
Summary of Last Lecture

Terracini’s Lemma

Let X = J(X0, . . . , Xs), Xi ⊂ Pn. Let Pi ∈ Xi be general points and let

P
s = 〈P0, . . . , Ps〉

Then, for a general point Q ∈ Ps we have

TQ,X = 〈TP0,X0
, . . . , TPs,Xs

〉

Example 1: Let R = k[x0, . . . , x3] and let

X0 = V(3,1),3, X1 = V(2,1,1),3

i.e. λ1 = (3, 1) and λ2 = (2, 1, 1) are partitions of 4.
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So,

V(3,1),3 = {[F ] | F ∈ R4, F = F1F2,deg F1 = 3,deg F2 = 1}

V(2,1,1),3 = {[F ] | F ∈ R4, F = F1F2F3,deg F1 = 2,deg F2 = 1,deg F3 = 1}

So, let P0 = [F1F2] ∈ V(3,1),3 = X0, I = (F1, F2) then

TP0,X0
= P(I4).

If P1 = [QL1L2] ∈ V(2,1,1),3 = X1, I ′ = (L1L2, QL2, QL1), then

TP1,X1
= P(I ′

4).

Thus, if we let I ′′ = (F1, F2, L1L2, QL2, QL1) then

dimJ(X0,X1) = P(I ′′

4 )
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where F1, F2, L1, L2, Q are general forms of the appropriate degrees.

Example 2: Let X = ν3(P
2) ⊂ P9. In this example, let R = k[x0, x1, x2]. We

have

ν3 : P(R1) = P
2 −→ P(R3) = P

9.

I want to find dimSec2(ν3(P
2)). Expected dimension is 8.

By Terracini, let P0, P1, P2 be three points of X, so

P0 = [L3
0], P1 = [L3

1], P2 = [L3
2].

TP0,X = {[F ] ∈ P(R3) | F = L2
0M, M ∈ R1}

TP1,X = {[F ] ∈ P(R3) | F = L2
1M, M ∈ R1}

TP2,X = {[F ] ∈ P(R3) | F = L2
2M, M ∈ R1}

If we let I = (L2
0, L

2
1, L

2
2) then Terracini’s Lemma says that

dim(Sec2(ν3(P
2))) = dim I3 − 1
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where L0, L1, L2 are general linear forms. But, notice that, wlog, we can choose

L0 = x0, L1 = x1, L2 = x2

so that I = (x2
0, x2

1, x2
2).

It follows that (R/I)3 =< x0x1x2 >. So, dim I3 = 9 and hence the dimen-

sion of Sec2(ν3(P
2)) = 8, as was expected.
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Inverse Systems

Consider, for the moment, two polynomial rings

R = k[x0, . . . , xn] and S = k[y0, . . . , yn].

I will think of R as a ring and S as a module over R by thinking of the

elements of R as differential operators which act on the elements of S. More

explicitly

xi ◦ yj = (∂/∂yi)(yj) =

{

0 if i 6= j
1 if i = j

(so the xi and yj act like dual bases).

We can extend this action linearly to

Ri × Sj −→ Sj−i.

E.g.

(x2
1 + x1x2) ◦ (y3

0 + y3
1) = x2

1 ◦ (y3
0 + y3

1) + x1x2 ◦ (y3
0 + y3

1)
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= (∂2/∂y1∂y1)(y
3
0 + y3

1) + (∂2/∂y1∂y2)(y
3
0 + y3

1) = 6y1 + 0 = 6y1.

Notice that the action of R on S lowers degrees and so S is not a finitely

generated R-module.

If we write xα, (α = (a0, . . . , an)) to represent a monomial of R, and yβ ,

β = (b0, . . . , bn), a monomial of S then we say that

α ≤ β ⇔ ai ≤ bi ∀i ⇔ xα | xβ .

The following Lemma is then clear.

Lemma:

xα ◦ yβ =

{

0 if α is not ≤ to β

Πn
i=0(

(

(bi)!
(bi−ai)!

)

yβ−α if α ≤ β

From this lemma we see that

Rj × Sj −→ k
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is a perfect pairing, i.e. the induced maps

φ1 : Rj −→ Homk(Sj , k) = S∗

j given by rj −→ rj ◦ −

and

φ2 : Sj −→ Homk(Rj , k) = R∗

j given by sj −→ − ◦ sj

are isomorphisms.

With these notions in hand, we define

Definitions: Let V ⊂ Rj . Then

V ⊥ = {s ∈ Sj | φ2(s)(V ) = 0}

2) Similarly if W ⊂ Sj , then W⊥ ⊂ Rj ,

W⊥ = {r ∈ Rj | φ1(r)(W ) = 0}
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The following proposition is a standard fact about perfect pairings.

Proposition: Let Rj × Sj −→ k be as defined above. If V ⊂ Rj , dimV = t,

then

dimV ⊥ = dimSj − t.

We are now ready to define inverse systems.

Definition: Let I be an ideal of R. The inverse system of I, denoted I−1, is the

R-submodule of S consisting of all the elements of S that are annihilated by I.

Remarks:

1) Let I = (F1, . . . , Fs) and let G ∈ S. By definition G ∈ I−1 if and only

if Fi ◦ G = 0 for i = 1, . . . , s. So, finding I−1 is like finding all the polynomial

solutions to a system of partial differential equations.

2) Notice that if I is a homogeneous ideal of R then I−1 is a graded R-

submodule of S.
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Example: Let I = (x1) ⊂ k[x1, x2]. Then

I−1 = {G ∈ S | (∂/∂y1) ◦ G = 0}

Now I is homogeneous so, let’s look at I−1 in various degrees.

deg 1: ay1 + by2 ∈ S1. Then (∂/∂y1)(ay1 + by2) = a. So, (I−1)1 = (y2)1.

deg 2: ay2
1 + by1y2 + cy2

2 is annihilated by (∂/∂y1) if and only if a = b = 0. So,

(I−1)2 = (y2
2)2. Continuing in this way we find

I−1 = k⊕ < y2 > ⊕ < y2
2 > ⊕ < y3

2 > ⊕ · · ·

Note: I−1 is not a finitely generated submodule of S.

How do we find I−1 in general?
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From the pairing R × S −→ S, we get

Rj × Sj −→ k
∪

Ij × I⊥

j −→ 0

i.e. Ij certainly annihilates exactly I⊥

j , but maybe other things in I don’t anni-

hilate stuff in I⊥

j ? So, we can certainly say that

(I−1)j ⊂ I⊥

j

The interesting thing is that we have equality here. I.e.

Proposition:

(I−1)j = (Ij)
⊥

Proof: It will be enough to show that I annihilates everything in I⊥

j .

Consider It for t > j. Then It × I⊥

j −→ Sj−t which is 0, since j − t < 0.
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Now consider F ∈ I, where deg F = d < j. Let xα be any monomial of

degree j − d. Then xαF ∈ Ij and so (xαF ) ◦ G = 0 for all G ∈ I⊥

j .

But (xαF ) ◦G = xα ◦ (F ◦G) = 0. But, F ◦G ∈ Sj−d and we just saw that

it annihilates every monomial xα in Rj−d. But, we have a perfect pairing and

so this means that F ◦ G = 0, as we wanted to show.

We get an immediate and useful corollary from this.

Corollary:

dim(I−1)j = dim(Rj/Ij) = HR/I(j).

The usefulness of this observation comes from the fact that we can occa-

sionally use this to find the Hilbert function of an ideal by finding the Hilbert

function of its inverse system in that degree (or vice versa).

Observations:

1) I−1 is a finitely generated R-module if and only if R/I is an artinian ring,

i.e. the dimension of R/I as a k-vector space, is finite.
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This is clear since in order for an R-submodule of S to be finitely

generated, the module must be zero in all large degrees. This forces

its perp to be everything in R from some degree on, i.e. Id = Rd

for all d >> 0.

2) It is useful to imagine what I−1 is for a monomial ideal.

Inasmuch as the monomials of degree d in R and the monomials of

degree d in S are practically a dual basis (there are the coefficients)

we see that I−1
d consists of all the monomials yβ for which xβ is

not in I.

The following is easily proved

Proposition: If I and J are ideals of R then

(I ∩ J)−1 = I−1 + J−1
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This follows easily from the vector space equality

(U1 ∩ U2)
⊥ = U⊥

1 + U⊥

2

and the fact that the inverse system of an ideal is formed

component-wise.

I now want to make a non-trivial calculation of an inverse system which is

connected to our problem of finding the dimensions of the Secant Varieties to

the Veronese varieties.

Example: Let R = C[x0, . . . , xn] and let ℘ = (L1, . . . , Ln). Then ℘ ↔ P ∈ Pn.

After an invertible change of coordinates in R and Pn we can take ℘ =

(x1, . . . , xn) and P = [1 : 0 : . . . : 0].

Let I = ℘`+1. Then I is a monomial ideal and I−1 is the R-submodule of

S generated by {yβ | xβ /∈ I}.

Let’s write down I−1 in detail.
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1) Since It = 0 for t ≤ ` we get that I−1
t = St for t ≤ `.

For convenience in the description of the rest of I−1 let’s denote

by T = k[y1, . . . , yn].

Let t ≥ ` + 1 then, by keeping track of the monomials by noting the power

of y0 that a monomial can contain, we can write St as:

St =< yt
0 > ⊕ < yt−1

0 T1 > ⊕ · · · ⊕ < yt−`
0 T` > ⊕

[

< y
t−(`+1)
0 T`+1 > ⊕ · · · ⊕ Tt

]

Notice that the part of this expression on the second line corresponds to the

monomials which are in (℘`+1)t and hence

[(℘`+1]−1
t =< yt

0 > ⊕ < yt−1
0 T1 > ⊕ · · · ⊕ < yt−`

0 T` >

= yt−`
0 S`
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We thus obtain the following result:

Proposition: Let ℘ = (x1, . . . , xn) ⊂ C[x0, . . . , xn] and let S = C[y0, . . . , yn].

If ` ≥ 0 then

(℘`+1)−1 = S0 ⊕ · · · ⊕ S` ⊕ y0S` ⊕ y2
0S` ⊕ · · ·

More generally, if P = [p0 : . . . : pn] ∈ Pn and P ↔ ℘, let

LP = p0y0 + · · · + pnyn ∈ S.

Then

(℘`+1)−1 = S0 ⊕ S1 ⊕ · · · ⊕ S` ⊕ LP S` ⊕ L2
P S` ⊕ · · ·

Now, let’s put this all together. We have

νd : [L] −→ [Ld], P(R1) −→ P(Rd)
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the Veronese map.

The tangent space at the point [Ld] is the projectivization of R1L
d−1 ⊂ Rd.

Thus, by Terracini’s Lemma: if we choose [Ld
0], [L

d
1], · · · , [L

d
t ] as general points of

νd(P(R1)), then

dimSect(νd(P
n)) = dimC < Ld−1

0 R1, . . . , L
d−1
t R1 > −1.

But,

dimC < Ld−1
0 R1, . . . , L

d−1
t R1 >=

= dimC < L0
d−1

S1, . . . , Lt
d−1

S1 >

where if L = ai0x0 + · · · + ainxn then L = ai0y0 + · · · + ainyn.

Also, dimC Li
d−1

S1 = dimC(℘2
i )

−1, where ℘i ↔ Pi, where

Pi = [ai0 : . . . : ain] .
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It follows that

dimC < L0
d−1

S1, . . . , Lt
d−1

S1 >= dimC(℘2
0 ∩ · · · ∩ ℘2

t )
−1
d =

H

(

R

℘2
0 ∩ · · · ∩ ℘2

t

, d

)

.

Theorem: Let P0, . . . , Pt be general points in Pn and suppose that Pi ↔ ℘i ⊂

R = C[x0, . . . , xn]. Then,

dimSect(νd(P
n)) = H

(

R

℘2
0 ∩ · · · ∩ ℘2

t

, d

)

− 1

So, this whole procedure brings us to the study of intersections of ideals of

the form ℘2, where ℘ is the ideal of a point. How can we think of such ideals?
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