CoCoA School 7-12 June 2009 Castelnuovo-Mumford regularity and applications

Maria Evelina Rossi

Università di Genova Dipartimento di Matematica

TUTORS COCOA: Anna Bigatti and Eduardo De Cabezon Irigaray

Hilbert Functions and graded minimal free resolutions

- Castelnuovo Mumford Regularity and its behavior relative to Hyperplane sections, Sums, Products, Intersections of ideals
- Castelnuovo Mumford regularity and initial ideals
- Finiteness of Hilbert Functions and regularity
- Sounds on the regularity and Open Problems

References

The Krull dimension d, the multiplicity e and the Castelnuovo Mumford regularity are important invariants and it is an interesting problem to study the possible relations among them.

If A = P/I is Cohen-Macaulay, we have seen that reg(A) = degree of the *h*-polynomial h_A(z). Hence (we may assume I ⊆ m²)

$$reg(A) \leq e - n + d$$

In particular = holds $\iff h_A(z) = 1 + (n-d)z + \cdots + z^{e-n+d-1}$.

• The following example shows that in general the regularity cannot be bounded by a function *F*(*e*, *d*, *n*).

Example. Let $r \in \mathbb{N}^*$ and consider $A = k[x, y]/(x^2, xy^r)$ which is 1-dimensional non C-M. In this case e(A) = 1 but reg(A) = r.

Geometric information can produce better situations.

• (Castelnuovo) I = I(C) where C is a smooth curve:

 $reg(I) \leq e-1$

More in general

• (Gruson-Lazarsfeld-Peskine) $k = \overline{k}$, I = I(C) where C is a reduced irreducible curve in \mathbb{P}^n :

$$reg(I) \leq e - n + 2$$

The regularity has been used by S. Kleiman in the construction of bounded families of sheaves with given Hilbert polynomial, a crucial point in the construction of Hilbert or Picard scheme.

Here we will present a result by Kleiman in the case of equidimensional reduced schemes.

The problem is related to the finitness of Hilbert functions for classes of graded algebras with given multiplicity.

Let C be a class of homogeneous ideals in P, then we say:

- C is HF-finite if the number of numerical functions which arise as the Hilbert functions of P/I, $I \in C$, is finite,
- C is **HP-finite** if the number of polynomials which arise as the Hilbert polynomials of P/I, $I \in C$, is finite,
- C is **reg-limited** if for some integer t and all $I \in C$ we have $reg(P/I) \le t$,
- C is **g-reg-limited** if for some integer t and all $l \in C$ we have g-reg $(P/l) \le t$

 $(g - reg(P/I) = reg(P/I^{sat})$ called the geometric regularity).

Fix $P = k[x_1, ..., x_n]$ and let C be a class of homogeneous ideals in P

$\mathcal{C} \quad \text{reg-limited} \quad \Longleftrightarrow \ \mathcal{C} \quad \text{HF-finite}$

• (\Longrightarrow) Assume

$$t \geq reg(P/I) = reg(P/gin_{revlex}(I)) \geq m - 1$$

where m = maximum degree of the generators of gin(I). Since $HF_{P/I}(n) = HF_{P/gin_{reviex}(I)}(n)$ and the monomials of degree $\leq t + 1$ in P are a finite number, the conclusion follows

(⇐=) For the converse, since HF_{P/I}(n) = HF_{P/Lex(I)}(n), if C is HF-finite, there are only a finite number of lexicographic ideals in P associated to C. Now the result follows because

$$reg(P/I) \leq reg(P/Lex(I)).$$

g-reg-limited

We have seen (example) that

 \mathcal{C} HP-finite $\not\Longrightarrow \mathcal{C}$ reg-limited

If C is HP-finite, then we have a uniform upper bound for the geometric regularity of P/I in C.

 \mathcal{C} HP-finite $\Longrightarrow \mathcal{C}$ g-reg-limited

It is a consequence of Gotzmann's formula which says: the Hilbert polynomial of A = P/I can be written in the unique form

$$HP_A(X) = egin{pmatrix} X+a_1\ a_1 \end{pmatrix} + egin{pmatrix} X+a_2-1\ a_2 \end{pmatrix} + \cdots + egin{pmatrix} X+a_s-(s-1)\ a_s \end{pmatrix}$$

with $a_1 \ge a_2 \ge \cdots \ge a_s \ge 0$, then

$$reg(P/I^{sat}) \leq s - 1.$$

Kleiman's theorem

For every $d \ge 1$ we define recursively the following polynomials $F_d(X)$ with rational coefficients. We let

$$F_1(X) = X - 1$$
, $F_2(X) = X^2 + X - 1$

and if $d \ge 3$ then we let

$$F_d(X) = F_{d-1}(X) + X \begin{pmatrix} F_{d-1}(X) + d - 1 \\ d - 1 \end{pmatrix}.$$

Theorem

Let A = P/I be a reduced equidimensional graded algebra of dimension d and multiplicity e. Then $reg(A) < F_d(e)$.

We can list the main steps of an algebraic proof (by Rossi, Trung and Valla).

Finiteness of Hilbert Functions and regularity Kleiman's theorem: an algebraic proof

Throughout this part we need the assumption that the field K is algebraically closed and of characteristic zero. We need it in order to use Bertini-type theorem on the generic hyperplane section of a reduced and non degenerate variety (see Flenner's result).

Since we want to use induction on the dimension *d* ≥ 2 of *A* = *P*/*I*, we will choose a generic element *z* ∈ *P*₁ and we consider

 $B:=P/(I+zP)^{sat}.$

It is clear that $\dim(B) = d - 1$ and

$$e(A) = e(A/zA) = e(P/(I+zP)) = e(B) := e.$$

If we assume that *A* is reduced and equidimensional, then *B* is reduced equidimensional too (Flenner's result).

• Hence we need to control g - reg(A/zA) where z is a general hyperplane section.

Mumford's theorem: an algebraic approach

• Unlike the regularity, the geometric regularity does not behave well under generic (and regular) hyperplane sections. Take for example the standard graded algebras

$$A = k[X, Y, Z]/(X^2, XY), \quad T = k[X, Y]/(X^2, XY).$$

Then $g \operatorname{reg}(A) = \operatorname{reg}(A) = 1$ while $g \operatorname{reg}(T) = 0$, $\operatorname{reg}(T) = 1$.

However the following crucial result gives us the opportunity to control this bad behaviour.

Theorem (An algebraic version of Mumford's theorem)

Let A = P/I be a standard graded algebra and $z \in A_1$ a regular linear form in A. If g-reg $(A/zA) \le m$, then

 $reg(A) \leq m + \dim(H^1(A)_m) = m + HP_A(m) - HF_A(m)$

HF-finite

Hence, since $HP_A(m)$ can be bounded in terms of the multiplicity and the dimension and *m* can be controlled by induction, we can prove Kleiman's result.

Corollary

Let C be the class of reduced equidimensional graded algebras with given multiplicity and dimension. Then C is HF-finite.

We need only to remark that if $P = k[X_1, ..., X_n]$ and A = P/I has dimension d and multiplicity e, then $n - d + 1 \le e$. The conclusion follows by Kleiman's theorem.

The theorem does not hold even if we consider reduced graded algebras not necessarly equidimensional. Take for example the graded rings

$$A_r := k[X, Y, Z, T, W]/(X) \cap (W, XZ^r - YT^r).$$

All the elements of the family have dimension four, molteplicity one, but the regularity and the Hilbert function depend on r.

HF-finite

Kleiman's theorem does not hold if we delete the assumption that every element of the family is reduced.

Take for example the graded rings

$$A_r := k[X, Y, Z, T]/(Y^2, XY, X^2, XZ^r - YT^r).$$

This is the coordinate ring of a curve in \mathbf{P}^3 which can be described as the divisor 2*L* (*L* is a line) on a smooth surface of degree r + 1. The Hilbert series of A_r is

$$HS_{A_r}(z) = \frac{1+2z-z^{r+1}}{(1-z)^2}$$

so that

$$\dim(A_r)=2, \quad e(A_r)=2$$

but $reg(A_r) = r$ and we do not have a finite number of Hilbert functions.