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Bounds on the regularity and Open Problems

Bounds in terms of the degrees of generators

We have introduced two measures of the complexity of an homogeneous
ideal I ⊆ P = k [x1, . . . , xn] :

d(I) the maximum degree of a polynomial in a minimal system of
generators of I (actually of the generators of ginrevlex(I))

reg(I) : the maximum degree of the syzygies in a minimal free resolution
of I

Question How much bigger can reg(I) be than d(I)?

Obviously:
d(I) ≤ reg(I)

Conjecture (Bayer ’82):
reg(I) ≤ d(I)2n−1
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Bounds on the regularity and Open Problems

Bounds in terms of the degrees of generators

Giusti-Galligo (84) : If chark = 0 then

reg(I) ≤ (2d(I))2n−2

There are examples with very large regularity (Mayr-Mayer), see tutorial.

The regularity can really be doubly exponential in the degrees of the
generators and the number of the variables.

Koh (98) : For each integer r ≥ 1 there exists an ideal Ir ⊆ P = k [x1, . . . , xn]
with n = 22r generated by quadrics such that

reg(Ir ) ≥ 22r−1

These examples are highly non reduced (see also Giamo (2004) for a way of
making reduced examples).
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Bounds on the regularity and Open Problems

Bounds in terms of the degrees of generators

Bayer-Mumford in any characteristic

reg(I) ≤ (2d(I))(n−1)!

In the same paper they asked whether Giusti-Galligo’s bound holds in any
characteristic

Caviglia-Sbarra: If ht(I) = c < n and I is generated in degree ≤ d , then

reg(I) ≤ (dc + (d − 1)c + 1)2n−c−1

As a consequence we may deduce
n = 2 reg(I) ≤ 2d

n ≥ 3 reg(I) ≤ (d2 + 2d − 1)2n−3 ≤ (2d)2n−2

(the worst case is ht(I) = 2. )
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Bounds on the regularity and Open Problems

Bounds in terms of the degrees of generators

Problem.[Peeva-Stillman] Let d1 ≥ d2 ≥ . . . the degrees of the elements in a
minimal system of generators of I. Set c = ht(I), find conditions on I such
that

reg(I) ≤ d1 + · · ·+ dc − c + 1

Exercise.
Let I ⊆ P = k [x1, . . . , xn], dim P/I = 0, I is generated in degree ≤ d , then

reg(I) ≤ n(d − 1) + 1

Sjögren : The previous fact holds assuming dim P/I ≤ 1.
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Bounds on the regularity and Open Problems

Bounds in terms of the degrees of generators

For smooth (or nearly smooth) varieties there are much better bounds, linear
in the degrees of the generators and in the number of the variables.

Theorem (Bertram-Ein-Lazarsfeld and Chardin-Ulrich)

Assume char k = 0 and X ⊆ Pr a smooth variety defined
scheme-theoretically by equations of degree ≤ d , then

reg(I(X )) ≤ 1 + (d − 1)r .

More precisely if codimX = c and X is defined scheme-theoretically by
equations of degree d1 ≥ d2 ≥ . . . , then

reg(I(X )) ≤ d1 + · · ·+ dc − c + 1

Maria Evelina Rossi (Università di Genova) Castelnuovo-Mumford regularity and applications June, 2009 7 / 22



Bounds on the regularity and Open Problems

Bounds in terms of the degrees of generators

In the line of the papers by Bertram-Ein-Lazarsfeld and Chardin-Ulrich
(smooth variety defined scheme-theoretically by equations of degree ≤ d ),
one can ask the following problems.

Problem.[Eisenbud] The previous result might be true for any reduced
algebraic set over an algebraically closed field.
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Bounds on the regularity and Open Problems

Eisenbud-Goto’s Conjecture

Eisenbud-Goto Conjecture (84): If ℘ ⊆ (x1, . . . , xn)
2 is a prime

homogeneous ideal, then

reg(P/℘) ≤ e(P/℘)− n + dimP/℘

It is proved for irreducible curves (Gruson, Lazarsfeld, Peskine ’83)

It is proved for smooth surfaces (Bayer-Mumford ’93). Some more
generality (Brodman’99)

It is proved for some classes of toric varieties in codimension two
(Peeva-Sturmfels ’98)

Slightly weaker bounds (still linear in the degree) for smooth varieties of
dimension ≤ 6 (Kwak 2000)

There are evidence that EG conjecture should be true at least for smooth
schemes in char zero (papers by Mumford, Bertram-Ein-Lazarsfeld , Chardin)
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Bounds on the regularity and Open Problems

Eisenbud-Goto Conjecture

Eisenbud has conjectured that the bound of the Conjecture holds if X is
reduced and connected in codimension 1.

Both the assumptions are necessary, as the following examples show:

Two skew lines in P3 : let

I = (x0, x1) ∩ (x2, x3) ⊆ P = k [x0, . . . , x3].

In this case e(P/I) = 2, codim = 2, so reg(I) = 2 > e − codim + 1.

A multiple line in P3 : let

I = (x0, x1)
2 + (xd

2 x0 + xd
3 x1) ⊆ P = k [x0, . . . , x3].

In this case e(P/I) = 2, codim = 2, and
reg(I) = d + 1 > e − codim + 1 = 1.
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Bounds on the regularity and Open Problems

Regularity of the radical

Ravi proved that if I is a monomial ideal, then

reg(
√

I) ≤ reg(I)

Problem. Find classes of ideals for which reg(
√

I) ≤ reg(I).

Chardin-D’Cruz produced examples where reg(
√

I) is the cube of reg(I) (see
tutorial).

Problem.(Peeva-Stillman) Is reg(
√

I) bounded by a (possibly polynomial)
function of reg(I)?

Maria Evelina Rossi (Università di Genova) Castelnuovo-Mumford regularity and applications June, 2009 11 / 22



Bounds on the regularity and Open Problems

Regularity of the Tangent Cone
Let A = k [[x1, . . . , xn]]/I a local ring and let m be its maximal ideal.
We define the homogeneous k -standard algebra

grm(A) = ⊕n≥0mn/mn+1

which is called the associated graded ring or the tangent cone of A .

Geometric construction If A is the localization at the origin of the coordinate
ring of an affine variety V passing through 0, then grm(A) is the coordinate
ring of the tangent cone of V , which is the cone composed of all lines that are
limiting positions of secant lines to V in 0. The Proj of this algebra can also
be seen as the exceptional set of the blowing-up of V in 0.

We have a nice presentation

grm(A) ' k [x1, . . . , xn]/I∗

where I∗ is the ideal generated by the initial forms (w.r.t. the m -adic filtration)
of the elements of I. The ideal I∗ can by computed by using a slight
modification of Buchberger’s algorithm (see Mora, Traverso).
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Bounds on the regularity and Open Problems

Example

Example

Consider the power series A = k [[t4, t5, t11]]. This is a one-dimensional local
domain and

A = k [[x , y , z]]/I where I = (x4 − yz, y3 − xz, z2 − x3y2).

We can prove that

grm(A) = k [x , y , z]/(xz, yz, z2, y4)

We have dimA = dim grm(A) = 1, but depth grm(A) = 0.

We always have dimA = dim grm(A) , but the above example shows that

A Cohen-Macaulay 6=⇒ grm(A) Cohen-Macaulay
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Bounds on the regularity and Open Problems

Minimal free resolution of the tangent cone
Denote by µ( ) the minimal number of generators of an ideal of A. The
Hilbert function of A is, by definition

HFA(n) := dimk mn/mn+1 = µ(mn)

for every n ≥ 0. Hence HFA is the Hilbert function of the homogeneous
k -standard algebra

grm(A) = ⊕n≥0mn/mn+1

In particular e(A) = e(grm(A)), dim A = dim grm(A).

Several papers have been produced concerning the following problem:

Problem: Compare the numerical invariants of the R -free minimal resolution
of A (R = k [[x1, . . . , xn]] ) with those of the P -free minimal graded resolution
(P = k [x1, . . . , xn] ) of grm(A) :

0→ Rβh(I) → Rβh−1(I) → · · · → Rβ0(I) → I → 0

0→ Pβs(I∗) → Pβs−1(I∗) → · · · → Pβ0(I∗) → I∗ → 0
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Bounds on the regularity and Open Problems

Minimal free resolution of the tangent cone
Robbiano ([R]) proved

βi(I) ≤ βi(I∗)

In general is <

Example (Herzog,Rossi, Valla)

Consider I = (x3 − y7, x2y − xt3 − z6) in R = k [[x , y , z, t ]]. Since I is a
complete intersection, then a minimal free resolution of I is given by:

0→ R → R2 → I → 0.

But we can verify that

I∗ = (x3, x2y , x2t3, xt6, x2z6, xy9 − xz6t3, xy8t3, y7t9),

hence µ(I∗) = 8 and a minimal free resolution of I∗ is given by

0→ P → P6 → P12 → P8 → I∗ → 0

In particular depth A = 2 and depth grm(A) = 0.
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Bounds on the regularity and Open Problems

Regularity of grm(A)

It is an interesting problem to study the Castelnuovo-Mumford regularity of the
tangent cone of a Cohen-Macaulay local ring.

If grm(A) is a Cohen-Macaulay graded algebra, then

reg(grm(A)) ≤ e(A)− h + 1

where h is the codimension of A.

A 1-dimensional Cohen-Macaulay then

reg(grm(A)) ≤ e(A)− 1.

Problem. [Rossi, Trung, Valla] Let (A,m) be a local Cohen-Macaulay ring. Is
reg(grm(A)) bounded by a polynomial function (possibly linear) of the
multiplicity e(A) and the codimension?

Srinivas-Trivedi, Rossi-Trung-Valla proved very large bounds.
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