Summary of Last Lecture

Terracini’s Lemma
Let X = J(Xp,...,X,), X; C P". Let P; € X; be general points and let

P = (Py,..., Ps)
Then, for a general point () € P° we have

TQ,X — <TP0,X07 s 7TPS7XS>

Example 1: Let R = k|xg, ..., 23] and let
Xo=Viens K1=Veings

i.e. Ay = (3,1) and A2 = (2,1,1) are partitions of 4.
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So,
Viss =1F] | F € Ry, F=F1F,degFy = 3,deg I, = 1}

‘/(2,1,1),3 = {[F] | F e R4,F = F1F2F3,degF1 = Z,degFg = 1,degF3 = 1}

So, let Py = [F1Fy] € Viz1y.3 = Xo, I = (Fy, Fy) then
Tp,x, = P(l4).
If P, = [QL1L2] € Vig11)3 =Xy, 1" = (L1Ly,QL2,QL1), then
Tp x, = P(1}).
Thus, if we let 1" = (Fy, F5, L1 Lo, QLs,QL1) then

dim J(Xo,Xl) — ]P)(IL/L/)
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where FY, F5, L1, Lo, () are general forms of the appropriate degrees.

Example 2: Let X = v3(P?) Cc P°. In this example, let R = k[xg,z1,12]. We
have
v3: P(Ry) = P? — P(R3) = P°.

I want to find dim Secy(v3(IP?)). Expected dimension is 8.
By Terracini, let Py, P;, P> be three points of X, so

Py=[L3], Pi=[Ly], P»=[L3)]

Tp,x ={[F]€P(R3) | F=L{M, M€ Ry}
Tp,x ={[F]€P(R3) | F=LiM, M€ R;}
Tp,x ={[F]€P(R3) | F=L5M, M€ Ry}

If we let I = (L%, L%, L3) then Terracini’s Lemma says that
dim(Secy(v3(P?))) = dim I3 — 1
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where Lo, L1, Lo are general linear forms. But, notice that, wlog, we can choose

Lo =x9, L1 =1, L2=x2

so that I = (x3, z9, x3).

It follows that (R/I)3 =< Tgx1xz >. So, dim I3 = 9 and hence the dimen-

sion of Secy(v3(P?)) = 8, as was expected.



Inverse Systems

Consider, for the moment, two polynomial rings
R = k|xg,...,x,] and S =klyo,...,Yn]

I will think of R as a ring and S as a module over R by thinking of the
elements of R as differential operators which act on the elements of S. More

explicitly
0 ifis#j
:moij(a/ﬁyi)(yj):{l ifiij

(so the x; and y; act like dual bases).

We can extend this action linearly to
R; xS; — S;_;.
E.g.
(27 + z122) 0 (Y5 + 1) = @1 o (y5 +y1) +z172 0 (Y5 + ¥7)
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= (8%/0y10y1) (v + y3) + (0 /0y10y2) (yg + yi) = 6y1 + 0 = 6y;.

Notice that the action of R on S lowers degrees and so S is not a finitely
generated R-module.
If we write 2%, (o = (ag,...,ay,)) to represent a monomial of R, and 3P,

B = (bg,...,bn), a monomial of S then we say that
a<pfsa; <b; W(:):Uoﬂacﬁ.

The following Lemma is then clear.

Lemma:

5 0 if v is not < to (3
o = () v s g

From this lemma we see that
Rj X Sj — k
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is a perfect pairing, i.e. the induced maps
¢1: Ry — Homy(S;,k) = S; given by rj — 10—

and

¢z : S; — Homy(R;, k) = R} given by s; — —os;

are isomorphisms.

With these notions in hand, we define

Definitions: Let V C R;. Then
VE={s€S; | ¢a(s)(V) =0}
2) Similarly if W C S;, then W+ C R;,

Wt ={reR; | o:(r)(W)=0}
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The following proposition is a standard fact about perfect pairings.

Proposition: Let R; x S; — k be as defined above. If V C R;, dimV = ¢,
then
dim V+ = dim S; —t.

We are now ready to define inverse systems.

Definition: Let I be an ideal of R. The inverse system of I, denoted I, is the
R-submodule of S consisting of all the elements of S that are annihilated by 1.

Remarks:

1) Let I = (F4,...,F) and let G € S. By definition G € I~ if and only
if ;oG =0fori=1,...,s. So, finding I~ ! is like finding all the polynomial
solutions to a system of partial differential equations.

2) Notice that if I is a homogeneous ideal of R then I~! is a graded R-

submodule of S.



Example: Let I = (1) C k[x1,x2]. Then
I™'={GecS | (0/0y1) oG =0}

Now I is homogeneous so, let’s look at I—! in various degrees.
degl: ay; +bys € S1. Then (0/0y1)(ay: + by2) = a. So, (I~)1 = (y2)1.

deg2: ay? + by1y2 + cys is annihilated by (9/0y;) if and only if a = b = 0. So,
(I7Y)9 = (y5)2. Continuing in this way we find

IT"=k®<p>0<ys >0 <ys >D---

Note: I~! is not a finitely generated submodule of S.

How do we find I~! in general?



From the pairing R x S — 5, we get
R;xS; — k
U

I xI+ — 0

i.e. I; certainly annihilates exactly [ jL, but maybe other things in I don’t anni-

hilate stuff in [ ]-L? So, we can certainly say that
~1 1
(™) C I

The interesting thing is that we have equality here. I.e.

Proposition:

Proof: It will be enough to show that I annihilates everything in [ jL
Consider I; for t > j5. Then I; X IjL — S;_¢ which is 0, since 7 —t < 0.
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Now consider F' € I, where deg F' = d < j. Let % be any monomial of
degree j —d. Then z*F € I, and so (z*F) o G =0 for all G € IjL.

But (z*F)oG=2%0(FoG)=0. But, FoG € S;_4 and we just saw that
it annihilates every monomial z® in R;_4. But, we have a perfect pairing and

so this means that F'o G = 0, as we wanted to show.

We get an immediate and useful corollary from this.

Corollary:
dim(I™"); = dim(R; /1) = Hy/1 ()

The usefulness of this observation comes from the fact that we can occa-
sionally use this to find the Hilbert function of an ideal by finding the Hilbert

function of its inverse system in that degree (or vice versa).

Observations:
1) I~ is a finitely generated R-module if and only if R/I is an artinian ring,

i.e. the dimension of R/I as a k-vector space, is finite.
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This is clear since in order for an R-submodule of S to be finitely
generated, the module must be zero in all large degrees. This forces
its perp to be everything in R from some degree on, i.e. I; = Ry
for all d >> 0.

2) It is useful to imagine what I~ is for a monomial ideal.

Inasmuch as the monomials of degree d in R and the monomials of
degree d in S are practically a dual basis (there are the coefficients)
we see that Id_l consists of all the monomials y” for which z* is

not in /.

The following is easily proved
Proposition: If I and J are ideals of R then
(InJ)y=I1"+J"
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This follows easily from the vector space equality
(UL NUy)*t =Uf + Uy

and the fact that the inverse system of an ideal is formed

component-wise.

I now want to make a non-trivial calculation of an inverse system which is
connected to our problem of finding the dimensions of the Secant Varieties to

the Veronese varieties.

Example: Let R = Clzg,...,z,] and let p = (L1,...,L,). Then p < P € P".
After an invertible change of coordinates in R and P"™ we can take o =
(1,...,xp)and P=1[1:0:...:0].
Let I = p*T!. Then I is a monomial ideal and I~! is the R-submodule of
S generated by {y° | z° ¢ I}.

Let’s write down I~ ! in detail.
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1) Since I; = 0 for t < ¢ we get that It_l = S, for t < /.

For convenience in the description of the rest of I=! let’s denote
by T = kly1,...,Yn]

Let t > £ + 1 then, by keeping track of the monomials by noting the power

of yo that a monomial can contain, we can write S; as:
Si=<yb>o <y T >0 -0 <y Ty >

< yo (£+1)T£+1 > D1y

Notice that the part of this expression on the second line corresponds to the

monomials which are in (p**!); and hence
(T =<y>0o<y Ti>6---o<y 1>

= yo S
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We thus obtain the following result:

Proposition: Let p = (x1,...,2,) C Clzg,...,z,] and let S = Clyy, . ..

If ¢ > 0 then
() =SB BS B YSiBY;Se D
More generally, if P =[pg:...:p,] € P" and P < p, let

Lp =poyo+ -+ Dnyn €S,

Then
(P =SS e B8 e LpSiSLLS, @ -

Now, let’s put this all together. We have
va: [L] — [L%], P(Ri) — P(Rq)
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the Veronese map.

The tangent space at the point [L%] is the projectivization of Ry L?~! C Ry.
Thus, by Terracini’s Lemma: if we choose [Ld], [LY],-- -, [L%] as general points of
vq(P(Ry1)), then

dim Sec, (v4(P")) = dime < L& 'Ry, ..., LY 'Ry > —1.

But,
dime < LRy, ..., LI7'Ry >=

. —d—1 —d—1
— dim¢e < Lo Sl,...,Lt S1 >

where if L = a;0z0 + - + ainxyn then L = ajoyo + - - + @inYn.

Also, dim¢ L_id_lSl = dimc¢(p?) ™!, where p; < P;, where

Pi:[az-o:...:am] .
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It follows that

: —d—1 —d—1 , _
dime < Lo S1,...,Ly 51 >:d1m@(pgﬂ---ﬂpf)d1:

R
@o M- 1N e

Theorem: Let Fp,..., P; be general points in P" and suppose that P; < p; C
R = Cl|xg,...,z,]. Then,

R
dim Seci(vqy(P")) = H( ,d) —1
t( ( )) p%ﬂ...mp%

So, this whole procedure brings us to the study of intersections of ideals of

the form ©?, where p is the ideal of a point. How can we think of such ideals?
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