
June 11th, 2009

Warning: Sometimes during this tutorial we might have to stop some computations because they

take too long or even be forced to restart the system.

Advice: Save any work you want to keep!

Exercise 1 Let us assume we can use the initial ideals lt(I) to compute the
regularity of a polynomial ideal, or that our ideal is monomial from the very
beginning. Consider the monomial ideal:

I = 〈x1, . . . , x10〉

1. Compute it’s regularity using BettiDiagram.

2. Do the same with I3 (we already know the regularity of this ideal, this is
just to check what kind of size this method can deal with).

Even if the ideal is monomial we cannot compute the full resolution when our
ideals start to grow. Of course, another alternative is to use gin(I) ... what do
you think?

Exercise 2 There is a lack of specific methods for monomial ideals, that take
advantage of their combinatorial nature. In fact, it is an open problem to find
combinatorial methods to compute the regularity of monomial ideals. We will play
a bit with this problem in this tutorial.

A first idea is to find (useful, important, big, etc..) families of monomial
ideals such that we are able to compute their regularity. There are some: prime,
stable, squarefree stable, some ideals corresponding to fat points, some edge ideals
of graphs, generalized k -out-ofn ideals, etc ...

What about ideals of nested type it would be great (remember tutorial 3) to
have a method for them. In fact there are several [cf. Bermejo & Gimenez 2006]:

1

Proposition 1 Let I ⊂ R be a monomial ideal of nested type. If d is the dimen-
sion of R/I and p is the least integer such that none of the minimal generators
of I involves xp+1, . . . , xn then

reg(I) = max{ sat(I ∩ k[x0, . . . , xp]),

sat(I|xp=1 ∩ k[x0, . . . , xp−1]),

sat(I|xp−1=1 ∩ k[x0, . . . , xp−2]),

.

sat(I|xn−d+1=1 ∩ k[x0, . . . , xn−d]) }.

Proposition 2 Let I ⊂ R be a monomial ideal of nested type. Let xλ0
0 . . . xλn

n

be the least common multiple of its minimal generators. For all i ∈ {0, . . . , n}
let δi be the least degree of the minimal generators of I? := (xλ0+1

0 , . . . , xλn+1
n) : I

involving exactly the variables x0, . . . , xi , if any. Otherwise, set di := 0 . Then,

reg(I) = max
n−dimR/I≤i≤n−depth(R/I)

{λ0 + · · ·+ λi + 1− δi; δi 6= 0}

Proposition 3 Let I ⊂ R be a monomial ideal of nested type. Let I = q1∩· · · qr
be the irredundant irreducible decomposition of I . Then

reg(I) = max{reg(qi); 1 ≤ i ≤ r}

Choose one of these propositions and implement a method to compute the
regularity of a monomial ideal of nested type. Proposition 1 is included for the
sake of completeness or in case you feel better using it. we recomend to use
Proposition 2 or Proposition 3. What is the regularity of an irreducible monomial
ideal? If you are interested in efficiency, ask for efficient methods to compute
irreducible decompositions of monomial ideals in CoCoALib.

You can use your implementation to complete the method of tutorial 3 to
compute the regularity of any polynomial ideal.

Exercise 3 What if our monomial ideal is not of nested type or does not belong
to one of the families for which we know how to compute regularity? Is there any
hope to compute their regularity in a reasonable time?. Any way to obtain good
bounds at least?

There is a procedure to compute the ranks of a multigraded resolution without
computing the resolution itself (i.e. without computing the differentials). There-
fore we obtain bounds for the Betti numbers of the ideal (in particular, for the
regularity), dwelling a bit in this method we can find ways to compute the regu-
larity of general monomial ideals (or at least good bounds in the worst case) in a
reasonable time even for big ideals.

2

Let I = 〈m1, . . . ,mr〉 a monomial ideal. Denote I ′ := 〈m1, . . . ,mr−1〉 and
Ĩ = I ′ ∩ 〈mr〉 . Observe that Ĩ is generated by {lcm(mi,mr); 1 ≤ i ≤ r − 1} .
Let us construct a tree in which each node contains a monomial ideal, and is
labeled by a position and a dimension. The root of this tree contains I and has
position 1 and dimension 0 . Given a node (J, p, d) in the tree it has two children:
(J ′, 2p+1, d) on the right and (J̃ , 2p, d) on the left. This is what we call a Mayer-
Vietoris tree of I , denoted MV T (I) . We say that the root and the nodes in even
position are called relevant nodes. The relevant nodes support a resolution of I ,
and the multidegrees of the modules in homological degree i of this resolution are
those generators of the relevant nodes of dimension i in MV T (I) .

(1, 0) xy2, xyz3, y5, z6

(2, 1) xyz6, y5z6

(4, 2) xy5z6 (5, 1) xyz6

(3, 0) xy2, xyz3, y5

(6, 1) xy5 (7, 0) xy2, xyz3

(14, 1) xy2z3 (15, 0) xy2

Proposition 4 Let I be a monomial ideal and MV T (I) a Mayer-Vietoris tree
of I . Let us define the following numbers for every i and µ :

β̄i,µ(I) =

{
1 µ appears only once as a generator of a relevant node in MV T (I)
0 in any other case

β̃i,µ(I) = #{ Times µ appears as a generator of a relevant node in MV T (I)}

Then
β̄i,µ(I) ≤ βi,µ(I) ≤ β̃i,µ(I) ∀i, µ

Therefore, using Mayer-Vietoris trees and this proposition we have upper and
lower bounds for the regularity of a monomial ideal. Of course, when these bounds
coincide, we obtain the actual regularity.

We have implemented a CoCoALib version of the Mayer-Vietoris tree algo-
rithm that can be used to obtain bounds for the regularity of a monomial ideal.
Implement a procedure in CoCoA to produce random ideals and run the Mayer-
Vietoris function to see whether it gives you the actual regularity or just bounds
(and how tight these bounds are).

3

