
The Segre Varieties

I would like to now turn to the family of Segre Varieties and see what the

state of the art is there. The investigation of the Secant Varieties of the Segre

Varieties is a very active area of current research because many applications

outside of algebraic geometry can be found for solutions to the problems here.

As this is a very active area of research, it is still not completely clear what

is to be expected, but a great deal of data is being collected about what is true

and what is not true and that is helping to make it possible to begin to formulate

conjectures.

Exactly what is the problem: Let’s consider t ≥ 3 vector spaces V1, . . . , Vt,

where dimVi = ni + 1. Let’s suppose also that n1 ≤ n2 ≤ · · · ≤ nt. Let

V = V1 ⊗ · · · ⊗ Vt.

We say that v ∈ V is decomposable if v = v1 ⊗ · · · ⊗ vt for vi ∈ Vi.
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After choosing bases for each Vi we get a basis for V of decomposable vectors

choosing a vector from the basis for each Vi. Thus, dimV = Πt
i=1

dimVi. This

basis consists of decomposable vectors.

After having chosen bases for the Vi, and using them to get a basis for V ,

we can arrange the coordinates of vectors of V in a sort of t-dimensional array

(for t = 2, this was a matrix, for t = 3 it looks like a box, etc. ).

Definition: A vector v ∈ V has tensor rank r if

v = T1 + · · · + Tr

where Ti is a decomposable tensor, and no shorter such decomposition exists.

Note: 1) Since v and λv, λ 6= 0 clearly have the same tensor rank, the question

of tensor rank can be posed in P(V ).

2) Since V has a basis of decomposable vectors, every vector v ∈ V has

finite tensor rank.

2



Several problems emerge, some from the applications anticipated.

i) What is the maximum tensor rank for v ∈ V ?

ii) How do you calculate the tensor rank of a given v ∈ V ?

iii) What is the “generic” tensor rank, i.e. if

U` = {v ∈ V | the tensor rank of v ≤ `}

what is the least ` for which U` = P(V )?

This least ` is called the tensor rank of V .

We’ve seen that for t = 2, all of these questions have relatively simple

answers (explain).

Let me give you the first indication of how things go badly for t > 2. I will

construct an example (for t = 3) in which U` = P(V ) but there are tensors of

tensor rank strictly bigger than ` in V .
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Let’s look at the case of three vector spaces, all of dimension 2, call them

V1, V2, V3. I’ll choose bases for each and look at the elements of V = V1⊗V2⊗V3

as 2 × 2 × 2 boxes.

One can speak of the “faces” of a box. It is an easy exercise to see that

“elementary face operations” don’t change the tensor rank.

I will now introduce some notation for these 2 × 2 × 2 boxes:

B =







M1

M2







where M1 denotes the top face and M2 the bottom face.

Clearly

B =







M1

0







+







0

M2







and each summand is a sum of two decomposable vectors. The first is

(1, 0) ⊗ v2 ⊗ v3 + (1, 0) ⊗ v′

2 ⊗ v′

3
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and the second is

(0, 1) ⊗ w2 ⊗ w3 + (0, 1) ⊗ w′

2
⊗ w′

3

(explain how the places in the box are determined.)

It follows from what we did for matrices that every 2× 2× 2 tensor is a sum

of ≤ 4 decomposable vectors. But, notice that if one of these faces was a matrix

of rank 1, we would have gotten away with three summands.

I want to show that every 2 × 2 × 2 tensor is a sum of ≤ 3 decomposable

tensors. So, it is enough to consider the case in which every face has rank = 2.

So, suppose we have at least one “ray” in the box where we have (x y) with

xy 6= 0. Suppose the appropriate faces are

M1 =

(

x b
c d

)

,M2 =

(

y f
g h

)

Let

B1 =







N1

0







where N1 =

(

x b
c bc

x

)
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Notice that rk N1 = 1 and so B1 is decomposable ( ↔ (1, 0) ⊗ v2 ⊗ v3).

Do the same thing on the bottom face and get B2 decomposable. If we then

look at

B − B1 − B2 =















(

0 0
0 ∗

)

(

0 0
0 ∗

)















(both ∗’s are 6= 0 , top one is det M1

x
, bottom one is det M2

y
.) It is easy to see that

this last matrix is decomposable (add multiple of top row to bottom to get rid

of the ∗).

Final Case: In this case

B =







M1

M2
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where

M1 =

(

a 0
0 b

)

and M2 =

(

0 c
d 0

)

where ab 6= 0 and cd 6= 0. Now add bottom to top, that doesn’t change the

tensor rank and we are no longer in this situation. Done.

It is possible to show that the closure of the tensors of tensor rank = 2 is

everything! (one does the elimination). But the following box

B =

{

M1

M2

}

where we have

M1 =

(

0 0
0 a

)

and M2 =

(

0 b
c d

)

with abcd 6= 0, has tensor rank exactly 3. This is very different from the case of

rank for matrices. There are not equations to describe “tensor rank ≤ 2”, for if

there were, that set would be closed and you wouldn’t be able to “escape from

it” to tensors of higher tensor rank.
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Geometric Formulation

Clearly, these questions about “tensor rank” can all be formulated in terms

of questions about the nature of the Secant variety of the various Segre embed-

dings

P
n1 × · · · × P

nt −→ P(V1 ⊗ · · · ⊗ Vt) ' P
N

where N = −1 + Πt
i=1

(ni + 1). Again the questions are: do the various Secant

varieties have the “expected” dimension?

We have already seen that there are some “easy” cases where this does not

happen, namely in the case of two vector spaces. (So, in our paradigm of the

Veronese varieties, this is the analogue of the quadratic Veronese varieties, which

all have deficient secant varieties.)

In a paper with Catalisano and Gimigliano we showed that “unbalanced

products” are always defective. More precisely: let

X = P
n1 × · · · × P

nt × P
n
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then for s an integer such that

Πt
i=1

(ni + 1) − (
t

∑

i=1

ni) + 1 ≤ s ≤ min{n,−1 + Πt
i=1

(ni + 1)}

then Secs−1(X) is defective.

Example: Consider Sec3(P
2 × P

2 × P
2) ⊂ P

26. This should fill the space but it

does not.

Also, X = P
2 × P

n × P
n for n even. Strassen showed that UE fills P

N for

the first time when E = (3/2)n + 2 . This is later than it ought to fill.

E.g. for n = 4 we have P
2 × P

4 × P
4 ⊂ P

74. For s = 8 we should have

Sec7(X) = P
74 but it is not.

On the positive side, for X = P
n1 × · · · × P

nt and t ≥ 3, if
⌈

(n1 + · · · + nt + 1)

2

⌉

≥ max{nt + 1, s}
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then Secs−1(X) is not defective.

How does one attack these problems? Without entering into any details,

one is reduced to considering the multigraded Hilbert function of ideals of the

form

℘2

1
∩ · · · ∩ ℘2

s

where ℘ is the multihomogeneous prime ideal associated to a point in the product

space.

Although we could handle that in certain cases, these multihomogeneous

ideals were a bit difficult to deal with. So, in one of our papers we proposed to

move from the multihomogeneous setting to a simple homogeneous setting. The

gain in being able to deal with homogeneous ideals in a single polynomial ring

was compensated by the fact that we now had to deal with more complicated

ideals!
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E.g. consider the problem of deciding the dimension of

Sec2(P
1 × P

1 × P
1 × P

1).

We need to consider the Hilbert function of the ideal

(℘2

1
∩ ℘2

2
∩ ℘2

3
∩ q3

1
∩ · · · ∩ q3

4
)4 ⊂ k[x0, x1, ..., x4]4

In this case we have that the secant variety is defective if and only if this ideal

contains two or more independent quartics.

Recently, with Catalisano and Gimigliano, we found the first infinite family

in which all secant varieties are now known.

Theorem: Let Xt = P
1 × · · · × P

1, t ≥ 3 times.

Then, apart from Sec2(X4) all the other secant varieties for Xt (for every

t ≥ 3) is not defective.
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Some Open Problems

Aside: These result has spawned a whole series of questions which have captured

the attention of numerous mathematicians recently.

E.g.

1) What is the Hilbert function of R/I when

I = ℘n1

1
∩ · · · ∩ ℘nt

t .

and the ℘i ↔ Pi are general points of P
n (even for n = 2).

2) What are the graded Betti numbers for such ideals, when the points Pi

are general.

3) It is known what all the possibilities are for the Hilbert functions of points

in P
n, but it not known what are all the possibilities for “2-fat” points, even in

P
2. Nor even upper or lower bounds.

4) What are the equations for the Secant Varieties of the Veronese Varieties,

for the varieties of reducible forms, for the Segre varieties. There has been some

12



work of Weyman, Landsberg and Manivel on the equations for small secant

varieties with 3 or 4 factors and by Catalisano, Geramita and Gimigliano for

unbalanced products of Segre varieties.

.........
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