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Preliminaries

@ K acomputable field (Q, Q(v/5), Zp, . -..).

@ Term orderings on T” (first non zero element on each column of the
associated matrix is positive).

@ Grobner Bases.

@ Macaulay’s Basis Theorem:
T"\ LT,(/) is a basis of P/l as a K-vector space.

@ T"\LT,(/) is computable using Buchberger’s Algorithm.
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A Simple (Standard) Grading

@ Gradingon P = K[x]: deg(x') =1i.
@ P; ={homogeneous polynomials of degi} = {cx’ |cc K} .
@ They are K -vector spaces of dimension 1 forall i > 0.

@ We say that the Hilbert function of P, i.e. the function from N to N
defined by
i— dimK(P;)

is constant and equal to 1.

@ The associated power series is

S(dimg(P)Z =Y 2" = &
=0 =0
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Formule di Postulazione

How many independent linear conditions are requested for a vector to
belong to a given subvector space V' of V ?

The answer is codimy (V") = dimy(V) — dimg (V') .

If V isthe space of forms of a given degree, a linear condition is given
for instance by imposing the vanishing at a point p .

Given a finite set X of points in P” , the number of independent
conditions imposed to the forms of degree i by the vanishing at X, is
exactly the codimension of /(X); in P; = K[xo, X1,...,Xn]i -

Let X ={pi,p2,p3} where p; =(1,0,0), p. =(0,1,0),
ps =(0,0,1), then /(X); =(0), hence dim(P/I(X)): =3, since the
points impose independent conditions on the lines in the projective plane.

Let X = {p1,p2,q3} where gs =(1,1,0), then the linear system
a;=0;a=0;a; + a =0 isequivalentto a; =0;a, = 0. They impose
only 2 independent conditions and we see that dim(P//(X)); = 2.
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Graded Rings and Modules
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[ -Graded Rings and Modules

@ Let (I',+) be a monoid.
@ Thering R iscalled a I'-graded ring (or a I -graded ring, or a ring

graded over ) if there exists a family of additive subgroups {R} ecr
such that

o R= @WErRAf 9
e R,-R,CR,., forall v,y €r.
@ The elements of R, are called homogeneous of degree ~ . For r € R,
we write deg(r) =~ .
olf reRand r=3% .rr, isthe decomposition of r,where r, € R, ,
then r, is called the homogeneous component of degree ~ of r.
o If Risa I -gradedringand M isan R -module, then M is called a
(I, R) -graded module if if there exists a family of additive subgroups
{M,},cr suchthat M =@, M, ,and R,-M,, C M, forall
7,7 €.
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Graded Submodules and Homogeneous ldeals

Proposition

Let R be a T -graded ring and M a graded R -module. Let N C M be an
R -submodule, and let N, = NN M, forall v €T . Then the following
conditions are equivalent.

(*] N = GB'YGFN'Y

°© /fneN and n=7}%_ _-n, isthe decomposition of n into its
homogeneous components, then n, ¢ N forall veT .

@ There is a system of generators of N which consists of homogeneous
elements.

Graded ideals are usually called homogeneous ideals.

Question:
Given anideal in P, how is it possible to detect if it is homogeneous or not?
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Shifting Degrees (1.7.6)

Definition

Let R bea ~ -gradedring, M, N graded R -moduled,and ¢: M — N
an R -homomorphism. ¢ is called a homomorphism of graded modules or a
homogeneous P -linear map if ¢(M,) C N, forall ~.

Definition

Let R bea I -gradedring M agraded R -module,and vy T .
@ Forevery § eI we define M(v)s = Ms1, . We say that the I -graded
R -module M(v) is obtained by shifting the degrees.
@ Modules of the form @jc/R(v;) , where | isasetand ~; €Tl for ie/
are called I -graded free R -modules. Here we let
(@®ict R(i)) s = ®iciR(7i)s forall 6T .

REMARK. Let R be a I-graded ring M agraded R -module. Given
homogeneous elements vy,...,v, € M with deg(v;) =; we consider the
graded free module F = &{_,R(v;) . The R-linearmap ¢: F — M
defined by e; — v; is a homomorphism of graded I'-modules. We say
that ¢ is the map induced by (vq,...,Vv;).
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Standard Gradings

Definition
A K -algebra R is called a standard graded K -algebra if itis N -graded,
satisfies Ry = K and dimk(Ri) < oo, and if R is generated by the
elements of Ry asa K -algebra.

| \

Example
K[x,y]/(x? — y®) is not standard graded, but for instance it is graded by

deg(x) = 3, deg(y) =2

| A

Example

Let P = K|[x1, x2] be equipped with the standard grading.
Thenthe K -subalgebra S = K[x2, xix2,xZ] of P is a finitely generated
N -graded algebra, but it is not standard graded, since S; = {0} .

Projective schemes. Closures of affine schemes. Tangent Cones.
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Gradings Defined by Matrices |

Let m> 1, and let the polynomial ring P = K|[x1,...,X,] be equipped with a
Z™ -grading such that K C Py and xi,...,x, are homogeneous elements.

@ For j=1,...,n,let (wy;,...,wn)) € Z™ be the degree of x; . The
matrix W = (wj) € Maty, 5(Z) is called the degree matrix of the grading.
So, the columns of the degree matrix are the degrees of xi,...,x,. The
rows are called the weight vectors of xq,..., X, .

@ Conversely, given a matrix W = (w;) € Mat, ,(Z) , we can consider the
Z™ -grading on P for which K C P, and the indeterminates are
homogeneous elements whose degrees are given by the columns of W.
In this case, we say that P is graded by W.

@ Let d € Z™. The set of homogeneous polynomials of degree d is
denoted by Pw.q (or simply by Py ). A polynomial f e Py 4 is also
called homogeneous of degree d , and we write deg,,(f) =d .
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Gradings Defined by Matrices |l

If a grading on P is defined by a matrix W € Mat, 5(Z) , the degree of a
term t=xy"---x," is given by deg, (f) =W - (as,...,an)".
So, we have

{deZ™|Pwg#0}={W-(a1,...,an)" | (a1,...,an) € N"}
Example

Let P = K|x1, X2, X3, X4] be graded by the matrix

11 1 1
W=1[1 1 0 0
1 0 10

andlet f = xixs — XoX3 . Then f is homogeneous of degree (2,1,1)",
because W -log(xixs)" = W -log(xex3)* = (2,1,1)".

Example

|

Let P = K]x1,...,Xs] . Then the standard grading on P is defined by the
matrix (11...1).
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Homogeneous Buchberger (4.5.1)

Proposition

Let M be a graded submodule of F and {g,...,gs} a setof non-zero
homogeneous vectors which generate M .

@ Buchberger’s Algorithm applied to the tuple G = (g1,...,3gs) returns a
homogeneous o -Grébner basis of M .

@ The reduced o -Grébner basis of M consists of homogeneous vectors.

4
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The non-Normal Quartic Curve

Example

We consider the projective curve given parametrically by
xo = 8% x; =8, xo = st3, x3=1*.In K[s,t,x0, X1, X, X3] We take the ideal
J=(x —s* x3 — s, xo— st3, x3 — t*) . By assigning arbitrary degrees

to s, t we get the corresponding degrees of X, X1, X2, X3 . Consequently,
the ideal J is W -homogeneous where

104310
W:<010134>

Let P = k[xo, X1, X2, X3] and /= J N P, the elimination ideal. Then
2 3 2 .3 2 2
I = (XoXs — X1 X2, X5X2 — X7, X1X5 — X3, XoX5 — X[ X3)

turns out to be W’ -homogeneous, where
, (4 3 1 0
w3543
Adding the two lines, we see that / is (4,4,4,4) homogeneous, hence also

(1,1,1,1) , homogeneous. Therefore we may also consider P/I as a
standard graded algebra.
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Monomial Ideals

A non-trivial class of graded objects is given by the following characterization
of monomial ideals as the most homogeneous ideals. Recall that a square
matrix is called non-singular if its determinant is different from zero.

Proposition

Let | be anideal of P . Then the following conditions are equivalent.
@ The ideal | is monomial.

@ There is a non-singular matrix W € Mat,(Z) such that | is
homogeneous with respect to the grading on P givenby W .

@ Forevery m>1 and every matrix W € Maty, »(Z) , the ideal | is
homogeneous with respect to the grading on P givenby W .
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Positivity of Matrices

enzo Robbiano (Universita di Genova) Hilbert Functions i sau, June 2011 17/82



Matrices of Positive Type

Let m>1,let P be graded by a matrix W of rank m in Mats »(Z) , and
let wy,...,w, betherowsof W .

@ The gradingon P given by W is called of non-negative type if there
exist ai,...,am € Z such that the entries of v=ayw; +---+ anwn
corresponding to the non-zero columns of W are positive. In this case,
we shall also say that W is a matrix of non-negative type.

@ We say that the grading on P given by W is of positive type if there
exist ai,...,am € Z such that all entries of aywy + --- + apwy, are
positive. In this case, we shall also say that W is a matrix of positive

type.
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Nakayama’s Lemma

Let P be graded by W e Mat, ,(Z) , a matrix of positive type, and
let M £ 0 be a finitely generated graded P -module.

@ A set of homogeneous elements my, ..., ms generates
the P -module M if and only if their residue classes my, ..., Mg
generate the K -vector space M/(x1,...,x,)M .

@ Every homogeneous system of generators of M contains a minimal one.
o Allirredundant systems of homogeneous generators of M are minimal.

v

This proposition is not true in general if W is of non-negative type.

Let P = K]x,y] be graded by the matrix W = (0 1), and let

I=(xy, y—xy) . Then W is of non-negative type, / is a homogeneous
ideal, and {xy, y — xy} is an irredundant homogeneous system of
generators of /. However, since /= (y) , this system of generators is not
minimal. Notice that we have P, = (y) and Py = P/Py =2 K[x] .
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A Fundamental Theorem (4.1.19)

Let P be graded by a matrix W € Matn, q(Z) of positive type, and let M be
a finitely generated graded P -module.

@ We have Pp = K.
@ Forall deZ™, we have dimk(My) < co

|

Proof.

First we show a). Let V = (a; @& --- am) € Maty »(Z) be suchthat V.- W has
positive entries only. We see that Pw,o C Pv.w,o . Now it suffices to note that every
term t=x;"---x3" # 1 has positive degree deg,.,(t)=V -W-(a1,..., o) > 0.
In order to prove b), we choose a finite homogeneous system of generators of M and
consider the corresponding representation M = F/N where N is a graded
submodule of F . Clearly, it suffices to prove the claim for F . We do this by showing
it is true for each P(—¢;) . Since P(—d;)a = Pa—s; , it suffices to prove that

dimk(P4) < oo forall d € Z™ . Since W is of positive type, there exists a matrix

V € Maty, »(Z) suchthat V- W has all entries positive. We have Pw.q C Pv.w,v.q -
Hence we only have to show that the K -vector spaces Py.w,; are finite dimensional
for all i € Z . Their vector space bases {x;""---x;" | V- W - (ay,...,an)" =i} are
finite, because V - W has positive entries only. O

v
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A Nice Property

Let P be graded by a matrix W € Mat, ,(Z) of rank m, and let T" be the

set of terms in P . The following conditions are equivalent.
@ The first non-zero element in each non-zero column of W is positive.

@ For i=1,...,n, we have deg (Xi) >wcx 0.

@ The restriction of Lex to the monoid T = {d € Z™ | Pw 4 # 0} isa
well-ordering.

@ The restriction of Lex to the monoid T = {d € Z™ | Pw q # 0} is aterm

ordering.

@ There exists a term ordering T on T" which is compatible with deg, .

21/82
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Positive Matrices

Let W e Mat;, 5(Z) be a matrix of rank m .

@ The gradingon P defined by W is called non-negative if the first
non-zero element in each non-zero column of W is positive. In this
case, we shall also say that W is a non-negative matrix.

@ The grading on P defined by W is called positive if no column of W is

zero and the first non-zero element in each column is positive. In this
case, we shall also say that W is a positive matrix.

REMARK. The above proposition implies that, if W defines a non-negative
grading, there exists a term ordering on T” which is compatible with deg,, .
If W is positive, then we have deg, (X;) >1ex 0 for i=1,...,n, and hence
[P, = @d>m0 Pwa=(X1,...,Xn) ,and Pp = P/P. =K.

Proposition

If the grading defined by W is positive, then it is of positive type. In particular,
the claims of the Fundamental Theorem are valid under the assumption
that W is positive.
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Definition of Hilbert Function

Definition

Let M be a finitely generated graded P -module. Let W € Mat, »(Z) be a
matrix of rank m of positive type (in particular, positive).
Then there is a well-defined map

HFmiZm — Z
i dimk(M)

This map is called the Hilbert function of M .
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Integer Functions
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Integer Functions

Amap f:7Z — Z is called an integer function. Given an integer function
f:7Z — Z , we define the following operators.

@ The integer function Af:Z — Z defined by Af(i) = (i) — f(i —1) for
i € Z is called the (first) difference function of f.

o Let A% =f.For r>1,we inductively define an integer function
A'f:Z — 7 by A'f=A(A"'f) and call it the rt" difference function
of f.

@ Given a number q € Z , we define an integer function Aqf:Z — Z by
Agf(i) = f(i) — f(i — q) for i€ Z and call it the g-difference function
of f.

@ An integer function f:Z — Z is called an integer Laurent function if
there exists a number fy € Z such that f(i) =0 forall i <.

@ Given an integer Laurent function f:Z — Z , we define another integer
Laurent function ©f:Z — Z by ¥f(i) =>_,.;f(/) and call it the
summation function of f . -
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Integer Valued Polynomials

Proposition

Let f:7Z — Z be an integer Laurent function. Then we have
YAf=AYf=f.

Definition

A polynomial p € Q[t] is called an integer valued polynomial if we have
p(i) € Z forall i€ Z . The set of all integer valued polynomials will be
denoted by IP. Furthermore, for every r > 0, we let IP<, be the set of all
integer valued polynomials of degree <r .

The polynomial (}) is an integer valued polynomial.
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Basic Properties of Integer Valued Polynomials

Let acZ, re N, andlet (ap,as,a,...) be a sequence of integers.

@ For an integer valued polynomial p , we have deg(p) = r if and only if
A"p(t) € Z \ {0} . If this holds true, we have A'p(t) = r! LCpeq(p) € Z .

@ Let p be an integer valued polynomial of degree r . Then the polynomial
q=p—r! LCooy(p) ("*?) is an integer valued polynomial of degree < r .

® Forevery r >0, the set of polynomials {("'#) |0<i<r} isa
Z -basis of IP<, . Consequently, the set {("'#) | i e N} isa Z -basis
of TP .

@ Foramap f:7 — 7, the following conditions are equivalent.

o There exists an integer valued polynomial p € TP with f(i) = p(i) for all
i€Z.

o There exist a number iy € Z and an integer valued polynomial q € IP
such that f(ip) € Z and Af(i)=q(i) forall i€Z .
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Integer Functions of Polynomial Type

Let f:Z — Z be an integer function.

@ Themap f:Z — Z is called an integer function of polynomial type if
there exists a number iy € Z and an integer valued polynomial p € IP
such that (/) = p(i) forall i > iy . This polynomial is uniquely
determined and denoted by HP; .

@ For an integer function f of polynomial type, the number
ri(f) = min{i € Z | f(j) = HP¢(j) for all j > /}

is called the regularity index of f. Whenever f(i) = HP¢(i) forall i€ Z,
we let ri(f) = —co .

v
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Integer Functions of Polynomial Type I

We introduce a fundamental family of integer functions of polynomial type.

Example

For every i N, we define amap bin; : Z — Z by bin;(j) = () for j>i
and by bin;(j) =0 for j<i.The map bin; is an integer Laurent function of
polynomial type. It satisfies HPyin,(t) = (!) and ri(bin;) = 0 . Moreover, if
i>0,then Abin;(j) =bin;_1(j—1) forall jeZ.

There is no integer valued polynomial p € IP such that bin;(j) = p(j) forall j.

Corollary

Let f:7Z — 7 be an integer Laurent function of polynomial type.
@ We have HPa(t) = AHP(t) . In particular, if deg(HPf) > 0, then we
have deg(HPaf¢) = deg(HPf) — 1.
@ Forevery q>1, we have ri(Aqf) =ri(f)+q .
o Ifwe write HP,(t) = ci(",") + -+ cm(}"") and choose iy > ri(f) , then
we have HPsg(t) =ci(}) + -+ cm(}) + (o) -
o We have ri(Xf) =ri(f)—1.
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Hilbert Functions
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Hilbert Functions in the Standard Case

Let M be a finitely generated graded P -module.
Then there is a well-defined map

HFM Y/ — Z
— dimK(M/)

This map is called the Hilbert function of M (with respect to the standard
grading).

An isomorphism of vector spaces ¢ : P1 — P; extends uniquely to an
isomorphism & : P — P of graded K -algebras. Such a map ¢ is called a
homogeneous linear change of coordinates. We express this fact by saying
that the Hilbert function of M is invariant under a homogeneous linear
change of coordinates.

Proposition

Forevery i€ N, we have HFp(i) = (""") .
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Hilbert Functions and Exact Sequences

Let M, M',and M" be three finitely generated graded P -modules.
o Let j e Z . Then the Hilbert function of the module M(j) obtained by
shifting degrees by | is given by HF (i) = HFy(i +j) forall ic Z .
@ Given a homogeneous exact sequence of graded P -modules
Oo— M — M — M — 0
we have HF (i) = HFp (i) + HFy (i) forall i€ Z .

| A

Proposition

Let | be a homogeneous ideal in P, andlet f € P be a non-zero
homogeneous polynomial of degree d . Then we have a homogeneous exact
sequence

0 — [P/(I:p(f)](=d) - P/I — P/(I+(f)) — O
and therefore HFp,(14(r))(i) = HFp (i) — HFP/(,;P(f))(i —d) forall ieZ.
In particular, f is a non-zerodivisor for P/! if and only if we have
HFP/(/+(f))(i) = Ay HFP//(i) forall ieZ .
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Hilbert Functions and Leading Terms

Let | be a homogeneous ideal of P and let o be a term ordering on T" .
Then we have HF (i) = HF (i) forall i€ Z .

Let M be a finitely generated graded P -module, and let K C L be a field
extension. Then we have HF (i) = HFyg,.(i) forall i€ Z .

Let M be a finitely generated graded P -module. Then its Hilbert function
HFy : Z — Z is an integer function of polynomial type.
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Power Series
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Rational Power Series

Let R be an integral domain and K its field of fractions.

@ We denote the ring of power series over R by RJ[[Z]] .

@ The subring R[[z]] N K(2) of the field K][[z]], is called the ring of
rational power series over R .

@ The localization R([[z]]. of the power series ring R[[Z]] in the element z
is called the ring of Laurent series in one indeterminate z over R.

@ Finally, the ring R|z], is called the ring of Laurent polynomials over R .
It is sometimes also denoted by R[z,z7] .
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Characterization of Rational Power Series (5.2.6)

Theorem
Let cieZ for i >0,andlet f=3,.,cz" € Z[[z]] . Then the following
conditions are equivalent. -

@ The power series f is rational.

@ There exist a polynomial g € Z[z] and integers ay,...,am € Z such
that f=g/(1 — a1z — az? — - — apz™) .
@ There are natural numbers m,n € N and integers ai,...,am € Z such

that ¢; = a1Cji_1 + @ Ci_o +---+amci_m forall i >n.

| \

Example

Let ¢y, cq,... bethe Fibonacci sequence, i.e.let ¢g =c¢; =1 and

Ci = Cci_1 + ci_o for i > 2. Therefore the Fibonacci numbers are the
coefficients of the power series 1/(1 —z —22) =cy + C1Z + Coz° + - --
The associated integer Laurent function f:Z — Z defined by f(i) = ¢; for
i € Z is not an integer function of polynomial type, because if a polynomial

p € IP satisfies p(i) = ¢; for large enough i, then p(i) =p(i—1)+ p(i —2)
implies Ap(i) = p(i —2) .
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Properties of Power Series

Definition

Let f:Z — Z be a non-zero integer Laurent function. The number
min{i € Z | f(i) # 0} will be denoted by «; or simply « .
Moreover, the associated Laurent series >~ , (i) z' will be denoted
by HS¢(z) . -

Proposition

Let f:7Z — Z be a non-zero integer Laurent function.

© Forevery q>1,wehave HSp 1(z) = (1 —29) - HS¢(2) .
In particular, we have HSa¢(2) = (1 — 2) - HS¢(2) .

@ We have HSyx¢(z) = HS¢(2)/(1 — 2) .

Lemma

| \

Forall n>1,wehave (1—2z)""=3Y ., (""" 2.
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Laurent Series and Integer Functions (5.2.10)

Theorem
For a non-zero integer Laurent function f:7 — 7 , TFAE
@ The integer function f is of polynomial type.
o The associated Laurent series of f is of the form HS(z) = 22
where m e N and p(z) € Z|z,z~"] is a Laurent polynomial over 7. .

If these conditions are satisfied, we have m = deg(HP(t)) +1 .

Let f:7Z — 7 be a non-zero integer Laurent function of polynomial type,
and let « =min{i € Z | f(i) # 0} .
@ The associated Laurent series of f has the form
HSs(z) = p(2)/(1 — 2)™ , where me N and p(z) € Z[z,z""] isa
Laurent polynomial of the form p(z) = Z,-B: . Czl with B> a,
Cas---,CBEZL, Ca#0,and cg#0 .
o If m> 0, then we have HPs(t) = Y7 ¢ ("*™") ,andif m=0,
then we have HP¢(t) =0 .
o Wehave ri(fy=p—m+1.

38/82
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The Standard Case

Proposition

The Hilbert series of P is given by HSp(z) = (1_1—z)n :

Proposition
(Basic Properties of Hilbert Series)
Let M, M',M" be three finitely generated graded P -modules.
© Forall j€Z,wehave HSy;(z) = z7/ HSu(z) .
@ Given a homogeneous exact sequence 0 — M — M — M" — 0,
we have HSM(Z) = HSM/(Z) -+ HSM//(Z) .
o Let M= M, & --- & M, with finitely generated graded P -modules
My, ..., M. . Then we have HSy(z) = HSy,(z) +--- + HSy.(2) .

o Let 61,...,0r € Z . Then the Hilbert series of the graded free module
F = @}:1 P(-4;) is HSE(2) = (2;21 2% /(1 -2)".
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Macaulay’s Theorem for Hilbert Series

Theorem

Let 01,...,0r € Z ,let M be a graded submodule of the graded free
P -module @;_, P(—é;), and let o be a module term ordering
on T"(ey,...,er) . Then we have HSy(z) = HS;1 m)(2) .

Corollary

Let M be a graded P -module, and let K C L be a field extension. Then we
have HSM®K1_(Z) = HSM(Z) o

| A\

| A

Theorem

Let M be a non-zero finitely generated graded P -module, and let
a(M) =min{i € Z | M; # 0} . Then the Hilbert series of M has the form

(M)
HSwu(z) = Z=5n

where HNy(z) € Z[z] and HNpy(0) = HFy(«(M)) > 0 . Note that n is the
number of indeterminates of P .
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Dimension and Multiplicity

Definition

In the Hilbert series HSy(z) = %ﬂ , we simplify the fraction by
cancelling 1 — z as often as possible. We obtain a representation
HSu(z) = %Z—) ,where 0 < d < n and where hny(z) € Z[z] satisfies
hnM(O) HFM(a) >0.
@ The polynomial hny(z) € Z[Zz] is called the simplified Hilbert numerator
of M.

o Let § =deg(hnu(z)), and let hny(z) = ho + hiz+--- + h;z° . Then the
tuple hv(M) = (ho, hy, ..., hs;) € Z°*" is called the h-vector of M .

@ The number dim(M) = d is called the dimension of M .
@ The number mult(M) = hny(1) is called the multiplicity of M .
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The Hilbert Polynomial

Let t be an indeterminate over Q .

@ The integer valued polynomial associated to HFy is called the Hilbert
polynomial of M and is denoted by HPy(t) . Therefore we have
HPwy(t) € IP C Q[f] and HFy (i) = HPy(i) for i>0.

@ The regularity index of HF, is called the regularity index of M and is
denoted by ri(M) .

| \

Proposition

For a non-zero finitely generated graded P -module M, we have
mult(M) > 0.
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Multivariate Power Series
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o -Laurent Series

Definition

The set RZ" isan R -module with respect to componentwise addition and
scalar multiplication. We denote an element (&;)ijcz» by > ;.,» @ 2" andthe

module by R[[z,z~"]] . We call it the module of extended power series.

The module of extended power series is not a ring with respect to the usual
multiplication For instance, the constant coefficient of the product
A+z1+28+---)-(14+2z " +2z72+---) would be an infinite sum. But it is
important to be able to multiply Hilbert series.

Definition
Let o be a monoid ordering on Z™ .

@ An extended power series f =3, ,»a;2' iscalleda o -Laurent series
if its “support” is well-ordered by o .

@ The set of all ¢ -Laurent series is called the o -Laurent series ring
over R and will be denoted by R[[z,z']],
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o -Laurent Series and Positive Matrices

Proposition

Let o be a monoid ordering on Z™ . Then the set R[[z,z~"]], ofall
o -Laurent series is a ring with respect to componentwise addition and with
respect to the multiplication given by the formula

(2 az)- (¥ bZ)= 3 (¥ ab) 2"

iczm jezm kezZm i+j=k

Assume that W € Matn, »(Z) is positive, let M be a finitely generated
graded P -module, and let ¥ be the set {d € Z™ | My 4 # 0} .

(a) The relation Lex|y is a well-ordering.
(b) The series HSy(z) is an element of the ring Z[[z,2™ || cx -
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Multigraded Hilbert Functions

Definition

Let W e Mat, 5(Z) be positive and let M be a finitely generated

W -graded P -module. Then the map HFy, : Z™ — Z given by the rule
(i1, im) = dimg (M, ..iy) forall (ir,...,im) € Z™ is called the
multigraded Hilbert function of M.

| \

Proposition

Let W = (wj) € Maty, n(Z) and (is,...,in) € Z™ . Then the value
HFp(i1,...,im) of the multigraded Hilbert function of P is the number of
solutions (a4, ...,an) € N of the system of Diophantine equations

Wiiy1 + -+ Winyn =
Woiy1+ -+ Wopyn = I
WY1+ + Wmn¥n = Inm

in the indeterminates yi,...,Yn -
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Hilbert Functions of Polynomial Rings

Example

Let P = K[xi,x] be gradedby W = (?_1) . We get the equations y» =i ,
y¥1 — Yo = ip to be solved for y; > 0 and y», > 0 . We find solutions only if

iy >0 and iy + i > 0. Then we have P ;) # 0 ifandonlyif i1 >0 and
lp > —i . In these degrees we have dimg(F; ;)) = 1. Therefore we obtain

_ il i o — i _ 1
HSP(Z1722) - E Z 211222 - (i1z>:021122 1)/(1 _22) - (1_2122—1)(1_22)

120 b>—i

| l
A\

Theorem

Let P=Klx1,...,xn] be graded by a matrix W = (wj) € Matp, ,(Z) of
positive type. Then we have

1

HSP’W(Z1,...,Zm)= = . '
(1 -2 25m)
=1

J
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An Example

Example

Let P =Q[xi, X, X3, Xs] begradedby W= (J533),andlet /= (x2, xz,x3) .
We want to compute the multivariate Hilbert series of P/I .

In the first step, we form J = (x2, x2) .

In the second step, we compute the Hilbert numerators of P/J and of
P/(J:, (x3)) recursively.

We have J:, (x3) = (X%, x2) = J . When we compute HNp, (21, 22) , we
form J' = (x2) and J’ =J:, (x) = (x2) and apply the algorithm
recursively to them. Since J' = J” = (x2) is a principal ideal, the algorithm
yields HNP/J/(Z1722) = HNP/J//(Z1,ZQ) =1- 212 .

Then we find HNP/J(Z1 5 22) = HNP/JI(Z1 5 22) — 212 HNP/J//(Z1 s 22) = (1 = 212)2
in step 3). Thus the original algorithm computes HNp,/(z1, z2) =
HNpu(21,22) = 2 Z° HNp (.2 (21,22) = (1 = Z§)%(1 = 27 2)°) .
Altogether, we have

(1-22)2(1-202°%) (1421)(1+2225+282)°)
HSP//(Z1’22) = ; 3152 48 : 1423 =
(1=z)(1-28)(1—-z}20)(1—2{Z5) =z 75
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Another Example

Example

Let P =Q[x,X,Xs] begradedby W= (};_]),and let

I = (X3x2, xox2, X5x3, x3) . We want to compute the multivariate Hilbert series
of P/I.

We férm the ideals Ji = (x3x2, XoX3, x5x3) and Jo = J; i, (x3) = (x2) and
apply the algorithm recursively to them. For Js , it yields

HNp,,(21,22) =1 -z instep 1). For J; , we form Ji1 = (x3x2, X2x3) and
Jiz =1 5, (X2x3) = (x3, x3) and apply the algorithm recursively to these...

.. bla bla bla...

.. Therefore the multivariate Hilbert series of P/I is

2 2 2 1, 2 —il
—2z 127 222 P B 22 2z 2 2

HSp/I(21,22) = ==
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Change of Grading (Subsection 5.8.C)

Proposition

Let W e Matp,q(Z) and A= (a;) € Mat, m(Z) be two matrices such that the
gradingson P = K[xi,...,xs] givenby W andby A-W are both of
positive type. Let M be a finitely generated P -module which is graded with
respect to the grading given by W . Then the Hilbert series of M with
respect to the grading given by A-W s

HSM)A.W(Z1 RN ) HSM W(Za11 : Zza“ ye Z1a1’" s Zzae"')
Let P = K[x1,X,x;] be gradedby W= (7,,2),andlet A= (J}). Then

HSpw(z1,20) =1/((1 — z;'28)(1 — z1)(1 — 2222)) and A-W = (}}2) . The

Hilbert series of P with respect to the grading givenby A- W is
HSpaw(z1,22) = 1/(1 — z125)(1 — z1)(1 — Z322)) = HSp (21, 21 22)

in accordance with the proposition.
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Change of Grading |l

Corollary

Let U € Mat, ,(Z) be a matrix of positive type, let V € Matm_,.1(Z) , and let
W= () € Matmn(Z) .

o We have HSy y(z1,...,20) = HSyw(z1, ..., 2, 1,...,1).

o We have Pyo = K and forevery d € Z*, we have the following equality
dimK(MU7d) = EeeZ’"—‘-’ dimK(M(d,e)) o
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Toric Ideals
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Toric Ideals Associated to Matrices

Let K be afieldand P = K][xy,...,X,] apolynomial ring over K . Given
further indeterminates yi,...,Ym,welet L=K[y1i,...,Ym Vs ... ¥m'] be
the Laurent polynomial ring in the indeterminates yi,...,ym over K.

Definition

An element of the form yliy2 ...yl c L with iy,...,in € Z is called an
extended term. The group of all extended terms is denoted by E™ .

Definition

Let A= (aj) € Matyn(Z),andlet t = yiiy - ypm for i=1,...,n. We
define a K -algebra homomorphism ¢ : P — L by ¢(x;) = t; for
i=1,...,n.

Then the ideal /(A) = Ker(y) in P is called the toric ideal associated to the
matrix A, or to the tuple of extended terms (&,..., 1) .
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Binomial Ideals

Proposition

Every toric ideal is a prime ideal.

Recall that a binomial in P is a polynomial of the form at + a't' with
coefficients a,a € K\ {0} and distinct terms t,t' € T" .
A binomial ideal is an ideal generated by binomials.

Definition
Let S C P be a set of polynomials.
@ A binomial in P is called unitary if it is of the form t —t’ with ¢ ¢ € T".
The set of all unitary binomials in S will be denoted by UB(S) .

@ A binomialin P is called pure if it is of the form t—t' with coprime terms
t,t' € T" . The set of all pure binomials in S will be denoted by PB(S) .
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Computing Toric Ideals

For an extended term t € E™ , there exists a unique minimal number
7(t) €N suchthat (yy---ym)™ -t e Klys,...,Ym] -

Proposition

Let ty,...,to € E™ , let | C P be the toric ideal associated to (ti,...,t,),
andlet J C K[X1,...,Xn, Y1,-..,¥Ym| be the binomial ideal generated by
{7 (xy —t;),...,770)(x, — t,)} where m=yi---Ym .

o We have |=(J:m°)NK[x1,...,Xn] -
@ Let z be a new indeterminate, and let G be a Grébner basis of the

ideal J+ (wz —1) with respect to an elimination ordering for
{M,-..,¥Ym,Z} . Then the toric ideal | is generated by GNK][xi,...,Xy] .

@ The toric ideal | is generated by pure binomials.
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Efficiently Computing Toric Ideals

Theorem

Let A= (aj) € Maty,,(Z), let L(A) be the kernel of the Z -linear map
7" — Z™ definedby A,andlet V= {vy,...,v.} C L(A) generate the
Z -module L(A) . Furthermore, let m = x1Xz--- Xp .
Then we have

I(A) =y :, m°

|

Corollary

Let A= (aj;) € Maty, ,(Z) . Consider the following sequence of instructions.

(1) Compute a system of generators V = {vq,...,v;} of L(A).

(2) For i=1,...,r,write vi=v —v_ andlet o(v;)=x% —x" €P.
Form the lattice ideal Iy = (o(v1),...,0(V;)) and compute the saturation
| = /V 9P (X1 ~'~Xn)°° .

(3) Return the ideal | and stop.

This is an algorithm which computes the toric ideal I(A) associatedto A .

y

A common method ito perform Step (1) s via the computation of the Hermite
normal form of A .
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Hilbert Bases
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The Hilbert Basis

We let A = (aj) € Maty, 5(Z) . We consider the homogeneous system of
linear Diophantine equations Az =0 and we recall that £(.A) is the
subgroup of Z" consisting of its solutions.

Then we let £,(A) = L(A) N N" be the set of its componentwise
non-negative solutions. Clearly, the set £, (.A) is a submonoid of N .

Next we consider the following partial ordering >~ on L. (A) . Given two
vectors u = (uq,...,Up) and v =(vq,...,vy) € L (A),welet u> v if
ui > v; for i=1,...,n andif this inequality is strict for some i€ {1,...,n}.

The ordering Lex is a term ordering on N” | hence its restrictionto £, (A) is
a well-ordering. Obviously, u > v implies u >;., v . Therefore there exist
minimal elements in £;(A) \ {0} with respectto > .

Definition

The set of all minimal elements of £, (A)\ {0} with respect to the partial
ordering > is called the Hilbert basis of £, (A) .
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The Hilbert Basis Generates £ (.A)

Proposition

Let A e Matyn(Z), and let H be the Hilbert basis of L, (A) . Then every
element of L(A) can be written as a linear combination of elements of H
with coefficients in N .

| A

Proof.

Let SC £, (A) be the set of all vectors which can be written as a linear
combination of elements of H with coefficients in N . For a contradiction,
assume that £,(A)\ S # () . We have already noted that Lex is a
well-ordering on £ (.A) . Hence there exists a minimal element

ue L£i(A)\ S#0 with respect to Lex. Clearly, we have u ¢ H . Thus there
exists a vector v € H such that u > v . Now we use that fact that

u—ve Ly(A) toconclude that u > u— v . This shows u >, u— v, and
therefore u— v € S. But this implies u € S, a contradiction. O
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Lawrence Liftings

Definition

Let A € Matp 5(Z) . Then the matrix A = (“14
n

identity matrix of size n, is called the Lawrence lifting of A .

0 .
In) where Z, is the

The first connection between A and A is thatthe map X : £(A) — L(A)
defined by A(u) = (u, —u) is clearly bijective. But much more is true.

Proposition

Let A € Matm,(K) , let A be the Lawrence lifting of A , and let
Q=Kl[Xt,...,Xp,Wq,...,Wp] .

@ The toric ideal I(A) C Q has a system of generators consisting of
binomials of the form x{ - xgow)' - wp" — X' - X W wr
where «aq,...,an,B1,...,8n €N.

@ There is a bijection between PB(I(A)) and PB(I(A)) which maps a
binomial x* —x? to x*w” — x’w*,

@ There is a bijection between L (A) and the elements in PB(I(A)) of
the form x* —w® with o € N".
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Primitive Separated Binomials

The last part of this proposition yields a bijection between the minimal
elements of £, (A)\ {0} with respectto = and the elements x¥ — wY

in PB(/(A)) with the property that there is no other element x” —w"

in PB(/(A)) for which u > v. _
Let us call these elements the primitive separated binomials in PB(/(A)) .

Let A € Maty 5(Z) . Then there exists a bijection between the Hilbert basis of
L. (A) and the set of primitive separated binomials in PB(/(A)) .

Lorenzo Robbiano (Universita di Genova) Hilbert Functions and Toric Ideals

Passau, June 2011 61/82



Finiteness and Computation of Hilbert Bases (6.1.7)

Let A € Matm,(Z), andlet G be a reduced Grébner basis of I(A) .
Then the set H = {a € N" | x* —w®> € G} s finite, and it is the
Hilbert basis of the monoid L (A) .

Corollary

Let P be graded by a matrix W € Matn, ,(Z) . Then the K -vector space
Pw.,o is a finitely generated K -algebra.

Proof.

A K-basis of Py is given by the set of terms x{"' --- x5 such that
W - (a1,...,an)" =0 . Therefore the Hilbert basis of £, (W) generates
Pw, asa K-algebra. This Hilbert basis is finite by the theorem. O
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Examples
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Example 1

Example

Consider the Diophantine equation 3z; — 5z, + 423 = 0.
We want to find all triples (ai, @z, as) € N® which satisfy this equation.

Let A= (3 -5 4). We compute the reduced DegRevLex-Grdbner basis of
the toric ideal of the Lawrence lifting of A . The result is

{xox2wy — xywow2, Xawiwo — x3xows, X2X3X3 — W2 W2 ws,

x3wi — xPwd, xPxS — wRwg, x3xS — wawd, xix3xs — wiwiws} .

Thus the set of primitive separated binomials in PB(/(A)) is

{x2x3x5 — W2wiws, xPx3 — wiws, x3x5 — wiws, X x3x3 — wiwdws

The Hilbert basis of £.(A) is {(2,2,1), (5,3,0), (0,4,5), (1,3,3)} .

So, the non-negative solutions of 3z; — 5z, + 423 = 0 are precisely the triples
(31 , 82, a3) =M (27 27 1 ) + n2(57 37 0) + n3(0a 47 5) + n4(1 ’ 33 3)

with ny,no, n3,ny € N .

This Hilbert basis can also be used to determine the subring P40 where
P = K[x1, X2, X3] is equipped with the Z —grading given by A . The above
corollary yields P4 o = K[X2X3X3, X2 X3, X3 X3, X1 X3X3] .
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Example 2

Inhomogeneous Diophantine equations can be solved using a similar
technique, but require an extra trick.

Example

We want to find the non-negative integer solutions of the Diophantine
equation 2zy + 5z, +3z3 =11 .
They are the non-negative integer solutions of the homogeneous equation
27y + 52, + 3z3 — 11z, = 0 having fourth coordinate one. Let
A=(2 5 3 —-11) . We compute the reduced DegRevLex -Grébner basis of
the toric ideal of the Lawrence lifting of .4 and get the following primitive
separated binomials:

{XoXBXq — WoWE Wy, X1 X3 Xg — Wy WIWy, XS XoXq — W3 WaWy, X§XaXs — Wi wawy,

4,2 B2 o208 2 2 12/3 2 6 3 6 3 11,2 11 2

310G —wi'wg, g — wi'wi)

So, the Hilbert basis of £, (A) is the set

{(0,1,2,1), (1,0,3,1), (3,1,0,1), (4,0,1,1),

(1,4,0,2), (2,3,1,2), (0,6,1,3), (11,0,0,2), (0,0,11,3), (0,11,0,5)}.
The solutions are (0,1,2), (1,0,3), (3,1,0),and (4,0,1).
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Example 3

Consider the system of Diophantine equations
Z21+4z0+23—2z24 = 5
{221 — Z+23—3z4 = 0
To find its non-negative integer solutions, we determine the non-negative
integer solutions of the associated homogeneous system
{21 +4z,+23—224—5z = 0

221 — 2o+ 23 — 32 0
which have last coordinate one. Let A = (3 % -277) . We get the following
Hilbert basis of £, (A) :

{(0,1,1,0,1), (1,0,1,1,0), (0,0,15,5,1), (5,10,0,0,9), (6,9,0,1,8),
(7,8,0,2,7), (8,7,0,3,6), (9,6,0,4,5), (10,5,0,5,4), (11,4,0,6, 3),
(12,3,0,7,2), (13,2,0,8,1), (14,1,0,9,0)}

Since we are interested in elements of £, (.4) whose last coordinate is one,

the relevant solutions are those whose last coordinate is zero or one. Let
Z={m(1,0,1,1)+ nx(14,1,0,9) | 1, n. € N} . Then we have three families
of solutions, namely (0,1,1,0)+ 2, (0,0,15,5)+Z,and (13,2,0,8) + Z.
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Example 4

Example

How many matrices in Maty(N) have both row sums equal to two?

METHOD 1
We label each position in the matrix by an indeterminate.
Then we notice that the matrices (2 22) with aiq + a2 = a1 + @ = 2 are

aosq as
in 1-1 correspondence with the power products X" x3'2x52' x;2 in
P = Q[x1, X2, X3, X4] which have degree (3) with respect to the grading given
b (1 10 0)

Y {oo11) -
The bivariate Hilbert series of P with respect to this grading is

-
HSP(21,22) = Tzpi—arp

Therefore the answer is simply the coefficient of z1 z2 in the expansion of this

series. By expanding the product (1 +2z1 +22+---)2)(1 + 22+ 25 +---)? , we

see that the answer is nine.

v
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Example 4 continued

METHOD 2

Example

First we solve the homogeneous Diophantine equation z; + zo = z3 + z4 as
in the previous examples.

Using A= (1 1 —1 —1), the Hilbert basis of £, (A) turns out to be
{(1,0,1,0), (1,0,0,1), (0,1,0,1), (0,1,1,0)} .

The corresponding matrices (19), (59). (37). (J3) have row sums one. We
are looking for all their N -linear combinations with row sums equal to two.
For this purpose, we use the above correspondence and represent them as
power products t = x1X3, b = X1X4 , I3 = XoXs ,and {4 = XoX3 in P.
Since their row sums are one, we need to determine the power products of
degree two in the terms ¢; .
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Example 4 continued

Example

To compute the value of the Hilbert function of the ring Q = Q[t, bk, f3, &] in
degree two, we use the surjective Q -algebra homomorphism
©: Qy1, Y2, ¥a, ya] — Q defined by y;— ¢ .
Its kernel [ is the toric ideal of (t, &, t3, %) and turns out to be
I = (y1y3 — ¥2y4) . Therefore we get
1+z

HSa(2) = HSQD’1 ,Y2,YG,Y4]//(Z) = R =1+4z4+972%+ ...

and hence the desired number is HFg(2) =9 . Using this method, we can
even list the nine solution matrices. They correspond to the images under ¢
of the nine terms of degree two in Q[y1, y2, ¥3, ¥a] whose residue classes
form a Q -basis of (Q[y1, y2, ¥3, ya]/1)2 . We find the following nine matrices:

(1) o) (62): (1) (30): (62): (79): 2o): (52)
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Example 4 continued

METHOD 3
Example

The third method is to solve the system of inhomogeneous Diophantine
equations

Z1 + 2o 2
{23 +zs = 2
using the technique explained in the preceding example. The Hilbert basis of
the associated homogeneous system is

{(1,1,0,2,1), (0,2,1,1,1), (1,1,2,0,1), (1,1,1,1,1), (2,0,1,1,1),
(2,0,0,2,1), (0,2,0,2,1), (2,0,2,0,1), (0,2,2,0,1)}
It yields the same nine solution matrices.

METHOD 4

Finally, we present the fourth method: hand calculation! Unfortunately, this
method does not work in complicated examples. Guess what you need!!!
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Bounds for Hilbert Functions
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Binomial Representations

Let n,i € N, . The number n has a unique representation of the form
. - .
n= () + (E) + -+ ()

such that 1 <j < and such that n(i),...,n(j) € N are natural numbers
which satisfy n(i) > n(i—1) >--->n(j) >j .

Definition

| A

Let n,ie N .

o The representation n= (") + ...+ (”y)) with the property that
1<j<iand n(i)>n(i—1)>---> n(j) >j is called the binomial
representation of n inbase i, orthe ™ Macaulay representation
of n. We shall also denote it by n; .

@ The /-tuple (n(i),...,n(j),0,...,0) is called the top binomial
representation of n in base i and is denoted by Top;(n) . We also let
Top,(0) = (O, ...,0) .
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Examples

Example

The binomial representation of 102 in base 5 satisfies 1025 = (§) + 464 ,

since (§) =56 <102 < 126 = (2) . Similarly, (}) =35 <46 <70= (})

yields 464 = (Z) + 113 . Continuing this way, we finally get

1025 = (3) + (3) + () + (3) and thus Tops(102) = (8,7,5,2,0) .

Similarly, we have 13984110 = (ig) + (9) + (5) + (7) + () + () + () + (3)

and Top,(13984) = (16,15,12,11,9,8,5,3,0,0)

v
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Some Functions

Let n,i € N, and consider the binomial representation
ny = (”(’)) +--+ (") of ninbase i.

o Welet (ng)* = (") +-.-+ ("0
o Welet (my)~ = (") 4.+ (07T
o Welet (np)f= (") +--+ ("W).
o Welet (my)= = ("07") +---+ (V71
Moreover, we let (01)* =0, (0;1)~ =0, (O;)f=0,and (0)= =

The binomial representation of the number 4 in base 2is 4; = (3) + (}) .

Therefore we have (4)~ = (3) + (%) =1, but 1y = (3) . Similarly, we have
(4)= = () + (o) =3 . but 3y =(3) -

Lorenzo Robbiano (Universita di Genova) Hilbert Functions and Toric Ideals Passau, June 2011 74 /82



Some Inequalities

Proposition

Let n,ie N, , i>1. Then we have the inequality (((n)=)i—1)f >n-.

Let m>n>0 and i > 1.

o We have (nj))™ < m ifandonly if n < (my;)~ .
@ The conditions above are satisfied if n < (ny;)~ + ((M— n)ji—1)~ -
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Lex-Segments Spaces and Ideals

Let deN,andlet t € T” be aterm of degree d .

@ A set of terms of the form {t' € T" | deg(t') = d, t’ > t} is called a
Lex-segment. The empty set is also considered a Lex-segment.

@ A K-vector subspace V of Py is called a Lex-segment space if
VNT" is botha K-basisof V and a Lex-segment. In this case we
denote the K-basis VNT" by T(V).

Lorenzo Robbiano (Universita di Genova) Hilbert Functions and Toric Ideals Passau, June 2011 76 /82



Lex-Segments Spaces and Ideals Il

Proposition

(Basic Properties of Lex-Segment Spaces)

Let n>2,let de N, let V C Py be anon-zero Lex-segment space, and let t be
the lexicographically biggest term of degree d which is notin T(V) . We write

t=x" - x2x'" where re{1,...,n—1} and a1 >0, and we let

d,-:d—zj':ﬁa, for i=1,...,r.
@ The K -vectorspace V isthe d™ homogeneous component of the ideal

O ) T XS (e, xa) BT 4

%
@1 ot dr—1
co XX X (X Xn)

Conversely, the d" homogeneous component of this ideal is the Lex-segment
space such that the biggest term of degree d which is not contained in it is

Q4O S
Xy Xr X4

@ The binomial representation of dimk(V) inbase n—1 is given by

dime(V) = (") + (CHE ) 4o ()

n—1
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Lex-Segments Spaces in the Next Degree

The following proposition shows that we can find explicit expressions for the
dimension and codimension of the vector space generated by a Lex-segment
space in the next degree.

Proposition

Let d e N andlet V C Py be a non-zero Lex-segment space.
o We have dimk(Py - V) = ((dimk(V))n—17)* -

@ We have codimk(P; - V) = ((codimk(V))))T -
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Lex-Segments Spaces and Hyperplane Sections

Definition

Let V be a K-vector subspace of P, andlet ¢ € P; . Then the image of V
in P = P/(¢) is called the ¢ -reduction of V and denoted by V' .

For the next proposition, we are only interested in the x, -reduction of a
Lex-segment space. We identify P " with K[x;,...,x,_¢] andlet V =V".

Proposition

Let d e N, let V C Py be a non-zero Lex-segment space.
o We have dimy (V) = ((dimx (V) n—17)= -

o We have codimy(V) = ((codim(V))ia)™ -
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The Theorem of Green

Theorem

(Green’s Reduction Theorem)

Let K be an infinite field, let P = K[x1,...,Xn] be standard graded, let
deN,andlet VC Py be a K -vector subspace. For a generic linear form
{ e Py, we have

codimy (V") < ((codimy (V))(a) ™
Here equality holds if V is a Lex-segment space.

| A

Corollary

Let K be an infinite field, let P = K[x1,...,Xn] be standard graded, and
let | be a homogeneous ideal in P . For a generic linear form ¢ € Py and
d e N, , we have

HF 5 ;7¢(d) = HF py 110 (d) < ((HFp/i(d))e) ™
Here equality holds if 1y is a Lex-segment space.
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The Theorem of Macaulay

(Macaulay’s Growth Theorem)
Let K be afield, let d e N, , andlet V be a K -vector subspace of Py .

Then we have codim (P - V) < ((codimy(V))g)

Here equality holds if V is a Lex-segment space.

Notice that this version provides us with a sharp bound on the growth of the
Hilbert function of a standard graded K -algebra.

Corollary

Let K be afield, let P = K|[x1,...,X,] be standard graded, let | C P be a
homogeneous ideal, and let d € N, . Then we have

HFp/i(d + 1) < (HFpi(d))a)

Here equality holds if Iy is a Lex-segment space which satisfies
loy1 =Py lg .
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An Example

Example

There is no standard graded K-algebra R for which HFg(1) =3 and
HFg(2) =5 and HFR(3) =8.

To see why this is true, we suppose that R = P/ is such an algebra, where
P =K][xy,...,xy] is standard graded and / C P is a homogeneous ideal.

Then the corollary yields
8 = HFp,,(3) < (HFp/(2))i = B)i = () + Q)i =@+ () =7,
contradiction. |
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