June 10th, 2009

Warning: Sometimes during this tutorial we might have to stop some computations because they take too long or even be forced to restart the system.

Advice: Save any work you want to keep!
Exercise 1 Is not easy to compute the regularity of a polynomial ideal I. One needs either to compute the Betti numbers of I or gin (I). Both are hard computations. It would be easier if we could at least use the initial ideal $l t(I)$. Consider the homogeneous ideal:

$$
I=\left\langle x^{2}-y z+3 t u, x y z^{2}+z^{4}, x y t-3 u^{3}, x^{2} t^{2}+4 y^{2} u^{2}\right\rangle
$$

1. Compute it's regularity using BettiDiagram
2. Compare it's regularity and Betti numbers with those of $\mathrm{LT}(\mathrm{I})$
3. Compute it's regularity using Gin and Gin5
4. Do the same with I^{3}
5. What about I^{4} ?
6. Let now $I=\left\langle x_{1}, \ldots, x_{20}\right\rangle$. Compute $\operatorname{Gin}(I)$ and BettiDiagram(I). What is the regularity of this ideal?

Exercise 2 reg(lt(I)) gives in general an upper bound for reg(I). But sometimes both regularities coincide. In particular, if $l t(I)$ is of nested type we have that $\operatorname{reg}(I)=\operatorname{reg}(l t(I))$.

Definition 1 monomial ideal $I \subset R$ is said to be of nested type (Bermejo 63 Gimenez 2006) if, for any prime ideal $\mathfrak{p} \subset R$ associated to I, there exists $i \in\{0, \ldots, n\}$ such that $\mathfrak{p}=\left(x_{0}, \ldots, x_{i}\right)$.

Proposition 1 Let $I \subset R$ be a monomial ideal and set $d:=\operatorname{dim} R / I$. The following conditions are equivalent:

1. I is of nested type
2. $\forall i \in\{0, \ldots, n\}, I:\left(x_{i}\right)^{\infty}=I:\left(x_{0}, \ldots, x_{i}\right)^{\infty}$.
3. x_{n} is not a zero divisor on $R / I^{\text {sat }}$, and for all $i: n-d+1 \leq i<n, x_{i}$ is not a zero divisor on $R /\left(I, x_{n}, \ldots, x_{i+1}\right)^{\text {sat }}$.
4. (a) $\forall i \in\{0, \ldots, n-d\}$, there exists $k_{i} \geq 1$ such that $x_{i}^{k_{i}} \in I$, and
(b) $I:\left(x_{n}\right)^{\infty} \subseteq I:\left(x_{n-1}\right)^{\infty} \subseteq \cdots \subseteq I:\left(x_{n-d+1}\right)^{\infty}$.

Implement a procedure to detect whether a monomial ideal is of nested type.
Exercise 3 If our initial ideal is not of nested type a good strategy (see Bermejo \mathcal{F} Gimenez 2006) consists of associating to I an ideal of nested type $N(I)$ such that $\operatorname{reg}(I)=\operatorname{reg}(N(I))$. The way to find $N(I)$ is via a coordinate transformation in I to obtain I^{\prime} and then $N(I)=l t\left(I^{\prime}\right)$. We want to do "smaller" coordinate transformations than those needed to compute gin(I).

Let $d:=\operatorname{dim} R / I$. There are two cases:

1. If $l t(I)$ is not of nested type and $\mathbf{k}\left[x_{n}-d+1, \ldots, x_{n}\right]$ is a Noether normalization of R / I then consider the following transformation:

$$
\begin{aligned}
x_{n} & \mapsto x_{n}+t_{1} x_{n-1}+t_{2} x_{n-2}+\cdots+t_{d-1} x_{n-d+1} \\
x_{n-1} & \mapsto x_{n-1}+t_{d} x_{n-2}+\cdots+t_{2 d-3} x_{n-d+1} \\
\vdots & \\
x_{n-d+2} & \mapsto x_{n-d+2}+t_{\frac{d(d-1)}{2}} x_{n-d+1}
\end{aligned}
$$

2. If $l t(I)$ is not of nested type and $\mathbf{k}\left[x_{n}-d+1, \ldots, x_{n}\right]$ is not a Noether normalization of R / I then we need a different (bigger) transformation:

$$
\begin{aligned}
x_{n} & \mapsto x_{n}+t_{1} x_{n-1}+t_{2} x_{n-2}+\cdots+t_{n} x_{0} \\
x_{n-1} & \mapsto x_{n-1}+t_{n+1} x_{n-2}+\cdots+t_{2 n-1} x_{0} \\
\vdots & \\
x_{n-d+1} & \mapsto x_{n-d+1}+\cdots+t_{d n-\frac{d(d-1)}{2}} x_{0}
\end{aligned}
$$

With these coordinate changes we obtain generically the ideal $N(I)$ we are looking for. Therefore our procedure will follow the scheme:

1. Decide whether $\mathbf{k}\left[x_{n}-d+1, \ldots, x_{n}\right]$ is a Noether normalization.
2. Apply a random change of coordiantes of the required form depending on the response at 1) obtaining I^{\prime}.
3. Check wether $l t\left(I^{\prime}\right)$ is of nested type. If not, apply another random change of coordinates until $l t\left(I^{\prime}\right)$ is of nested type. (This procedures always terminates when the base field has characteristic 0.)

To Do:

- Implement a procedure to detect whether $\mathbf{k}\left[x_{n}-d+1, \ldots, x_{n}\right]$ is a Noether normalization.
Hint: You can use the following result [Bermejo\&Gimenez, 2001]
Lemma 1 Let I be a homogeneous ideal of $S=\mathbf{k}\left[x_{0}, \ldots, x_{n}\right]$ such that $d=$ $\operatorname{dim}(S / I)-1$ and denote by in (I) the initial ideal of I w.r.t. the reverse lexicographic order. The following are equivalent:

1. $\mathbf{k}\left[x_{n-d}, \ldots, x_{n}\right]$ is a Noether normalization of S / I
2. $\forall i: 0 \leq i \leq n-d-1$, there exists $r_{i} \in \mathbb{N}-0$ such that $x_{i}^{r_{i}} \in \operatorname{in}(I)$
3. $\operatorname{dim}\left(S /\left(I, x_{n-d}, \ldots, x_{n}\right)\right)=0$
4. $\operatorname{dim}\left(S /\left(i n(I), x_{n-d}, \ldots, x_{n}\right)\right)=0$

- Implement the coordinate changes.
- Implement the full procedure, i.e. given a polynomial ideal I, obtain a monomial ideal of nested type $N(I)$ such that reg(I) $=\operatorname{reg}(N(I))$.

