - x_1^2x_3)$

turns out to be W' -homogeneous, where

$$\mathcal{W}'=egin{pmatrix}4&3&1&0\0&1&3&4\end{pmatrix}$$

Adding the two lines, we see that I is (4, 4, 4, 4) homogeneous, hence also (1, 1, 1, 1), homogeneous. Therefore we may also consider P/I as a standard graded algebra.

A non-trivial class of graded objects is given by the following characterization of monomial ideals as the most homogeneous ideals. Recall that a square matrix is called non-singular if its determinant is different from zero.

Proposition

Let I be an ideal of P. Then the following conditions are equivalent.

- The ideal I is monomial.
- There is a non-singular matrix $W \in Mat_n(\mathbb{Z})$ such that I is homogeneous with respect to the grading on P given by W.
- For every $m \ge 1$ and every matrix $W \in Mat_{m,n}(\mathbb{Z})$, the ideal I is homogeneous with respect to the grading on P given by W.

Positivity of Matrices

Definition

Let $m \ge 1$, let *P* be graded by a matrix *W* of rank *m* in $Mat_{m,n}(\mathbb{Z})$, and let w_1, \ldots, w_m be the rows of *W*.

- The grading on *P* given by *W* is called of non-negative type if there exist $a_1, \ldots, a_m \in \mathbb{Z}$ such that the entries of $v = a_1 w_1 + \cdots + a_m w_m$ corresponding to the non-zero columns of *W* are positive. In this case, we shall also say that *W* is a matrix of non-negative type.
- We say that the grading on *P* given by *W* is of positive type if there exist $a_1, \ldots, a_m \in \mathbb{Z}$ such that all entries of $a_1w_1 + \cdots + a_mw_m$ are positive. In this case, we shall also say that *W* is a matrix of positive type.

Proposition

Let P be graded by $W \in Mat_{m,n}(\mathbb{Z})$, a matrix of positive type, and let $M \neq 0$ be a finitely generated graded P -module.

- A set of homogeneous elements m₁,..., m_s generates the P -module M if and only if their residue classes m₁,..., m_s generate the K -vector space M/(x₁,..., x_n)M.
- Every homogeneous system of generators of *M* contains a minimal one.
- All irredundant systems of homogeneous generators of *M* are minimal.

This proposition is not true in general if W is of non-negative type.

Example

Let P = K[x, y] be graded by the matrix $W = (0 \ 1)$, and let I = (xy, y - xy). Then W is of non-negative type, I is a homogeneous ideal, and $\{xy, y - xy\}$ is an irredundant homogeneous system of generators of I. However, since I = (y), this system of generators is not minimal. Notice that we have $P_+ = (y)$ and $P_0 \cong P/P_+ \cong K[x]$.

A Fundamental Theorem (4.1.19)

Theorem

Let *P* be graded by a matrix $W \in Mat_{m,n}(\mathbb{Z})$ of positive type, and let *M* be a finitely generated graded *P* -module.

- We have $P_0 = K$.
- For all $d \in \mathbb{Z}^m$, we have $\dim_{\mathcal{K}}(M_d) < \infty$.

Proof.

First we show a). Let $V = (a_1 \ a_2 \ \cdots \ a_m) \in \operatorname{Mat}_{1,m}(\mathbb{Z})$ be such that $V \cdot W$ has positive entries only. We see that $P_{W,0} \subseteq P_{V \cdot W,0}$. Now it suffices to note that every term $t = x_1^{\alpha_1} \cdots x_n^{\alpha_n} \neq 1$ has positive degree $\deg_{V \cdot W}(t) = V \cdot W \cdot (\alpha_1, \ldots, \alpha_n)^{\operatorname{tr}} > 0$. In order to prove b), we choose a finite homogeneous system of generators of M and consider the corresponding representation $M \cong F/N$ where N is a graded submodule of F. Clearly, it suffices to prove the claim for F. We do this by showing it is true for each $P(-\delta_i)$. Since $P(-\delta_i)_d = P_{d-\delta_i}$, it suffices to prove that $\dim_K(P_d) < \infty$ for all $d \in \mathbb{Z}^m$. Since W is of positive type, there exists a matrix $V \in \operatorname{Mat}_{1,m}(\mathbb{Z})$ such that $V \cdot W$ has all entries positive. We have $P_{W,d} \subseteq P_{V \cdot W, V \cdot d}$. Hence we only have to show that the K-vector spaces $P_{V \cdot W,i}$ are finite dimensional for all $i \in \mathbb{Z}$. Their vector space bases $\{x_1^{\alpha_1} \cdots x_n^{\alpha_n} \mid V \cdot W \cdot (\alpha_1, \ldots, \alpha_n)^{\operatorname{tr}} = i\}$ are finite, because $V \cdot W$ has positive entries only.

A Nice Property

Proposition

Let *P* be graded by a matrix $W \in Mat_{m,n}(\mathbb{Z})$ of rank *m*, and let \mathbb{T}^n be the set of terms in *P*. The following conditions are equivalent.

- The first non-zero element in each non-zero column of W is positive.
- For $i = 1, \ldots, n$, we have $\deg_W(x_i) \geq_{\text{Lex}} 0$.
- The restriction of Lex to the monoid Γ = {d ∈ Z^m | P_{W,d} ≠ 0} is a well-ordering.
- The restriction of Lex to the monoid $\Gamma = \{ d \in \mathbb{Z}^m \mid P_{W,d} \neq 0 \}$ is a term ordering.
- There exists a term ordering τ on \mathbb{T}^n which is compatible with deg_W.

Positive Matrices

Definition

Let $W \in Mat_{m,n}(\mathbb{Z})$ be a matrix of rank m.

- The grading on *P* defined by *W* is called non-negative if the first non-zero element in each non-zero column of *W* is positive. In this case, we shall also say that *W* is a non-negative matrix.
- The grading on *P* defined by *W* is called positive if no column of *W* is zero and the first non-zero element in each column is positive. In this case, we shall also say that *W* is a positive matrix.

REMARK. The above proposition implies that, if *W* defines a non-negative grading, there exists a term ordering on \mathbb{T}^n which is compatible with deg_{*W*}. If *W* is positive, then we have deg_{*W*}(x_i) >_{Lex} 0 for i = 1, ..., n, and hence $P_+ = \bigoplus_{d >_{Lex} 0} P_{W,d} = (x_1, ..., x_n)$, and $P_0 \cong P/P_+ \cong K$.

Proposition

If the grading defined by W is positive, then it is of positive type. In particular, the claims of the Fundamental Theorem are valid under the assumption that W is positive.

Lorenzo Robbiano (Università di Genova)

Definition

Let *M* be a finitely generated graded *P*-module. Let $W \in Mat_{m,n}(\mathbb{Z})$ be a matrix of rank *m* of positive type (in particular, positive). Then there is a well-defined map

$$\begin{array}{rccc} \mathsf{HF}_M:\mathbb{Z}^m & \longrightarrow & \mathbb{Z} \\ i & \longmapsto & \mathsf{dim}_{\mathcal{K}}(M_i) \end{array}$$

This map is called the Hilbert function of M.

Integer Functions

Definition

A map $f : \mathbb{Z} \longrightarrow \mathbb{Z}$ is called an integer function. Given an integer function $f : \mathbb{Z} \longrightarrow \mathbb{Z}$, we define the following operators.

- The integer function $\Delta f : \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $\Delta f(i) = f(i) f(i-1)$ for $i \in \mathbb{Z}$ is called the (first) difference function of f.
- Let $\Delta^0 f = f$. For $r \ge 1$, we inductively define an integer function $\Delta^r f : \mathbb{Z} \longrightarrow \mathbb{Z}$ by $\Delta^r f = \Delta(\Delta^{r-1} f)$ and call it the **r**th difference function of f.
- Given a number $q \in \mathbb{Z}$, we define an integer function $\Delta_q f : \mathbb{Z} \longrightarrow \mathbb{Z}$ by $\Delta_q f(i) = f(i) f(i-q)$ for $i \in \mathbb{Z}$ and call it the q-difference function of f.
- An integer function f : Z → Z is called an integer Laurent function if there exists a number i₀ ∈ Z such that f(i) = 0 for all i < i₀.
- Given an integer Laurent function $f : \mathbb{Z} \longrightarrow \mathbb{Z}$, we define another integer Laurent function $\Sigma f : \mathbb{Z} \longrightarrow \mathbb{Z}$ by $\Sigma f(i) = \sum_{j \le i} f(j)$ and call it the summation function of f.

Integer Valued Polynomials

Proposition

Let $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ be an integer Laurent function. Then we have $\Sigma \Delta f = \Delta \Sigma f = f$.

Definition

A polynomial $p \in \mathbb{Q}[t]$ is called an integer valued polynomial if we have $p(i) \in \mathbb{Z}$ for all $i \in \mathbb{Z}$. The set of all integer valued polynomials will be denoted by \mathbb{IP} . Furthermore, for every $r \ge 0$, we let $\mathbb{IP}_{\le r}$ be the set of all integer valued polynomials of degree $\le r$.

Example

The polynomial $\binom{t}{2}$ is an integer valued polynomial.

Proposition

Let $a \in \mathbb{Z}$, $r \in \mathbb{N}$, and let $(a_0, a_1, a_2, ...)$ be a sequence of integers.

- For an integer valued polynomial p, we have $\deg(p) = r$ if and only if $\Delta^r p(t) \in \mathbb{Z} \setminus \{0\}$. If this holds true, we have $\Delta^r p(t) = r! \operatorname{LC}_{\operatorname{Deg}}(p) \in \mathbb{Z}$.
- Let *p* be an integer valued polynomial of degree *r*. Then the polynomial $q = p r! \operatorname{LC}_{\operatorname{Deg}}(p) \binom{t+a}{r}$ is an integer valued polynomial of degree < r.
- For every $r \ge 0$, the set of polynomials $\{\binom{t+a_i}{i} \mid 0 \le i \le r\}$ is a \mathbb{Z} -basis of $\mathbb{IP}_{\le r}$. Consequently, the set $\{\binom{t+a_i}{i} \mid i \in \mathbb{N}\}$ is a \mathbb{Z} -basis of \mathbb{IP} .
- For a map $f : \mathbb{Z} \longrightarrow \mathbb{Z}$, the following conditions are equivalent.
 - There exists an integer valued polynomial $p \in \mathbb{IP}$ with f(i) = p(i) for all $i \in \mathbb{Z}$.
 - There exist a number i₀ ∈ Z and an integer valued polynomial q ∈ IP such that f(i₀) ∈ Z and Δf(i) = q(i) for all i ∈ Z.

Definition

Let $f : \mathbb{Z} \longrightarrow \mathbb{Z}$ be an integer function.

- The map $f : \mathbb{Z} \longrightarrow \mathbb{Z}$ is called an integer function of polynomial type if there exists a number $i_0 \in \mathbb{Z}$ and an integer valued polynomial $p \in \mathbb{IP}$ such that f(i) = p(i) for all $i \ge i_0$. This polynomial is uniquely determined and denoted by HP_f.
- For an integer function f of polynomial type, the number

 $\mathsf{ri}(f) = \min\{i \in \mathbb{Z} \mid f(j) = \mathsf{HP}_f(j) \text{ for all } j \ge i\}$

is called the regularity index of f. Whenever $f(i) = HP_f(i)$ for all $i \in \mathbb{Z}$, we let $ri(f) = -\infty$.

Integer Functions of Polynomial Type II

We introduce a fundamental family of integer functions of polynomial type.

Example

For every $i \in \mathbb{N}$, we define a map $\operatorname{bin}_i : \mathbb{Z} \longrightarrow \mathbb{Z}$ by $\operatorname{bin}_i(j) = \binom{j}{i}$ for $j \ge i$ and by $\operatorname{bin}_i(j) = 0$ for j < i. The map bin_i is an integer Laurent function of polynomial type. It satisfies $\operatorname{HP}_{\operatorname{bin}_i}(t) = \binom{t}{i}$ and $\operatorname{ri}(\operatorname{bin}_i) = 0$. Moreover, if i > 0, then $\Delta \operatorname{bin}_i(j) = \operatorname{bin}_{i-1}(j-1)$ for all $j \in \mathbb{Z}$. There is no integer valued polynomial $p \in \mathbb{IP}$ such that $\operatorname{bin}_i(j) = p(j)$ for all j.

Corollary

Let $f : \mathbb{Z} \longrightarrow \mathbb{Z}$ be an integer Laurent function of polynomial type.

- We have $HP_{\Delta f}(t) = \Delta HP_f(t)$. In particular, if $deg(HP_f) > 0$, then we have $deg(HP_{\Delta f}) = deg(HP_f) 1$.
- For every $q \ge 1$, we have $\operatorname{ri}(\Delta_q f) = \operatorname{ri}(f) + q$.
- If we write $HP_f(t) = c_1 \binom{t-1}{0} + \cdots + c_m \binom{t-1}{m-1}$ and choose $i_0 \ge ri(f)$, then we have $HP_{\Sigma f}(t) = c_1 \binom{t}{1} + \cdots + c_m \binom{t}{m} + f(i_0)$.

• We have
$$ri(\Sigma f) = ri(f) - 1$$

Hilbert Functions

Hilbert Functions in the Standard Case

Definition

Let M be a finitely generated graded P -module. Then there is a well-defined map

$$\mathsf{HF}_M:\mathbb{Z} \longrightarrow \mathbb{Z}$$

 $i \longmapsto \dim_{\mathcal{K}}(M_i)$

This map is called the Hilbert function of M (with respect to the standard grading).

An isomorphism of vector spaces $\varphi: P_1 \longrightarrow P_1$ extends uniquely to an isomorphism $\Phi: P \longrightarrow P$ of graded *K*-algebras. Such a map Φ is called a homogeneous linear change of coordinates. We express this fact by saying that the Hilbert function of *M* is invariant under a homogeneous linear change of coordinates.

Proposition

For every
$$i \in \mathbb{N}$$
, we have $HF_P(i) = {i+n-1 \choose n-1}$.

Hilbert Functions and Exact Sequences

Proposition

Let M, M', and M'' be three finitely generated graded P-modules.

- Let j ∈ Z. Then the Hilbert function of the module M(j) obtained by shifting degrees by j is given by HF_{M(i)}(i) = HF_M(i + j) for all i ∈ Z.
- Given a homogeneous exact sequence of graded P -modules $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$

we have $HF_M(i) = HF_{M'}(i) + HF_{M''}(i)$ for all $i \in \mathbb{Z}$.

Proposition

Let I be a homogeneous ideal in P , and let $f \in P$ be a non-zero homogeneous polynomial of degree d . Then we have a homogeneous exact sequence

$$0 \ \longrightarrow \ [P/(I:_{_{P}}(f))] \ (-d) \ \stackrel{\cdot f}{\longrightarrow} \ P/I \ \longrightarrow \ P/(I+(f)) \ \longrightarrow \ 0$$

and therefore $HF_{P/(I+(f))}(i) = HF_{P/I}(i) - HF_{P/(I:_{P}(f))}(i-d)$ for all $i \in \mathbb{Z}$. In particular, f is a non-zerodivisor for P/I if and only if we have $HF_{P/(I+(f))}(i) = \Delta_d HF_{P/I}(i)$ for all $i \in \mathbb{Z}$.

Theorem

Let I be a homogeneous ideal of P and let σ be a term ordering on \mathbb{T}^n . Then we have $HF_I(i) = HF_{LT_{\sigma}(I)}(i)$ for all $i \in \mathbb{Z}$.

Corollary

Let *M* be a finitely generated graded *P*-module, and let $K \subseteq L$ be a field extension. Then we have $HF_M(i) = HF_{M \otimes_K L}(i)$ for all $i \in \mathbb{Z}$.

Theorem

Let *M* be a finitely generated graded *P*-module. Then its Hilbert function $HF_M : \mathbb{Z} \longrightarrow \mathbb{Z}$ is an integer function of polynomial type.

Power Series

Definition

- Let R be an integral domain and K its field of fractions.
 - We denote the ring of power series over R by R[[z]].
 - The subring $R[[z]] \cap K(z)$ of the field $K[[z]]_z$ is called the ring of rational power series over R.
 - The localization $R[[z]]_z$ of the power series ring R[[z]] in the element z is called the ring of Laurent series in one indeterminate z over R.
 - Finally, the ring $R[z]_z$ is called the ring of Laurent polynomials over R. It is sometimes also denoted by $R[z, z^{-1}]$.

Characterization of Rational Power Series (5.2.6)

Theorem

Let $c_i \in \mathbb{Z}$ for $i \ge 0$, and let $f = \sum_{i\ge 0} c_i z^i \in \mathbb{Z}[[z]]$. Then the following conditions are equivalent.

- The power series f is rational.
- There exist a polynomial $g \in \mathbb{Z}[z]$ and integers $a_1, \ldots, a_m \in \mathbb{Z}$ such that $f = g/(1 a_1z a_2z^2 \cdots a_mz^m)$.
- There are natural numbers $m, n \in \mathbb{N}$ and integers $a_1, \ldots, a_m \in \mathbb{Z}$ such that $c_i = a_1c_{i-1} + a_2c_{i-2} + \cdots + a_mc_{i-m}$ for all i > n.

Example

Let c_0, c_1, \ldots be the Fibonacci sequence, i.e. let $c_0 = c_1 = 1$ and $c_i = c_{i-1} + c_{i-2}$ for $i \ge 2$. Therefore the Fibonacci numbers are the coefficients of the power series $1/(1 - z - z^2) = c_0 + c_1 z + c_2 z^2 + \cdots$. The associated integer Laurent function $f : \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $f(i) = c_i$ for $i \in \mathbb{Z}$ is not an integer function of polynomial type, because if a polynomial $p \in \mathbb{IP}$ satisfies $p(i) = c_i$ for large enough i, then p(i) = p(i-1) + p(i-2) implies $\Delta p(i) = p(i-2)$.

Properties of Power Series

Definition

Let $f : \mathbb{Z} \longrightarrow \mathbb{Z}$ be a non-zero integer Laurent function. The number $\min\{i \in \mathbb{Z} \mid f(i) \neq 0\}$ will be denoted by α_f or simply α . Moreover, the associated Laurent series $\sum_{i \geq \alpha} f(i) z^i$ will be denoted by $HS_f(z)$.

Proposition

Let $f : \mathbb{Z} \longrightarrow \mathbb{Z}$ be a non-zero integer Laurent function.

- For every $q \ge 1$, we have $HS_{\Delta_q f}(z) = (1 z^q) \cdot HS_f(z)$. In particular, we have $HS_{\Delta f}(z) = (1 - z) \cdot HS_f(z)$.
- We have $HS_{\Sigma f}(z) = HS_f(z)/(1-z)$.

Lemma

For all $n \ge 1$, we have $(1-z)^{-n} = \sum_{i \ge 0} {i+n-1 \choose n-1} z^i$.

Laurent Series and Integer Functions (5.2.10)

Theorem

For a non-zero integer Laurent function $\ f:\mathbb{Z}\longrightarrow\mathbb{Z}$, TFAE

- The integer function f is of polynomial type.
- The associated Laurent series of f is of the form $HS_f(z) = \frac{p(z)}{(1-z)^m}$ where $m \in \mathbb{N}$ and $p(z) \in \mathbb{Z}[z, z^{-1}]$ is a Laurent polynomial over \mathbb{Z} .

If these conditions are satisfied, we have $m = \deg(HP_f(t)) + 1$.

Corollary

Let $f : \mathbb{Z} \longrightarrow \mathbb{Z}$ be a non-zero integer Laurent function of polynomial type, and let $\alpha = \min\{i \in \mathbb{Z} \mid f(i) \neq 0\}$.

- The associated Laurent series of f has the form $HS_f(z) = p(z)/(1-z)^m$, where $m \in \mathbb{N}$ and $p(z) \in \mathbb{Z}[z, z^{-1}]$ is a Laurent polynomial of the form $p(z) = \sum_{i=\alpha}^{\beta} c_i z^i$ with $\beta \ge \alpha$, $c_{\alpha}, \ldots, c_{\beta} \in \mathbb{Z}$, $c_{\alpha} \neq 0$, and $c_{\beta} \neq 0$.
- If m > 0, then we have $HP_f(t) = \sum_{i=\alpha}^{\beta} c_i \binom{t-i+m-1}{m-1}$, and if m = 0, then we have $HP_f(t) = 0$.

• We have
$$ri(f) = \beta - m + 1$$
.

The Standard Case

Proposition

The Hilbert series of P is given by $HS_P(z) = \frac{1}{(1-z)^n}$.

Proposition

(Basic Properties of Hilbert Series)

Let M, M', M'' be three finitely generated graded P -modules.

- For all $j \in \mathbb{Z}$, we have $\mathsf{HS}_{\mathcal{M}(j)}(z) = z^{-j} \mathsf{HS}_{\mathcal{M}}(z)$.
- Given a homogeneous exact sequence $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$, we have $HS_M(z) = HS_{M'}(z) + HS_{M''}(z)$.
- Let $M = M_1 \oplus \cdots \oplus M_r$ with finitely generated graded P -modules M_1, \ldots, M_r . Then we have $HS_M(z) = HS_{M_1}(z) + \cdots + HS_{M_r}(z)$.
- Let $\delta_1, \ldots, \delta_r \in \mathbb{Z}$. Then the Hilbert series of the graded free module $F = \bigoplus_{j=1}^r P(-\delta_i)$ is $HS_F(z) = (\sum_{j=1}^r z^{\delta_j})/(1-z)^n$.

Macaulay's Theorem for Hilbert Series

Theorem

Let $\delta_1, \ldots, \delta_r \in \mathbb{Z}$, let M be a graded submodule of the graded free P-module $\bigoplus_{i=1}^r P(-\delta_i)$, and let σ be a module term ordering on $\mathbb{T}^n \langle e_1, \ldots, e_r \rangle$. Then we have $HS_M(z) = HS_{LT_{\sigma}(M)}(z)$.

Corollary

Let *M* be a graded *P*-module, and let $K \subseteq L$ be a field extension. Then we have $HS_{M\otimes_{K}L}(z) = HS_M(z)$.

Theorem

Let *M* be a non-zero finitely generated graded *P*-module, and let $\alpha(M) = \min\{i \in \mathbb{Z} \mid M_i \neq 0\}$. Then the Hilbert series of *M* has the form

$$\mathsf{HS}_M(z) = \frac{z^{\alpha(M)} \mathsf{HN}_M(z)}{(1-z)^n}$$

where $HN_M(z) \in \mathbb{Z}[z]$ and $HN_M(0) = HF_M(\alpha(M)) > 0$. Note that n is the number of indeterminates of P.

Definition

In the Hilbert series $HS_M(z) = \frac{z^{\alpha} HN_M(z)}{(1-z)^n}$, we simplify the fraction by cancelling 1-z as often as possible. We obtain a representation $HS_M(z) = \frac{z^{\alpha} hn_M(z)}{(1-z)^d}$, where $0 \le d \le n$ and where $hn_M(z) \in \mathbb{Z}[z]$ satisfies $hn_M(0) = HF_M(\alpha) > 0$.

- The polynomial $hn_M(z) \in \mathbb{Z}[z]$ is called the simplified Hilbert numerator of M.
- Let $\delta = \deg(hn_M(z))$, and let $hn_M(z) = h_0 + h_1 z + \dots + h_{\delta} z^{\delta}$. Then the tuple $hv(M) = (h_0, h_1, \dots, h_{\delta}) \in \mathbb{Z}^{\delta+1}$ is called the h-vector of M.
- The number $\dim(M) = d$ is called the dimension of M.
- The number $mult(M) = hn_M(1)$ is called the multiplicity of M.

Definition

- Let t be an indeterminate over \mathbb{Q} .
 - The integer valued polynomial associated to HF_M is called the Hilbert polynomial of M and is denoted by $HP_M(t)$. Therefore we have $HP_M(t) \in \mathbb{IP} \subset \mathbb{Q}[t]$ and $HF_M(i) = HP_M(i)$ for $i \gg 0$.
 - The regularity index of HF_M is called the regularity index of M and is denoted by ri(M).

Proposition

For a non-zero finitely generated graded P-module M, we have $\operatorname{mult}(M) > 0$.

Multivariate Power Series

Definition

The set $R^{\mathbb{Z}^m}$ is an R-module with respect to componentwise addition and scalar multiplication. We denote an element $(a_i)_{i \in \mathbb{Z}^m}$ by $\sum_{i \in \mathbb{Z}^m} a_i \mathbf{z}^i$ and the module by $R[[\mathbf{z}, \mathbf{z}^{-1}]]$. We call it the module of extended power series.

The module of extended power series is not a ring with respect to the usual multiplication. For instance, the constant coefficient of the product $(1 + z_1 + z_1^2 + \cdots) \cdot (1 + z_1^{-1} + z_1^{-2} + \cdots)$ would be an infinite sum. But it is important to be able to multiply Hilbert series.

Definition

Let σ be a monoid ordering on \mathbb{Z}^m .

- An extended power series $f = \sum_{i \in \mathbb{Z}^m} a_i \mathbf{z}^i$ is called a σ -Laurent series if its "support" is well-ordered by σ .
- The set of all *σ* -Laurent series is called the *σ* -Laurent series ring over *R* and will be denoted by *R*[[**z**, **z**⁻¹]]_{*σ*}.

Proposition

Let σ be a monoid ordering on \mathbb{Z}^m . Then the set $R[[\mathbf{z}, \mathbf{z}^{-1}]]_{\sigma}$ of all σ -Laurent series is a ring with respect to componentwise addition and with respect to the multiplication given by the formula

$$(\sum_{i\in\mathbb{Z}^m}a_i\,\mathsf{z}^i)\cdot(\sum_{j\in\mathbb{Z}^m}b_j\,\mathsf{z}^j)=\sum_{k\in\mathbb{Z}^m}(\sum_{i+j=k}a_ib_j)\,\mathsf{z}^k$$

Corollary

Assume that $W \in Mat_{m,n}(\mathbb{Z})$ is positive, let M be a finitely generated graded P-module, and let Σ be the set $\{d \in \mathbb{Z}^m \mid M_{W,d} \neq 0\}$.

(a) The relation $Lex|_{\Sigma}$ is a well-ordering.

(b) The series $HS_M(z)$ is an element of the ring $\mathbb{Z}[[z, z^{-1}]]_{Lex}$.

Definition

Let $W \in \operatorname{Mat}_{m,n}(\mathbb{Z})$ be positive and let M be a finitely generated W-graded P-module. Then the map $\operatorname{HF}_M : \mathbb{Z}^m \longrightarrow \mathbb{Z}$ given by the rule $(i_1, \ldots, i_m) \mapsto \dim_K(M_{(i_1, \ldots, i_m)})$ for all $(i_1, \ldots, i_m) \in \mathbb{Z}^m$ is called the multigraded Hilbert function of M.

Proposition

Let $W = (w_{ij}) \in Mat_{m,n}(\mathbb{Z})$ and $(i_1, \ldots, i_m) \in \mathbb{Z}^m$. Then the value $HF_P(i_1, \ldots, i_m)$ of the multigraded Hilbert function of P is the number of solutions $(\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$ of the system of Diophantine equations

$$\begin{array}{rcl} w_{11}y_1 + \dots + w_{1n}y_n &=& i_1 \\ w_{21}y_1 + \dots + w_{2n}y_n &=& i_2 \\ \vdots &\vdots &\vdots \\ w_{m1}y_1 + \dots + w_{mn}y_n &=& i_m \end{array}$$

in the indeterminates y_1, \ldots, y_n .

Hilbert Functions of Polynomial Rings

Example

Let $P = K[x_1, x_2]$ be graded by $W = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$. We get the equations $y_2 = i_1$, $y_1 - y_2 = i_2$ to be solved for $y_1 \ge 0$ and $y_2 \ge 0$. We find solutions only if $i_1 \ge 0$ and $i_1 + i_2 \ge 0$. Then we have $P_{(i_1, i_2)} \ne 0$ if and only if $i_1 \ge 0$ and $i_2 \ge -i_1$. In these degrees we have $\dim_{\mathcal{K}}(P_{(i_1, i_2)}) = 1$. Therefore we obtain

$$\mathsf{HS}_{P}(z_{1}, z_{2}) = \sum_{i_{1} \ge 0} \sum_{i_{2} \ge -i_{1}} z_{1}^{i_{1}} z_{2}^{i_{2}} = \left(\sum_{i_{1} \ge 0} z_{1}^{i_{1}} z_{2}^{-i_{1}}\right) / (1 - z_{2}) = \frac{1}{(1 - z_{1} z_{2}^{-1})(1 - z_{2})}$$

Theorem

Let $P = K[x_1, ..., x_n]$ be graded by a matrix $W = (w_{ij}) \in Mat_{m,n}(\mathbb{Z})$ of positive type. Then we have

$$HS_{P,W}(z_1,...,z_m) = \frac{1}{\prod\limits_{j=1}^{n} (1 - z_1^{w_{1j}} \cdots z_m^{w_{mj}})}$$

An Example

Example

Let $P = \mathbb{Q}[x_1, x_2, x_3, x_4]$ be graded by $W = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 5 & 8 \end{pmatrix}$, and let $I = (x_1^2, x_2, x_3^3)$. We want to compute the multivariate Hilbert series of P/I. In the first step, we form $J = (x_1^2, x_2)$. In the second step, we compute the Hilbert numerators of P/J and of $P/(J:_{R}(x_{2}^{3}))$ recursively. We have $J_{:P}(x_3^3) = (x_1^2, x_2) = J$. When we compute $HN_{P/J}(z_1, z_2)$, we form $J' = (x_1^2)$ and $J'' = J :_{P} (x_2) = (x_1^2)$ and apply the algorithm recursively to them. Since $J' = J'' = (x_1^2)$ is a principal ideal, the algorithm yields $HN_{P/J'}(z_1, z_2) = HN_{P/J''}(z_1, z_2) = 1 - z_1^2$. Then we find $HN_{P/J}(z_1, z_2) = HN_{P/J'}(z_1, z_2) - z_1^2 HN_{P/J''}(z_1, z_2) = (1 - z_1^2)^2$ in step 3). Thus the original algorithm computes $HN_{P/I}(z_1, z_2) =$ $HN_{P/J}(z_1, z_2) - z_1^9 z_2^{15} HN_{P/(J_{z_1}(x_2^3))}(z_1, z_2) = (1 - z_1^2)^2 (1 - z_1^9 z_2^{15}).$ Altogether, we have

$$\mathsf{HS}_{P/I}(z_1, z_2) = \frac{(1 - z_1^2)^2 (1 - z_1^9 z_2^{15})}{(1 - z_1)(1 - z_1^2)(1 - z_1^3 z_2^5)(1 - z_1^4 z_2^8)} = \frac{(1 + z_1)(1 + z_1^3 z_2^5 + z_1^6 z_2^{10})}{1 - z_1^4 z_2^8}$$

Another Example

Example

Let $P = \mathbb{Q}[x_1, x_2, x_3]$ be graded by $W = \begin{pmatrix} 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$, and let

 $I = (x_1^3 x_2, x_2 x_3^2, x_2^2 x_3, x_3^4)$. We want to compute the multivariate Hilbert series of P/I.

We form the ideals $J_1 = (x_1^3 x_2, x_2 x_3^2, x_2^2 x_3)$ and $J_2 = J_1 :_P (x_3^4) = (x_2)$ and apply the algorithm recursively to them. For J_2 , it yields $HN_{P/J_2}(z_1, z_2) = 1 - z_1$ in step 1). For J_1 , we form $J_{11} = (x_1^3 x_2, x_2 x_3^2)$ and

 $J_{12} = J_1 :_{\rho} (x_2^2 x_3) = (x_1^3, x_3)$ and apply the algorithm recursively to these...

... bla bla bla...

... Therefore the multivariate Hilbert series of P/I is

$$\mathsf{HS}_{P/I}(z_1, z_2) = \frac{-z_1^5 z_2^{-1} + z_1^3 z_2^{-3} + z_1^2 z_2^{-2} + z_1^3 + z_1^2 z_2^{-1} + z_1^2 + z_1 z_2^{-1} + z_1 + 1}{1 - z_1}$$

Change of Grading (Subsection 5.8.C)

Proposition

Let $W \in \operatorname{Mat}_{m,n}(\mathbb{Z})$ and $A = (a_{ij}) \in \operatorname{Mat}_{\ell,m}(\mathbb{Z})$ be two matrices such that the gradings on $P = K[x_1, \ldots, x_n]$ given by W and by $A \cdot W$ are both of positive type. Let M be a finitely generated P-module which is graded with respect to the grading given by W. Then the Hilbert series of M with respect to the grading given by $A \cdot W$ is

$$\mathsf{HS}_{M,A\cdot W}(z_1,\ldots,z_\ell)=\mathsf{HS}_{M,W}(z_1^{a_{11}}\cdots z_\ell^{a_{\ell 1}},\ldots,z_1^{a_{1m}}\cdots z_\ell^{a_{\ell m}})$$

Example

Let $P = K[x_1, x_2, x_3]$ be graded by $W = \begin{pmatrix} -1 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$, and let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Then $HS_{P,W}(z_1, z_2) = 1/((1 - z_1^{-1} z_2^2)(1 - z_1)(1 - z_1^2 z_2))$ and $A \cdot W = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 0 & 1 \end{pmatrix}$. The Hilbert series of P with respect to the grading given by $A \cdot W$ is

$$\mathsf{HS}_{P,A\cdot W}(z_1,z_2) = 1/((1-z_1z_2^2)(1-z_1)(1-z_1^3z_2)) = \mathsf{HS}_{P,W}(z_1,z_1z_2)$$

in accordance with the proposition.

Corollary

Let $U \in Mat_{\ell,n}(\mathbb{Z})$ be a matrix of positive type, let $V \in Mat_{m-\ell,n}(\mathbb{Z})$, and let $W = \binom{U}{V} \in Mat_{m,n}(\mathbb{Z})$.

- We have $HS_{M,U}(z_1,...,z_\ell) = HS_{M,W}(z_1,...,z_\ell,1,...,1)$.
- We have $P_{U,0} = K$ and for every $d \in \mathbb{Z}^{\ell}$, we have the following equality $\dim_{K}(M_{U,d}) = \sum_{e \in \mathbb{Z}^{m-\ell}} \dim_{K}(M_{(d,e)})$.

Toric Ideals

Toric Ideals Associated to Matrices

Let *K* be a field and $P = K[x_1, ..., x_n]$ a polynomial ring over *K*. Given further indeterminates $y_1, ..., y_m$, we let $L = K[y_1, ..., y_m, y_1^{-1}, ..., y_m^{-1}]$ be the Laurent polynomial ring in the indeterminates $y_1, ..., y_m$ over *K*.

Definition

An element of the form $y_1^{i_1} y_2^{i_2} \cdots y_m^{i_m} \in L$ with $i_1, \ldots, i_m \in \mathbb{Z}$ is called an extended term. The group of all extended terms is denoted by \mathbb{E}^m .

Definition

Let $\mathcal{A} = (a_{ij}) \in \operatorname{Mat}_{m,n}(\mathbb{Z})$, and let $t_i = y_1^{a_{1i}} y_2^{a_{2i}} \cdots y_m^{a_{mi}}$ for $i = 1, \ldots, n$. We define a K-algebra homomorphism $\varphi : P \longrightarrow L$ by $\varphi(x_i) = t_i$ for $i = 1, \ldots, n$. Then the ideal $I(\mathcal{A}) = \operatorname{Ker}(\varphi)$ in P is called the toric ideal associated to the matrix \mathcal{A} , or to the tuple of extended terms (t_1, \ldots, t_n) .

Proposition

Every toric ideal is a prime ideal.

Recall that a binomial in *P* is a polynomial of the form at + a't' with coefficients $a, a' \in K \setminus \{0\}$ and distinct terms $t, t' \in \mathbb{T}^n$. A binomial ideal is an ideal generated by binomials.

Definition

- Let $S \subseteq P$ be a set of polynomials.
 - A binomial in *P* is called unitary if it is of the form t t' with $t, t' \in \mathbb{T}^n$. The set of all unitary binomials in *S* will be denoted by UB(*S*).
 - A binomial in *P* is called pure if it is of the form t t' with coprime terms $t, t' \in \mathbb{T}^n$. The set of all pure binomials in *S* will be denoted by PB(S).

Computing Toric Ideals

For an extended term $t \in \mathbb{E}^m$, there exists a unique minimal number $\tau(t) \in \mathbb{N}$ such that $(y_1 \cdots y_m)^{\tau(t)} \cdot t \in K[y_1, \dots, y_m]$.

Proposition

Let $t_1, \ldots, t_n \in \mathbb{E}^m$, let $I \subseteq P$ be the toric ideal associated to (t_1, \ldots, t_n) , and let $J \subseteq K[x_1, \ldots, x_n, y_1, \ldots, y_m]$ be the binomial ideal generated by $\{\pi^{\tau(t_1)}(x_1 - t_1), \ldots, \pi^{\tau(t_n)}(x_n - t_n)\}$ where $\pi = y_1 \cdots y_m$.

- We have $I = (J : \pi^{\infty}) \cap K[x_1, \ldots, x_n]$.
- Let z be a new indeterminate, and let G be a Gröbner basis of the ideal J + (πz − 1) with respect to an elimination ordering for {y₁,..., y_m, z}. Then the toric ideal I is generated by G∩K[x₁,..., x_n].
- The toric ideal 1 is generated by pure binomials.

Efficiently Computing Toric Ideals

Theorem

Let $\mathcal{A} = (a_{ij}) \in \operatorname{Mat}_{m,n}(\mathbb{Z})$, let $\mathcal{L}(\mathcal{A})$ be the kernel of the \mathbb{Z} -linear map $\mathbb{Z}^n \longrightarrow \mathbb{Z}^m$ defined by \mathcal{A} , and let $V = \{v_1, \ldots, v_r\} \subseteq \mathcal{L}(\mathcal{A})$ generate the \mathbb{Z} -module $\mathcal{L}(\mathcal{A})$. Furthermore, let $\pi = x_1 x_2 \cdots x_n$. Then we have

$$I(\mathcal{A}) = I_V :_{_P} \pi^{\infty}$$

Corollary

Let $\mathcal{A} = (a_{ij}) \in Mat_{m,n}(\mathbb{Z})$. Consider the following sequence of instructions.

- (1) Compute a system of generators $V = \{v_1, \dots, v_r\}$ of $\mathcal{L}(\mathcal{A})$.
- (2) For i = 1, ..., r, write $v_i = v_i^+ v_i^-$ and let $\varrho(v_i) = \mathbf{x}^{v_i^+} \mathbf{x}^{v_i^-} \in P$. Form the lattice ideal $I_V = (\varrho(v_1), ..., \varrho(v_r))$ and compute the saturation $I = I_V :_P (x_1 \cdots x_n)^\infty$.
- (3) Return the ideal I and stop.

This is an algorithm which computes the toric ideal $I(\mathcal{A})$ associated to \mathcal{A} .

A common method ito perform Step (1) s via the computation of the Hermite normal form of $\,\mathcal{A}$.

Lorenzo Robbiano (Università di Genova)

Hilbert Functions and Toric Ideals

Hilbert Bases

The Hilbert Basis

We let $\mathcal{A} = (a_{ij}) \in \operatorname{Mat}_{m,n}(\mathbb{Z})$. We consider the homogeneous system of linear Diophantine equations $\mathcal{A} \mathbf{z} = 0$ and we recall that $\mathcal{L}(\mathcal{A})$ is the subgroup of \mathbb{Z}^n consisting of its solutions.

Then we let $\mathcal{L}_+(\mathcal{A}) = \mathcal{L}(\mathcal{A}) \cap \mathbb{N}^n$ be the set of its componentwise non-negative solutions. Clearly, the set $\mathcal{L}_+(\mathcal{A})$ is a submonoid of \mathbb{N}^n .

Next we consider the following partial ordering \succ on $\mathcal{L}_+(\mathcal{A})$. Given two vectors $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n) \in \mathcal{L}_+(\mathcal{A})$, we let $u \succ v$ if $u_i \ge v_i$ for $i = 1, \ldots, n$ and if this inequality is strict for some $i \in \{1, \ldots, n\}$.

The ordering Lex is a term ordering on \mathbb{N}^n , hence its restriction to $\mathcal{L}_+(\mathcal{A})$ is a well-ordering. Obviously, $u \succ v$ implies $u >_{\text{Lex}} v$. Therefore there exist minimal elements in $\mathcal{L}_+(\mathcal{A}) \setminus \{0\}$ with respect to \succ .

Definition

The set of all minimal elements of $\mathcal{L}_+(\mathcal{A}) \setminus \{0\}$ with respect to the partial ordering \succ is called the Hilbert basis of $\mathcal{L}_+(\mathcal{A})$.

Proposition

Let $\mathcal{A} \in Mat_{m,n}(\mathbb{Z})$, and let H be the Hilbert basis of $\mathcal{L}_+(\mathcal{A})$. Then every element of $\mathcal{L}_+(\mathcal{A})$ can be written as a linear combination of elements of H with coefficients in \mathbb{N} .

Proof.

Let $S \subseteq \mathcal{L}_+(\mathcal{A})$ be the set of all vectors which can be written as a linear combination of elements of H with coefficients in \mathbb{N} . For a contradiction, assume that $\mathcal{L}_+(\mathcal{A}) \setminus S \neq \emptyset$. We have already noted that Lex is a well-ordering on $\mathcal{L}_+(\mathcal{A})$. Hence there exists a minimal element $u \in \mathcal{L}_+(\mathcal{A}) \setminus S \neq \emptyset$ with respect to Lex. Clearly, we have $u \notin H$. Thus there exists a vector $v \in H$ such that $u \succ v$. Now we use that fact that $u - v \in \mathcal{L}_+(\mathcal{A})$ to conclude that $u \succ u - v$. This shows $u >_{\text{Lex}} u - v$, and therefore $u - v \in S$. But this implies $u \in S$, a contradiction.

Lawrence Liftings

Definition

Let
$$\mathcal{A} \in \operatorname{Mat}_{m,n}(\mathbb{Z})$$
. Then the matrix $\overline{\mathcal{A}} = \begin{pmatrix} \mathcal{A} & \mathbf{0} \\ \mathcal{I}_n & \mathcal{I}_n \end{pmatrix}$ where \mathcal{I}_n is the identity matrix of size n , is called the Lawrence lifting of \mathcal{A} .

The first connection between \mathcal{A} and $\overline{\mathcal{A}}$ is that the map $\lambda : \mathcal{L}(\mathcal{A}) \longrightarrow \mathcal{L}(\overline{\mathcal{A}})$ defined by $\lambda(u) = (u, -u)$ is clearly bijective. But much more is true.

Proposition

Let $A \in Mat_{m,n}(K)$, let \overline{A} be the Lawrence lifting of A, and let $Q = K[x_1, \ldots, x_n, w_1, \ldots, w_n]$.

- The toric ideal $I(\overline{A}) \subseteq Q$ has a system of generators consisting of binomials of the form $x_1^{\alpha_1} \cdots x_n^{\alpha_n} w_1^{\beta_1} \cdots w_n^{\beta_n} x_1^{\beta_1} \cdots x_n^{\beta_n} w_1^{\alpha_1} \cdots w_n^{\alpha_n}$ where $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in \mathbb{N}$.
- There is a bijection between PB(I(A)) and PB(I(A)) which maps a binomial x^α x^β to x^αw^β x^βw^α.
- There is a bijection between L₊(A) and the elements in PB(I(Ā)) of the form x^α − w^α with α ∈ Nⁿ.

The last part of this proposition yields a bijection between the minimal elements of $\mathcal{L}_+(\mathcal{A}) \setminus \{0\}$ with respect to \succ and the elements $\mathbf{x}^u - \mathbf{w}^u$ in $\operatorname{PB}(I(\overline{\mathcal{A}}))$ with the property that there is no other element $\mathbf{x}^v - \mathbf{w}^v$ in $\operatorname{PB}(I(\overline{\mathcal{A}}))$ for which $u \succ v$. Let us call these elements the primitive separated binomials in $\operatorname{PB}(I(\overline{\mathcal{A}}))$.

Corollary

Let $\mathcal{A} \in Mat_{m,n}(\mathbb{Z})$. Then there exists a bijection between the Hilbert basis of $\mathcal{L}_+(\mathcal{A})$ and the set of primitive separated binomials in $PB(I(\overline{\mathcal{A}}))$.

Finiteness and Computation of Hilbert Bases (6.1.7)

Theorem

Let $\mathcal{A} \in \operatorname{Mat}_{m,n}(\mathbb{Z})$, and let G be a reduced Gröbner basis of $I(\overline{\mathcal{A}})$. Then the set $H = \{ \alpha \in \mathbb{N}^n \mid \mathbf{x}^{\alpha} - \mathbf{w}^{\alpha} \in G \}$ is finite, and it is the Hilbert basis of the monoid $\mathcal{L}_+(\mathcal{A})$.

Corollary

Let P be graded by a matrix $W \in Mat_{m,n}(\mathbb{Z})$. Then the K-vector space $P_{W,0}$ is a finitely generated K-algebra.

Proof.

A *K*-basis of $P_{W,0}$ is given by the set of terms $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ such that $W \cdot (\alpha_1, \dots, \alpha_n)^{\text{tr}} = 0$. Therefore the Hilbert basis of $\mathcal{L}_+(W)$ generates $P_{W,0}$ as a *K*-algebra. This Hilbert basis is finite by the theorem.

Example

Consider the Diophantine equation $3z_1 - 5z_2 + 4z_3 = 0$. We want to find all triples $(a_1, a_2, a_3) \in \mathbb{N}^3$ which satisfy this equation. Let $\mathcal{A} = (3 - 5 \ 4)$. We compute the reduced DegRevLex-Gröbner basis of the toric ideal of the Lawrence lifting of \mathcal{A} . The result is $\{ x_2 x_3^2 w_1 - x_1 w_2 w_3^2, \, x_3 w_1^3 w_2 - x_1^3 x_2 w_3, \, x_1^2 x_2^2 x_3 - w_1^2 w_2^2 w_3, \\ x_3^3 w_1^4 - x_1^4 w_3^3, \, x_1^5 x_2^3 - w_1^5 w_2^3, \, x_2^4 x_3^5 - w_2^4 w_3^5, \, x_1 x_2^3 x_3^3 - w_1 w_2^3 w_3^3 \} .$ Thus the set of primitive separated binomials in $PB(I(\overline{A}))$ is $\{x_1^2x_2^2x_3 - W_1^2W_2^2W_3, x_1^5x_2^3 - W_1^5W_2^3, x_2^4x_3^5 - W_2^4W_3^5, x_1x_2^3x_3^3 - W_1W_2^3W_3^3\}$ The Hilbert basis of $\mathcal{L}_{+}(\mathcal{A})$ is $\{(2,2,1), (5,3,0), (0,4,5), (1,3,3)\}$. So, the non-negative solutions of $3z_1 - 5z_2 + 4z_3 = 0$ are precisely the triples $(a_1, a_2, a_3) = n_1(2, 2, 1) + n_2(5, 3, 0) + n_3(0, 4, 5) + n_4(1, 3, 3)$ with $n_1, n_2, n_3, n_4 \in \mathbb{N}$.

This Hilbert basis can also be used to determine the subring $P_{\mathcal{A},0}$ where $P = K[x_1, x_2, x_3]$ is equipped with the \mathbb{Z} -grading given by \mathcal{A} . The above corollary yields $P_{\mathcal{A},0} = K[x_1^2 x_2^2 x_3, x_1^5 x_2^3, x_2^4 x_3^5, x_1 x_2^3 x_3^3]$.

Inhomogeneous Diophantine equations can be solved using a similar technique, but require an extra trick.

Example

We want to find the non-negative integer solutions of the Diophantine equation $2z_1 + 5z_2 + 3z_3 = 11$.

They are the non-negative integer solutions of the homogeneous equation $2z_1 + 5z_2 + 3z_3 - 11z_4 = 0$ having fourth coordinate one. Let $\mathcal{A} = (2 \ 5 \ 3 \ -11)$. We compute the reduced DegRevLex -Gröbner basis of the toric ideal of the Lawrence lifting of \mathcal{A} and get the following primitive separated binomials:

$$\begin{split} & \{x_2x_3^2x_4 - w_2w_3^2w_4, x_1x_3^3x_4 - w_1w_3^3w_4, x_1^3x_2x_4 - w_1^3w_2w_4, x_1^4x_3x_4 - w_1^4w_3w_4, \\ & x_1x_2^4x_4^2 - w_1w_2^4w_4^2, x_1^2x_2^3x_3x_4^2 - w_1^2w_2^3w_3w_4^2, x_2^6x_3x_4^3 - w_2^6w_3w_4^3, x_1^{11}x_4^2 - w_1^{11}w_4^2, \\ & x_3^{11}x_4^3 - w_3^{11}w_4^3, x_2^{11}x_4^5 - w_2^{11}w_4^5\} \\ & \text{So, the Hilbert basis of } \mathcal{L}_+(\mathcal{A}) \text{ is the set} \\ & \{(0, 1, 2, 1), (1, 0, 3, 1), (3, 1, 0, 1), (4, 0, 1, 1), \\ & (1, 4, 0, 2), (2, 3, 1, 2), (0, 6, 1, 3), (11, 0, 0, 2), (0, 0, 11, 3), (0, 11, 0, 5)\} \,. \end{split}$$

Example

Consider the system of Diophantine equations

$$\begin{aligned} z_1 + 4z_2 + z_3 - 2z_4 &= 5\\ 2z_1 - z_2 + z_3 - 3z_4 &= 0 \end{aligned}$$

To find its non-negative integer solutions, we determine the non-negative integer solutions of the associated homogeneous system

$$\begin{cases} z_1 + 4z_2 + z_3 - 2z_4 - 5z_5 &= 0 \\ 2z_1 - z_2 + z_3 - 3z_4 &= 0 \end{cases}$$

which have last coordinate one. Let $\mathcal{A} = \begin{pmatrix} 1 & 4 & 1-2-5 \\ 2 & -1 & 1-3 & 0 \end{pmatrix}$. We get the following Hilbert basis of $\mathcal{L}_+(\mathcal{A})$:

 $\{(0,1,1,0,1),\,(1,0,1,1,0),\,(0,0,15,5,1),\,(5,10,0,0,9),\,(6,9,0,1,8),$

(7, 8, 0, 2, 7), (8, 7, 0, 3, 6), (9, 6, 0, 4, 5), (10, 5, 0, 5, 4), (11, 4, 0, 6, 3),

 $(12,3,0,7,2), (13,2,0,8,1), (14,1,0,9,0)\}$

Since we are interested in elements of $\mathcal{L}_+(\mathcal{A})$ whose last coordinate is one, the relevant solutions are those whose last coordinate is zero or one. Let $Z = \{n_1(1,0,1,1) + n_2(14,1,0,9) \mid n_1, n_2 \in \mathbb{N}\}$. Then we have three families of solutions, namely (0,1,1,0) + Z, (0,0,15,5) + Z, and (13,2,0,8) + Z.

How many matrices in $Mat_2(\mathbb{N})$ have both row sums equal to two?

METHOD 1

We label each position in the matrix by an indeterminate. Then we notice that the matrices $\binom{a_{11}}{a_{21}} \frac{a_{12}}{a_{22}}$ with $a_{11} + a_{12} = a_{21} + a_{22} = 2$ are in 1–1 correspondence with the power products $x_1^{a_{11}} x_2^{a_{12}} x_3^{a_{21}} x_4^{a_{22}}$ in $P = \mathbb{Q}[x_1, x_2, x_3, x_4]$ which have degree $\binom{2}{2}$ with respect to the grading given by $\binom{1\ 1\ 0\ 0}{0\ 1\ 1}$.

The bivariate Hilbert series of P with respect to this grading is

$$HS_P(z_1, z_2) = \frac{1}{(1-z_1)^2(1-z_2)^2}$$

Therefore the answer is simply the coefficient of $z_1^2 z_2^2$ in the expansion of this series. By expanding the product $(1 + z_1 + z_1^2 + \cdots)^2 (1 + z_2 + z_2^2 + \cdots)^2$, we see that the answer is nine.

METHOD 2

Example

First we solve the homogeneous Diophantine equation $z_1 + z_2 = z_3 + z_4$ as in the previous examples. Using $\mathcal{A} = (1 \ 1 \ -1 \ -1)$, the Hilbert basis of $\mathcal{L}_+(\mathcal{A})$ turns out to be

Using $\mathcal{A} = (1 \ 1 - 1 - 1)$, the Hildert basis of $\mathcal{L}_+(\mathcal{A})$ turns out to be $\{(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1), (0, 1, 1, 0)\}$. The corresponding matrices $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ have row sums one. We are looking for all their \mathbb{N} -linear combinations with row sums equal to two. For this purpose, we use the above correspondence and represent them as power products $t_1 = x_1x_3$, $t_2 = x_1x_4$, $t_3 = x_2x_4$, and $t_4 = x_2x_3$ in P. Since their row sums are one, we need to determine the power products of degree two in the terms t_i .

To compute the value of the Hilbert function of the ring $Q = \mathbb{Q}[t_1, t_2, t_3, t_4]$ in degree two, we use the surjective \mathbb{Q} -algebra homomorphism $\varphi : \mathbb{Q}[y_1, y_2, y_3, y_4] \longrightarrow Q$ defined by $y_i \mapsto t_i$. Its kernel *I* is the toric ideal of (t_1, t_2, t_3, t_4) and turns out to be $I = (y_1y_3 - y_2y_4)$. Therefore we get $HS_Q(z) = HS_{\mathbb{Q}[y_1, y_2, y_3, y_4]/I}(z) = \frac{1+z}{(1-z)^3} = 1 + 4z + 9z^2 + \cdots$ and hence the desired number is $HF_Q(2) = 9$. Using this method, we can even list the nine solution matrices. They correspond to the images under φ of the nine terms of degree two in $\mathbb{Q}[y_1, y_2, y_3, y_4]$ whose residue classes form a \mathbb{Q} -basis of $(\mathbb{Q}[y_1, y_2, y_3, y_4]/I)_2$. We find the following nine matrices:

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}, \ \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \ \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}, \ \begin{pmatrix} 2 & 0 \\ 2 & 0 \end{pmatrix}, \ \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \ \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix}, \ \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 2 \\ 0 & 2 \end{pmatrix}$$

Example 4 continued

METHOD 3

Example

The third method is to solve the system of inhomogeneous Diophantine equations

$$\begin{cases} z_1 + z_2 = 2 \\ z_3 + z_4 = 2 \end{cases}$$

using the technique explained in the preceding example. The Hilbert basis of the associated homogeneous system is

$$\{ (1, 1, 0, 2, 1), (0, 2, 1, 1, 1), (1, 1, 2, 0, 1), (1, 1, 1, 1, 1), (2, 0, 1, 1, 1), (2, 0, 2, 1, 1, 1), (2, 0, 2, 0, 1), (0, 2, 2, 0, 1), (0, 2, 2, 0, 1), (0, 2, 2, 0, 1) \}$$

It yields the same nine solution matrices.

METHOD 4

Example

Finally, we present the fourth method: hand calculation! Unfortunately, this method does not work in complicated examples. Guess what you need!!!

Lorenzo Robbiano (Università di Genova)

Hilbert Functions and Toric Ideals

Bounds for Hilbert Functions

Binomial Representations

Proposition

Let $n, i \in \mathbb{N}_+$. The number n has a unique representation of the form

$$n = \binom{n(i)}{i} + \binom{n(i-1)}{i-1} + \cdots + \binom{n(j)}{j}$$

such that $1 \le j \le i$ and such that $n(i), \ldots, n(j) \in \mathbb{N}$ are natural numbers which satisfy $n(i) > n(i-1) > \cdots > n(j) \ge j$.

Definition

Let $n, i \in \mathbb{N}_+$.

- The representation $n = \binom{n(i)}{i} + \dots + \binom{n(j)}{j}$ with the property that $1 \le j \le i$ and $n(i) > n(i-1) > \dots > n(j) \ge j$ is called the binomial representation of n in base i, or the ith Macaulay representation of n. We shall also denote it by $n_{[i]}$.
- The *i*-tuple $(n(i), \ldots, n(j), 0, \ldots, 0)$ is called the top binomial representation of *n* in base *i* and is denoted by $\text{Top}_i(n)$. We also let $\text{Top}_i(0) = (0, \ldots, 0)$.

The binomial representation of 102 in base 5 satisfies $102_{[5]} = \binom{8}{5} + 46_{[4]}$, since $\binom{8}{5} = 56 \le 102 < 126 = \binom{9}{5}$. Similarly, $\binom{7}{4} = 35 \le 46 < 70 = \binom{8}{4}$ yields $46_{[4]} = \binom{7}{4} + 11_{[3]}$. Continuing this way, we finally get $102_{[5]} = \binom{8}{5} + \binom{7}{4} + \binom{5}{3} + \binom{2}{2}$ and thus $\text{Top}_5(102) = (8, 7, 5, 2, 0)$. Similarly, we have $13984_{[10]} = \binom{16}{10} + \binom{15}{9} + \binom{12}{8} + \binom{11}{7} + \binom{9}{6} + \binom{8}{5} + \binom{5}{4} + \binom{3}{3}$ and $\text{Top}_{11}(13984) = (16, 15, 12, 11, 9, 8, 5, 3, 0, 0)$.

Some Functions

Definition

Let $n, i \in \mathbb{N}_+$ and consider the binomial representation $n_{[i]} = \binom{n(i)}{i} + \dots + \binom{n(j)}{j}$ of n in base i. • We let $(n_{[i]})^+ = \binom{n(i)+1}{i} + \dots + \binom{n(j)+1}{j}$. • We let $(n_{[i]})^- = \binom{n(i)-1}{i} + \dots + \binom{n(j)-1}{j-1}$. • We let $(n_{[i]})^+_+ = \binom{n(i)+1}{i+1} + \dots + \binom{n(j)+1}{j+1}$. • We let $(n_{[i]})^-_- = \binom{n(i)-1}{i-1} + \dots + \binom{n(j)-1}{j-1}$. Moreover, we let $(0_{[i]})^+ = 0$, $(0_{[i]})^- = 0$, $(0_{[i]})^+_+ = 0$, and $(0_{[i]})^-_- = 0$.

Example

The binomial representation of the number 4 in base 2 is $4_{[2]}=\binom{3}{2}+\binom{1}{1}$. Therefore we have $(4_{[2]})^-=\binom{2}{2}+\binom{0}{1}=1$, but $1_{[2]}=\binom{2}{2}$. Similarly, we have $(4_{[2]})^-_-=\binom{2}{1}+\binom{0}{0}=3$, but $3_{[1]}=\binom{3}{1}$.

Proposition

Let $n, i \in \mathbb{N}_+$, i > 1. Then we have the inequality $(((n_{[i]})^-)_{[i-1]})^+_+ \ge n$.

Theorem

Let m > n > 0 and i > 1.

- We have $(n_{[i]})^+ \leq m$ if and only if $n \leq (m_{[i]})^-$.
- The conditions above are satisfied if $n \leq (n_{[i]})^- + ((m-n)_{[i-1]})^-$.

Definition

Let $d \in \mathbb{N}$, and let $t \in \mathbb{T}^n$ be a term of degree d.

- A set of terms of the form {t' ∈ Tⁿ | deg(t') = d, t' ≥_{Lex} t} is called a Lex-segment. The empty set is also considered a Lex-segment.
- A *K*-vector subspace *V* of P_d is called a Lex-segment space if $V \cap \mathbb{T}^n$ is both a *K*-basis of *V* and a Lex-segment. In this case we denote the *K*-basis $V \cap \mathbb{T}^n$ by $\mathbb{T}(V)$.

Lex-Segments Spaces and Ideals II

Proposition

(Basic Properties of Lex-Segment Spaces)

Let $n \geq 2$, let $d \in \mathbb{N}$, let $V \subset P_d$ be a non-zero Lex-segment space, and let t be the lexicographically biggest term of degree d which is not in $\mathbb{T}(V)$. We write $t = x_1^{\alpha_1} \cdots x_r^{\alpha_r} x_{r+1}^{\alpha_{r+1}}$ where $r \in \{1, \ldots, n-1\}$ and $\alpha_{r+1} > 0$, and we let $d_i = d - \sum_{j=1}^i \alpha_j$ for $i = 1, \ldots, r$.

• The K-vector space V is the dth homogeneous component of the ideal

$$x_1^{\alpha_1+1} \cdot (x_1, \ldots, x_n)^{d_1-1} + x_1^{\alpha_1} x_2^{\alpha_2+1} \cdot (x_2, \ldots, x_n)^{d_2-1} + \cdots \\ \cdots + x_1^{\alpha_1} \cdots x_{r-1}^{\alpha_{r-1}} x_r^{\alpha_r+1} \cdot (x_r, \ldots, x_n)^{d_r-1}$$

Conversely, the dth homogeneous component of this ideal is the Lex-segment space such that the biggest term of degree d which is not contained in it is $x_1^{\alpha_1} \cdots x_r^{\alpha_r} x_{r+1}^{\alpha_{r+1}}$.

• The binomial representation of $\dim_{K}(V)$ in base n-1 is given by

$$\dim_{\mathcal{K}}(V) = \binom{n-1+d_1-1}{n-1} + \binom{n-2+d_2-1}{n-2} + \dots + \binom{n-r+d_r-1}{n-r}$$

The following proposition shows that we can find explicit expressions for the dimension and codimension of the vector space generated by a Lex-segment space in the next degree.

Proposition

Let $d \in \mathbb{N}$ and let $V \subset P_d$ be a non-zero Lex-segment space.

• We have
$$\dim_{\mathcal{K}}(P_1 \cdot V) = ((\dim_{\mathcal{K}}(V))_{[n-1]})^+$$
.

• We have $\operatorname{codim}_{\mathcal{K}}(P_1 \cdot V) = ((\operatorname{codim}_{\mathcal{K}}(V))_{[d]})^+_+$.

Lex-Segments Spaces and Hyperplane Sections

Definition

Let *V* be a *K*-vector subspace of *P*, and let $\ell \in P_1$. Then the image of *V* in $\overline{P}^{\ell} = P/(\ell)$ is called the ℓ -reduction of *V* and denoted by \overline{V}^{ℓ} .

For the next proposition, we are only interested in the x_n -reduction of a Lex-segment space. We identify \overline{P}^{x_n} with $K[x_1, \ldots, x_{n-1}]$ and let $\overline{V} = \overline{V}^{x_n}$.

Proposition

Let $d \in \mathbb{N}$, let $V \subset P_d$ be a non-zero Lex-segment space.

- We have $\dim_{\mathcal{K}}(\overline{V}) = ((\dim_{\mathcal{K}}(V))_{[n-1]})_{-}^{-}$.
- We have $\operatorname{codim}_{K}(\overline{V}) = ((\operatorname{codim}_{K}(V))_{[d]})^{-}$.

The Theorem of Green

Theorem

(Green's Reduction Theorem)

Let K be an infinite field, let $P = K[x_1, \ldots, x_n]$ be standard graded, let $d \in \mathbb{N}$, and let $V \subseteq P_d$ be a K-vector subspace. For a generic linear form $\ell \in P_1$, we have

$$\operatorname{codim}_{\mathcal{K}}(\overline{V}^{\ell}) \leq ((\operatorname{codim}_{\mathcal{K}}(V))_{[d]})^{-}$$

Here equality holds if V is a Lex-segment space.

Corollary

Let *K* be an infinite field, let $P = K[x_1, ..., x_n]$ be standard graded, and let *I* be a homogeneous ideal in *P*. For a generic linear form $\ell \in P_1$ and $d \in \mathbb{N}_+$, we have

$$\mathsf{HF}_{\overline{P}^{\ell}/\overline{l}^{\ell}}(d) = \mathsf{HF}_{P/(l+(\ell))}(d) \leq ((\mathsf{HF}_{P/l}(d))_{[d]})^{-}$$

Here equality holds if I_d is a Lex-segment space.

Theorem

(Macaulay's Growth Theorem)

```
Let K be a field, let d \in \mathbb{N}_+, and let V be a K-vector subspace of P_d.
Then we have
\operatorname{codim}_{K}(P_1 \cdot V) \leq ((\operatorname{codim}_{K}(V))_{\lceil d \rceil})^+_+
```

Here equality holds if V is a Lex-segment space.

Notice that this version provides us with a sharp bound on the growth of the Hilbert function of a standard graded K-algebra.

Corollary

Let K be a field, let $P = K[x_1, ..., x_n]$ be standard graded, let $I \subseteq P$ be a homogeneous ideal, and let $d \in \mathbb{N}_+$. Then we have

 $\mathsf{HF}_{P/I}(d+1) \le ((\mathsf{HF}_{P/I}(d))_{[d]})^+_+$

Here equality holds if $~I_d~$ is a Lex-segment space which satisfies $I_{d+1}=P_1\cdot I_d$.

There is no standard graded *K*-algebra *R* for which $HF_R(1) = 3$ and $HF_R(2) = 5$ and $HF_R(3) = 8$.

To see why this is true, we suppose that R = P/I is such an algebra, where $P = K[x_1, ..., x_n]$ is standard graded and $I \subseteq P$ is a homogeneous ideal.

Then the corollary yields $8 = HF_{P/I}(3) \le ((HF_{P/I}(2))_{[2]})_+^+ = (5_{[2]})_+^+ = (\binom{3}{2} + \binom{2}{1})_+^+ = \binom{4}{3} + \binom{3}{2} = 7$, a contradiction.