CoCoA School 7-12 June 2009
 Castelnuovo-Mumford regularity and applications

Maria Evelina Rossi

Università di Genova
Dipartimento di Matematica
TUTORS COCOA: Anna Bigatti and Eduardo De Cabezon Irigaray

Castelnuovo Mumford regularity

The Castelnuovo Mumford regularity

- is one of the most important invariants of a graded module, after the multiplicity and the dimension.
- is related to the theory of syzygies which connects the qualitative study of algebraic varieties and commutative rings with the study of their defining equations.
- is a good measure of the complexity of computing Gröbner bases.
- is a very active area of research which involves specialists working in commutative algebra, algebraic geometry and computational algebra.

Contents

(1) Hilbert Functions and minimal free resolutions
(2) Castelnuovo Mumford Regularity and its behavior relative to Hyperplane sections, Sums, Products, Intersections of ideals
(3) Castelnuovo Mumford regularity and initial ideals
(a) Finiteness of Hilbert Functions and regularity
(5) Bounds on the regularity and Open Problems

References

Notations

- Denote

$$
P=k\left[x_{1}, \ldots, x_{n}\right]
$$

a polynomial ring over a field k with deg $x_{i}=1$
$P_{j}:=k$-vector space generated by the forms of P of degree j.

- M a finitely generated graded P-module (such as an homogeneous ideal I or $P / I)$, i.e.

$$
M=\oplus_{i} M_{i}
$$

as abelian groups and $P_{j} M_{i} \subseteq M_{i+j}$ for every i, j.
Let $d \in \mathbb{Z}$, the d-th twist of M

$$
M(d)_{i}:=M_{i+d} .
$$

Hilbert Function

Definition

The numerical function

$$
H F_{M}(j):=\operatorname{dim}_{k} M_{j}
$$

is called the Hilbert function of M.
Assume $M=P / I$ where I is an homogeneous ideal of P.
An important motivation arises in projective geometry.
$X \subseteq \mathbb{P}^{r}$ a projective variety defined by $I=I(X) \subseteq P=k\left[x_{0}, \ldots, x_{r}\right]$.
If we write $A(X)=P / I(X)$ for the homogeneous coordinate ring of X :

$$
H F_{X}(d)=\operatorname{dim}_{k} A(X)_{d}=\operatorname{dim}_{k} P_{d}-\operatorname{dim}_{k} I_{d}=\binom{r+d}{r}-\operatorname{dim}_{k} I_{d}
$$

$\operatorname{dim}_{k} I_{d} \rightarrow$ the 'number' of hypersurfaces of degree d vanishing on X.

Hilbert Function

If τ is a term ordering on \mathbb{T}^{n} and $G=\left\{f_{1}, \ldots, f_{s}\right\}$ is a τ-Gröbner basis of I, then

$$
\mathrm{Lt}_{\tau}\{l\}=\left\{\mathrm{Lt}_{\tau}\left(f_{1}\right), \ldots, \mathrm{Lt}_{\tau}\left(f_{s}\right)\right\}
$$

The residue classes of the elements of $\mathbb{T}^{n} \backslash \operatorname{Lt}_{\tau}\{I\}$ form a k-basis of P / I.
Let $\mathrm{Lt}_{\tau}(I)=\left(\mathrm{Lt}_{\tau}\left(f_{1}\right), \ldots, \mathrm{Lt}_{\tau}\left(f_{s}\right)\right)$.
Proposition
(Macaulay) For every $j \geq 0$

$$
H F_{P / l}(j)=H F_{P / \mathrm{Lt}_{\tau}(I)}(j)
$$

Hilbert Polynomial

- $H F_{M}(j)$ agrees with $H P_{M}(X)$ a polynomial of degree $d-1$ where $d=$ Krull dimension of M.
- $H P_{M}(j)$ is called Hilbert Polynomial and it encodes several asymptotic information on M (denote by $e_{i}(M)$ the Hilbert coefficients).
- A more compact information can be encoded by the Hilbert series

$$
H S_{M}(z):=\sum_{i \geq 0} H F_{M}(i) z^{i}=\frac{h_{M}(z)}{(1-z)^{d}} \quad(\text { Hilbert }- \text { Serre })
$$

where $h_{M}(1)=e>0$ is the multiplicity of M and $d=\operatorname{dim} M$.

- Define

$$
\operatorname{reg}-\operatorname{index}(M):=\max \left\{i: \quad H F_{M}(i) \neq H P_{M}(i)\right\}
$$

Minimal free resolutions

- A graded free resolution of M as a graded P-module is an exact complex (ker $f_{j-1}=\operatorname{lm} f_{j}$ for every j)

$$
\mathbb{F}: \ldots F_{h} \xrightarrow{f_{h}} F_{h-1} \xrightarrow{t_{n-1}} \cdots \rightarrow F_{1} \xrightarrow{f_{1}} F_{0} \xrightarrow{f_{0}} M \rightarrow 0
$$

where F_{i} are free P-modules and f_{i} are homogeneous homomorphisms (of degree 0).

- \mathbb{F} is minimal if for every $i \geq 1$

$$
\operatorname{lm} f_{i} \subseteq m F_{i-1}
$$

where $m=\left(x_{1}, \ldots, x_{n}\right)$.

Existence of minimal graded free resolutions

We proceed step by step:

- Let M be a finitely generated graded P-module. Consider $\left\{m_{1}, \ldots, m_{t}\right\}$ a minimal system of homogeneous generators of M and let $a_{0 i}=\operatorname{deg} m_{i}$.
- Define the homogeneous map

$$
F_{0}=\oplus_{i} P\left(-a_{0 i}\right) \xrightarrow{f_{0}} M
$$

$$
e_{i} \quad \rightarrow \quad m_{i}
$$

- f_{0} is a surjective map and by the minimality of the system of generators

$$
\operatorname{Ker} f_{0} \subseteq m F_{0}
$$

- Taking a minimal set of generators $\left\{s_{1}, \ldots s_{r}\right\}$ of $\operatorname{Ker} f_{0}$ (say of degrees $a_{1 i}$), we define f_{1} sending a basis $e_{i}^{\prime} \rightarrow s_{i}$.

$$
0 \rightarrow \operatorname{Ker} f_{1} \rightarrow F_{1}=\oplus_{i} P\left(-a_{1 i}\right) \xrightarrow{f_{1}} \text { Kerf }_{0} \rightarrow 0
$$

we can iterate the procedure.

Minimal free resolution

The minimal graded free resolution of M as P-module has the following shape:

$$
\mathbb{F}: \quad \cdots \oplus_{j=1}^{\beta_{h}} P\left(-a_{h j}\right) \xrightarrow{t_{h}} \oplus_{j=1}^{\beta_{h-1}} P\left(-a_{h-1 j}\right) \xrightarrow{t_{h-1}} \cdots \xrightarrow{f_{1}} \oplus_{j=1}^{\beta_{0}} P\left(-a_{0 j}\right) \xrightarrow{f_{0}} M \rightarrow 0
$$

with the properties:

- $a_{i j} \geq i$ for every i, j
- $\forall k \geq 1, \forall j=1, \ldots, \beta_{k}$ there exists p :

$$
a_{k j}>a_{k-1 p}
$$

NO: $\ldots P^{2}(-4) \oplus P(-2) \rightarrow P(-3) \oplus P(-2) \rightarrow \ldots$

- All the non zero entries of the matrices associated to f_{i} have positive degree

Example

$I=\left(x^{2}, x y, x z, y^{3}\right)$ in $P=k[x, y, z]$. Define

$$
\begin{aligned}
& P(-2)^{3} \oplus P(-3) \xrightarrow{t_{0}} I \rightarrow 0 \\
& e_{1} \rightsquigarrow x^{2} \\
& e_{2} \rightsquigarrow x y \\
& e_{3} \rightsquigarrow x z \\
& e_{4} \rightsquigarrow y^{3}
\end{aligned}
$$

$\operatorname{Syz} z_{1}(I)=\operatorname{Ker} f_{0}$ is generated by $s_{1}=y e_{1}-x e_{2} ; s_{2}=z e_{1}-x e_{3}$; $s_{3}=z e_{2}-y e_{3} ; s_{4}=y^{2} e_{2}-x e_{4}$. Define

$$
\begin{gathered}
P(-3)^{3} \oplus P(-4) \xrightarrow{f_{1}} S y z_{1}(I) \rightarrow 0 \\
e_{i}^{\prime} \rightsquigarrow s_{i}
\end{gathered}
$$

$\operatorname{Syz}_{2}(I)=\operatorname{Ker} f_{1}$ is generated by $s=z e_{1}^{\prime}-y e_{2}^{\prime}+x e_{3}^{\prime}$.
A minimal free resolution of I as P-module is given by:

$$
\begin{aligned}
0 \rightarrow P(-4) \xrightarrow{f_{2}} & P(-3)^{3} \oplus P(-4) \xrightarrow{f_{1}} P(-2)^{3} \oplus P(-3) \xrightarrow{f_{0}} I \rightarrow 0 . \\
1 & \rightsquigarrow s
\end{aligned}
$$

Basic facts I

It will be useful rewrite the resolution as follows:

$$
\cdots \rightarrow F_{i}=\oplus_{j \geq 0} P(-j)^{\beta_{i j}} \rightarrow \cdots \rightarrow \oplus_{j \geq 0} P(-j)^{\beta_{0 j}} \rightarrow M
$$

1) $\beta_{i j} \geq 0$
2) $\beta_{i j}=$ cardinality of the shift $(-j)$ in position i

Question. Does $\beta_{i j}$ (hence $a_{i j}$) depend on the maps f_{i} of the resolution?
We remind that in the proof of the existence of a minimal free resolution we can choose different system of generators of the kernels, hence different maps.

Basic facts I

We prove

Proposition

$$
\beta_{i j}=\beta_{i j}(M)=\operatorname{dim}_{k} \operatorname{Tor}_{i}^{P}(M, k)_{j}
$$

and we call these integers graded Betti numbers of M.

In fact

$$
\operatorname{Tor}_{i}^{P}(M, k)=H_{i}(\mathbb{F} \otimes P / m)
$$

By the minimality of \mathbb{F} the maps of the new complex $\mathbb{F} \otimes P / m$ are trivial, hence we have

$$
\begin{gathered}
\operatorname{Tor}_{i}^{P}(M, k)_{j}=\left[\oplus_{m \geq 0} P(-m)^{\beta_{i m}} \otimes P / m\right]_{j}=\left[\oplus_{m \geq 0} k(-m)^{\beta_{i m}}\right]_{j}= \\
=\oplus_{m \geq 0}\left(k_{j-m}\right)^{\beta_{i m}} \underset{j=m}{=} k^{\beta_{i j}}
\end{gathered}
$$

Notice that two ideals can have the same HF, but different Betti numbers. $I=\left(x^{2}, y^{2}\right)$ and $J=\left(x^{2}, x y, y^{3}\right)$ have both $H F_{P / I}=H F_{P / J}=\{(1,2,1,0)\}$ and different number of generators.

Tutorial

In the tutorial we will see what happens if we consider

$$
X=\left\{P_{1}, \ldots, P_{4}\right\} \subseteq \mathbb{P}^{2}
$$

four distinct points in the plane.

We let $P=k\left[x_{0}, x_{1}, x_{2}\right]$:

- the Hilbert polynomial of a set of four points, no matter what the configuration, is a constant polynomial $H P_{X}(n)=4$.
- the Hilbert function of X depends only on whether all four points lie on a line.
- The graded Betti numbers of the minimal resolution, in contrast, capture all the remaining geometry: they tell us whether any three of the points are collinear as well.

Basic facts II

We have proved that:

- The graded Betti numbers are uniquely determined by M.
- The minimal graded free resolution is uniquely determined by M up to homogeneous isomorphisms of graded free modules (bases changes).
- The total Betti numbers :

$$
\beta_{i}(M):=\sum_{j \geq 0} \beta_{i j}(M)=r k\left(F_{i}\right)
$$

- $\beta_{0}(M)=$ minimal number of generators of $M\left(=\operatorname{dim}_{k} M / m M\right)$ $\beta_{0 j}(M)=\operatorname{dim}_{k} M_{j} / P_{1} M_{j-1}$
- $\beta_{i}(M)=$ number of minimal i-syzygies of $M\left(=\operatorname{ker} f_{i-1}\right)$ $\beta_{i j}(M)=$ number of minimal i-syzygies of M of degree j

Koszul complex

A special graded P-free resolution:

Example

$P=k\left[x_{1}, x_{2}\right]$ A graded minimal free resolution of $k=P / m$ as P-module is:

$$
\begin{gathered}
0 \rightarrow P(-2) \rightarrow P(-1) \oplus P(-1) \rightarrow P \rightarrow k \rightarrow 0 \\
1 \rightarrow \overline{1} \\
e_{1}=(1,0) \rightsquigarrow x_{1} \\
e_{2}=(0,1) \rightsquigarrow x_{2} \\
1 \rightsquigarrow\left(-x_{2}, x_{1}\right)
\end{gathered}
$$

More in general we can find a free resolution of $k=P / m$ as $P=k\left[x_{1}, \ldots, x_{n}\right]$-module, $n \geq 1$:

$$
\mathbb{K}: 0 \rightarrow P(-n)^{\binom{n}{n}} \rightarrow P(-n+1)\left(\begin{array}{c}
\binom{n-1}{-1}
\end{array} \rightarrow \rightarrow P(-1)^{\binom{n}{1}} \rightarrow P\right.
$$

the Koszul complex of $\left(x_{1}, \ldots, x_{n}\right)$.

Hilbert's Syzygy Theorem

We deduce an easy proof of a graded version of

Theorem (Hilbert's Syzygy Theorem)

Every finitely generated P-module has a finite graded free resolution (of length $\leq n$)

In fact

$$
\operatorname{Tor}_{i}(k, M)=H_{i}(\mathbb{K} \otimes M)=0
$$

for every $i \geq n+1\left(K_{i}=0\right.$ for $\left.i \geq n+1\right)$.

Every graded free resolution \mathbb{F} of M can be minimalized: any free resolution of M can be obtained from a minimal one by adding "trivial complexes" of the form:

$$
0 \rightarrow \cdots \rightarrow P(-a) \rightarrow P(-a) \rightarrow \cdots \rightarrow 0
$$

Auslander-Buchsbaum formula

If M has the following minimal P-free resolution:

$$
0 \rightarrow F_{h}=\oplus_{j \geq 0} P(-j)^{\beta_{h j}} \rightarrow \cdots \rightarrow \oplus_{j \geq 0} P(-j)^{\beta_{0 j}} \rightarrow M
$$

Define Projective dimension (or Homological dimension)

$$
p d(M):=\max \left\{i: \beta_{i j}(M) \neq 0 \text { for some } j\right\}
$$

that is $h=$ length of the resolution.

Theorem (Auslander-Buchsbaum formula)

$$
p d_{P}(M)=n-\operatorname{depth}(M)
$$

where $\operatorname{depth}(M)=$ length of a (indeed any) maximal M-regular sequence in m.
M is Cohen-Macaulay $\Longleftrightarrow \operatorname{depth} M=\operatorname{dim} M \Longleftrightarrow \operatorname{pd}_{P}(M)=n-\operatorname{dim} M$.

Let I be an homogeneous ideal of P.

Proposition

The Betti numbers of I determine the HF of I. If $\beta_{i j}$ are the graded Betti numbers of I, then the Hilbert series of P / I is given by

$$
H S_{P / / l}(z)=\frac{1+\sum_{i j}(-1)^{i+1} \beta_{i j} z^{j}}{(1-z)^{n}}
$$

If we consider the previous example $I=\left(x^{2}, x y, x z, y^{3}\right)$ in $P=k[x, y, z]$. We have seen that a minimal free resolution of I as P-module is given by:

$$
0 \rightarrow P(-4) \rightarrow P(-3)^{3} \oplus P(-4) \rightarrow P(-2)^{3} \oplus P(-3) \rightarrow P \rightarrow P / I \rightarrow 0 .
$$

Since $H S_{P(-d)^{\beta}}(z)=\frac{\beta z^{d}}{(1-z)^{n}}$, then

$$
H S_{P / / I}(z)=\frac{1-3 z^{2}-z^{3}+3 z^{3}+z^{4}-z^{4}}{(1-z)^{3}}=\frac{1+2 z}{1-z}
$$

Betti Diagram

The numerical invariants in a minimal free resolution can presented by using "a piece of notation" introduced by Bayer and Stillman: the Betti diagram.

This is a table displaying the numbers $\beta_{i j}$ in the pattern

	0	1	2	\ldots	i
$0:$	β_{00}	β_{11}	β_{22}	\cdots	$\beta_{i i}$
$1:$	β_{01}	β_{12}	β_{23}	\cdots	$\beta_{i i+1}$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
$s:$	$\beta_{0 s}$	$\beta_{1 s+1}$	$\beta_{2 s+2}$	\cdots	$\beta_{i i+s}$
\sum	β_{0}	β_{1}	β_{2}	\cdots	β_{i}

with $\beta_{i j}$ in the i-th column and $(j-i)$-th row.
Thus the i-th column corresponds to the i-th free module

$$
F_{i}=\oplus_{j} P(-j)^{\beta_{i j}}
$$

Example

```
    Use R ::= QQ[t,x,Y,z];
    I := Ideal(x^2-yt,xy-zt,xy);
    Res(I);
0 --> R^2(-5) --> R^4(-4) --> R^3(-2)
------------------------------
    BettiDiagram(I);
    0 1 2
\begin{tabular}{cccc}
\(2:\) & 3 & - & - \\
\(3:\) & - & 4 & 2 \\
------------------- \\
Tot \(:\) & 3 & 4 & 2
\end{tabular}
```


Definition

Given a minimal P-free resolution of M :

$$
\mathbb{F}: \ldots . . \quad \rightarrow F_{i}=\oplus P(-j)^{\beta_{i j}(M)} \rightarrow \cdots \rightarrow F_{0}=\oplus P(-j)^{\beta_{0}(M)}
$$

the Castelnuovo-Mumford regularity of M is

$$
\operatorname{reg}(M)=\max \left\{j-i: \beta_{i j}(M) \neq 0\right\}
$$

We remark that if I is an homogeneous ideal $\subseteq P$

$$
\begin{aligned}
& p d(P / I)=p d(I)+1 \\
& \operatorname{reg}(I)=\operatorname{reg}(P / I)+1
\end{aligned}
$$

Moreover:

- $\operatorname{reg}(I) \geq$ maximum degree of a (minimal) generator
- if M is Artinian

$$
\operatorname{reg}(M)=\max \left\{i: M_{i} \neq 0\right\}
$$

Exercise. Starting from the Betti Diagram, write a CocoA function returning the Castelnuovo regularity of M .

```
Use P ::= Q[x,y,z,w];
    I := Ideal(xz-yw, xw-y^2, x^2y+xzw, xy^2, xyz);
    CastelnuovoRegularity(I);
4
```

 Res (I);
 $P^{\wedge} 2(-7)->P^{\wedge} 6(-6)->P^{\wedge} 5(-4)(+) P^{\wedge} 3(-5)->P^{\wedge} 2(-2)(+) P^{\wedge} 3(-3)$
BettiDiagram(I);

	0	1	2	3
2 :	2	-	-	-
$3:$	3	5	-	-
4:	-	3	6	2
Tot:	5	8	6	2

If we consider THE example

$$
I=\left(x^{2}, x y, x z, y^{3}\right) \subseteq P=k[x, y, z] .
$$

We have seen that a minimal free resolution of I as P-module is given by:
$0 \rightarrow F_{2}=P(-4) \xrightarrow{f_{2}} F_{1}=P(-3)^{3} \oplus P(-4) \xrightarrow{f_{1}} F_{0}=P(-2)^{3} \oplus P(-3) \xrightarrow{f_{0}} I \rightarrow 0$.
Then

- $p d(I)=2$
- $\operatorname{reg}(I)=3=$ max degree of a minimal generator.
- $\operatorname{dim} P / I=1$ (we know that $H S_{P / I}(z)=\frac{1+2 z}{1-z}$).

Hence P / I is not Cohen-Macaulay since $p d(P / I)=3>3-\operatorname{dim} P / I=2$.

- reg-index $(P / I)<\operatorname{reg}(P / I)=2$

Lex-segment ideal

Let I be an homogeneous ideal in $P=k\left[x_{1}, \ldots, x_{n}\right]$.
By Macaulay's Theorem there exists a lexicographic ideal L with the same HF of $I\left(L_{j}\right.$ is spanned by the first $\operatorname{dim}_{K} L_{j}=\operatorname{dim}_{K} I_{j}$ monomials in the lexicographic order).

- (Bigatti, Hulett, Pardue)

$$
\beta_{i j}(P / I) \leq \beta_{i j}(P / L)
$$

- Hence $\operatorname{reg}(P / I) \leq \operatorname{reg}(P / L)$
- (I. Peeva) the Betti numbers $\beta_{i j}(P / I)$ can be obtained from $\beta_{i j}(P / L)$ by a sequence of consecutive cancellations.
i.e. $\quad \cdots \rightarrow P(-6)^{2} \oplus P(-5) \rightarrow P(-5) \oplus P(-3) \rightarrow \ldots$

Tutorial

Exercise Consider the homogeneous coordinate ring of the "twisted cubic":

$$
R=K\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right]
$$

(1) Prove that $R=P / I$ where $P=K\left[x_{0}, \ldots, x_{3}\right]$ and $I=I_{2}\left(\begin{array}{lll}x_{0} & x_{1} & x_{2} \\ x_{1} & x_{2} & x_{3}\end{array}\right)$
(2) Prove that R is CM
(3) Compute $\mathrm{HF}_{R}(j)$, $\operatorname{reg}(R)$
(9) Compare $\operatorname{reg}(I)$ and $\operatorname{reg}\left(L t_{\tau}(I)\right)$ with τ any term ordering

Exercise Consider the homogeneous coordinate ring of the smooth rational quartic in \mathbb{P}^{3}

$$
R=K\left[s^{4}, s^{3} t, s t^{3}, t^{4}\right]
$$

(1) Prove that $R \simeq P / I$ where $P=K\left[x_{0}, \ldots, x_{3}\right]$ and

$$
I=I_{2}\left(\begin{array}{cccc}
x_{0} & x_{1}^{2} & x_{1} x_{3} & x_{2} \\
x_{1} & x_{0} x_{2} & x_{2}^{2} & x_{3}
\end{array}\right)
$$

(2) Prove that R is not CM
(3) Compute reg(I)

Tutorial

Exercise Compute the Betti diagram of 11 randomly chosen points in \mathbb{P}^{7}. Compute regularity index (RegularityIndex) and regularity.

Exercise Let $P=K\left[x_{1}, \ldots, x_{n}\right]$ and $F_{1}, F_{2}, F_{3} \in P$ homogeneous polynomials which form a regular sequence.
(1) Assume $d_{i}=\operatorname{deg}\left(F_{i}\right)$ and compute reg (I) where $I=\left(F_{1}, F_{2}, F_{3}\right)$
(2) Can you compute the value of reg (I) where I is generated by a regular sequence of degrees d_{1}, \ldots, d_{r} ?

Exercise Describe Hilbert function, Hilbert polynomial, Betti diagram, regularity of each possible configuration of 4 distinct points in \mathbb{P}^{2}.

