Summary of Last Lecture

Terracini's Lemma

Let $\mathbb{X}=J\left(\mathbb{X}_{0}, \ldots, \mathbb{X}_{s}\right), \mathbb{X}_{i} \subset \mathbb{P}^{n}$. Let $P_{i} \in \mathbb{X}_{i}$ be general points and let

$$
\mathbb{P}^{s}=\left\langle P_{0}, \ldots, P_{s}\right\rangle
$$

Then, for a general point $Q \in \mathbb{P}^{s}$ we have

$$
T_{Q, \mathbb{X}}=\left\langle T_{P_{0}, \mathbb{X}_{0}}, \ldots, T_{P_{s}, \mathbb{X}_{s}}\right\rangle
$$

Example 1: Let $R=k\left[x_{0}, \ldots, x_{3}\right]$ and let

$$
\mathbb{X}_{0}=V_{(3,1), 3}, \quad \mathbb{X}_{1}=V_{(2,1,1), 3}
$$

i.e. $\lambda_{1}=(3,1)$ and $\lambda_{2}=(2,1,1)$ are partitions of 4 .

So,

$$
V_{(3,1), 3}=\left\{[F] \mid F \in R_{4}, F=F_{1} F_{2}, \operatorname{deg} F_{1}=3, \operatorname{deg} F_{2}=1\right\}
$$

$$
V_{(2,1,1), 3}=\left\{[F] \mid F \in R_{4}, F=F_{1} F_{2} F_{3}, \operatorname{deg} F_{1}=2, \operatorname{deg} F_{2}=1, \operatorname{deg} F_{3}=1\right\}
$$

So, let $P_{0}=\left[F_{1} F_{2}\right] \in V_{(3,1), 3}=\mathbb{X}_{0}, I=\left(F_{1}, F_{2}\right)$ then

$$
T_{P_{0}, \mathbb{X}_{0}}=\mathbb{P}\left(I_{4}\right)
$$

If $P_{1}=\left[Q L_{1} L_{2}\right] \in V_{(2,1,1), 3}=\mathbb{X}_{1}, I^{\prime}=\left(L_{1} L_{2}, Q L_{2}, Q L_{1}\right)$, then

$$
T_{P_{1}, \mathbb{X}_{1}}=\mathbb{P}\left(I_{4}^{\prime}\right)
$$

Thus, if we let $I^{\prime \prime}=\left(F_{1}, F_{2}, L_{1} L_{2}, Q L_{2}, Q L_{1}\right)$ then

$$
\operatorname{dim} J\left(X_{0}, X_{1}\right)=\mathbb{P}\left(I_{4}^{\prime \prime}\right)
$$

where $F_{1}, F_{2}, L_{1}, L_{2}, Q$ are general forms of the appropriate degrees.
Example 2: Let $\mathbb{X}=\nu_{3}\left(\mathbb{P}^{2}\right) \subset \mathbb{P}^{9}$. In this example, let $R=k\left[x_{0}, x_{1}, x_{2}\right]$. We have

$$
\nu_{3}: \mathbb{P}\left(R_{1}\right)=\mathbb{P}^{2} \longrightarrow \mathbb{P}\left(R_{3}\right)=\mathbb{P}^{9} .
$$

I want to find $\operatorname{dim} \operatorname{Sec}_{2}\left(\nu_{3}\left(\mathbb{P}^{2}\right)\right.$). Expected dimension is 8 .
By Terracini, let P_{0}, P_{1}, P_{2} be three points of \mathbb{X}, so

$$
\begin{gathered}
P_{0}=\left[L_{0}^{3}\right], \quad P_{1}=\left[L_{1}^{3}\right], \quad P_{2}=\left[L_{2}^{3}\right] . \\
T_{P_{0}, X}=\left\{[F] \in \mathbb{P}\left(R_{3}\right) \mid F=L_{0}^{2} M, \quad M \in R_{1}\right\} \\
T_{P_{1}, X}=\left\{[F] \in \mathbb{P}\left(R_{3}\right) \mid F=L_{1}^{2} M, \quad M \in R_{1}\right\} \\
T_{P_{2}, X}=\left\{[F] \in \mathbb{P}\left(R_{3}\right) \mid F=L_{2}^{2} M, \quad M \in R_{1}\right\}
\end{gathered}
$$

If we let $I=\left(L_{0}^{2}, L_{1}^{2}, L_{2}^{2}\right)$ then Terracini's Lemma says that

$$
\operatorname{dim}\left(\operatorname{Sec}_{2}\left(\nu_{3}\left(\mathbb{P}^{2}\right)\right)\right)=\operatorname{dim} I_{3}-1
$$

where L_{0}, L_{1}, L_{2} are general linear forms. But, notice that, wlog, we can choose

$$
L_{0}=x_{0}, \quad L_{1}=x_{1}, \quad L_{2}=x_{2}
$$

so that $I=\left(x_{0}^{2}, x_{1}^{2}, x_{2}^{2}\right)$.
It follows that $(R / I)_{3}=<\overline{x_{0} x_{1} x_{2}}>$. So, $\operatorname{dim} I_{3}=9$ and hence the dimension of $\operatorname{Sec}_{2}\left(\nu_{3}\left(\mathbb{P}^{2}\right)\right)=8$, as was expected.

Inverse Systems

Consider, for the moment, two polynomial rings

$$
R=k\left[x_{0}, \ldots, x_{n}\right] \quad \text { and } \quad S=k\left[y_{0}, \ldots, y_{n}\right] .
$$

I will think of R as a ring and S as a module over R by thinking of the elements of R as differential operators which act on the elements of S. More explicitly

$$
x_{i} \circ y_{j}=\left(\partial / \partial y_{i}\right)\left(y_{j}\right)= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

(so the x_{i} and y_{j} act like dual bases).
We can extend this action linearly to

$$
R_{i} \times S_{j} \longrightarrow S_{j-i} .
$$

E.g.

$$
\left(x_{1}^{2}+x_{1} x_{2}\right) \circ\left(y_{0}^{3}+y_{1}^{3}\right)=x_{1}^{2} \circ\left(y_{0}^{3}+y_{1}^{3}\right)+x_{1} x_{2} \circ\left(y_{0}^{3}+y_{1}^{3}\right)
$$

$$
=\left(\partial^{2} / \partial y_{1} \partial y_{1}\right)\left(y_{0}^{3}+y_{1}^{3}\right)+\left(\partial^{2} / \partial y_{1} \partial y_{2}\right)\left(y_{0}^{3}+y_{1}^{3}\right)=6 y_{1}+0=6 y_{1}
$$

Notice that the action of R on S lowers degrees and so S is not a finitely generated R-module.

If we write $x^{\alpha},\left(\alpha=\left(a_{0}, \ldots, a_{n}\right)\right)$ to represent a monomial of R, and y^{β}, $\beta=\left(b_{0}, \ldots, b_{n}\right)$, a monomial of S then we say that

$$
\alpha \leq \beta \Leftrightarrow a_{i} \leq b_{i} \forall i \Leftrightarrow x^{\alpha} \mid x^{\beta} .
$$

The following Lemma is then clear.

Lemma:

$$
x^{\alpha} \circ y^{\beta}= \begin{cases}0 & \text { if } \alpha \text { is not } \leq \text { to } \beta \\ \Pi_{i=0}^{n}\left(\left(\frac{\left(b_{i}\right)!}{\left(b_{i}-a_{i}\right)!}\right) y^{\beta-\alpha}\right. & \text { if } \alpha \leq \beta\end{cases}
$$

From this lemma we see that

$$
R_{j} \times S_{j} \longrightarrow k
$$

is a perfect pairing, i.e. the induced maps

$$
\phi_{1}: R_{j} \longrightarrow \operatorname{Hom}_{k}\left(S_{j}, k\right)=S_{j}^{*} \text { given by } r_{j} \longrightarrow r_{j} \circ-
$$

and

$$
\phi_{2}: S_{j} \longrightarrow \operatorname{Hom}_{k}\left(R_{j}, k\right)=R_{j}^{*} \text { given by } s_{j} \longrightarrow-\circ s_{j}
$$

are isomorphisms.
With these notions in hand, we define
Definitions: Let $V \subset R_{j}$. Then

$$
V^{\perp}=\left\{s \in S_{j} \quad \mid \quad \phi_{2}(s)(V)=0\right\}
$$

2) Similarly if $W \subset S_{j}$, then $W^{\perp} \subset R_{j}$,

$$
W^{\perp}=\left\{r \in R_{j} \quad \mid \quad \phi_{1}(r)(W)=0\right\}
$$

The following proposition is a standard fact about perfect pairings.
Proposition: Let $R_{j} \times S_{j} \longrightarrow k$ be as defined above. If $V \subset R_{j}, \operatorname{dim} V=t$, then

$$
\operatorname{dim} V^{\perp}=\operatorname{dim} S_{j}-t
$$

We are now ready to define inverse systems.
Definition: Let I be an ideal of R. The inverse system of I, denoted I^{-1}, is the R-submodule of S consisting of all the elements of S that are annihilated by I.

Remarks:

1) Let $I=\left(F_{1}, \ldots, F_{s}\right)$ and let $G \in S$. By definition $G \in I^{-1}$ if and only if $F_{i} \circ G=0$ for $i=1, \ldots, s$. So, finding I^{-1} is like finding all the polynomial solutions to a system of partial differential equations.
2) Notice that if I is a homogeneous ideal of R then I^{-1} is a graded R submodule of S.

Example: Let $I=\left(x_{1}\right) \subset k\left[x_{1}, x_{2}\right]$. Then

$$
I^{-1}=\left\{G \in S \quad \mid \quad\left(\partial / \partial y_{1}\right) \circ G=0\right\}
$$

Now I is homogeneous so, let's look at I^{-1} in various degrees.
deg 1: $a y_{1}+b y_{2} \in S_{1}$. Then $\left(\partial / \partial y_{1}\right)\left(a y_{1}+b y_{2}\right)=a . \operatorname{So},\left(I^{-1}\right)_{1}=\left(y_{2}\right)_{1}$.
$\operatorname{deg} 2: \quad a y_{1}^{2}+b y_{1} y_{2}+c y_{2}^{2}$ is annihilated by $\left(\partial / \partial y_{1}\right)$ if and only if $a=b=0$. So, $\left(I^{-1}\right)_{2}=\left(y_{2}^{2}\right)_{2}$. Continuing in this way we find

$$
I^{-1}=k \oplus<y_{2}>\oplus<y_{2}^{2}>\oplus<y_{2}^{3}>\oplus \cdots
$$

Note: I^{-1} is not a finitely generated submodule of S.

How do we find I^{-1} in general?

From the pairing $R \times S \longrightarrow S$, we get

$$
\begin{array}{ccc}
R_{j} \times S_{j} & \longrightarrow & k \\
\cup & & \\
I_{j} \times I_{j}^{\perp} & \longrightarrow & 0
\end{array}
$$

i.e. I_{j} certainly annihilates exactly I_{j}^{\perp}, but maybe other things in I don't annihilate stuff in I_{j}^{\perp} ? So, we can certainly say that

$$
\left(I^{-1}\right)_{j} \subset I_{j}^{\perp}
$$

The interesting thing is that we have equality here. I.e.

Proposition:

$$
\left(I^{-1}\right)_{j}=\left(I_{j}\right)^{\perp}
$$

Proof: It will be enough to show that I annihilates everything in I_{j}^{\perp}.
Consider I_{t} for $t>j$. Then $I_{t} \times I_{j}^{\perp} \longrightarrow S_{j-t}$ which is 0 , since $j-t<0$.

Now consider $F \in I$, where $\operatorname{deg} F=d<j$. Let x^{α} be any monomial of degree $j-d$. Then $x^{\alpha} F \in I_{j}$ and so $\left(x^{\alpha} F\right) \circ G=0$ for all $G \in I_{j}^{\perp}$.

But $\left(x^{\alpha} F\right) \circ G=x^{\alpha} \circ(F \circ G)=0$. But, $F \circ G \in S_{j-d}$ and we just saw that it annihilates every monomial x^{α} in R_{j-d}. But, we have a perfect pairing and so this means that $F \circ G=0$, as we wanted to show.

We get an immediate and useful corollary from this.

Corollary:

$$
\operatorname{dim}\left(I^{-1}\right)_{j}=\operatorname{dim}\left(R_{j} / I_{j}\right)=H_{R / I}(j) .
$$

The usefulness of this observation comes from the fact that we can occasionally use this to find the Hilbert function of an ideal by finding the Hilbert function of its inverse system in that degree (or vice versa).

Observations:

1) I^{-1} is a finitely generated R-module if and only if R / I is an artinian ring, i.e. the dimension of R / I as a k-vector space, is finite.

This is clear since in order for an R-submodule of S to be finitely generated, the module must be zero in all large degrees. This forces its perp to be everything in R from some degree on, i.e. $I_{d}=R_{d}$ for all $d \gg 0$.
2) It is useful to imagine what I^{-1} is for a monomial ideal.

Inasmuch as the monomials of degree d in R and the monomials of degree d in S are practically a dual basis (there are the coefficients) we see that I_{d}^{-1} consists of all the monomials y^{β} for which x^{β} is not in I.

The following is easily proved
Proposition: If I and J are ideals of R then

$$
(I \cap J)^{-1}=I^{-1}+J^{-1}
$$

This follows easily from the vector space equality

$$
\left(U_{1} \cap U_{2}\right)^{\perp}=U_{1}^{\perp}+U_{2}^{\perp}
$$

and the fact that the inverse system of an ideal is formed component-wise.

I now want to make a non-trivial calculation of an inverse system which is connected to our problem of finding the dimensions of the Secant Varieties to the Veronese varieties.

Example: Let $R=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ and let $\wp=\left(L_{1}, \ldots, L_{n}\right)$. Then $\wp \leftrightarrow P \in \mathbb{P}^{n}$.
After an invertible change of coordinates in R and \mathbb{P}^{n} we can take $\wp=$ $\left(x_{1}, \ldots, x_{n}\right)$ and $P=[1: 0: \ldots: 0]$.

Let $I=\wp^{\ell+1}$. Then I is a monomial ideal and I^{-1} is the R-submodule of S generated by $\left\{y^{\beta} \mid x^{\beta} \notin I\right\}$.

Let's write down I^{-1} in detail.

1) Since $I_{t}=0$ for $t \leq \ell$ we get that $I_{t}^{-1}=S_{t}$ for $t \leq \ell$.

For convenience in the description of the rest of I^{-1} let's denote by $T=k\left[y_{1}, \ldots, y_{n}\right]$.

Let $t \geq \ell+1$ then, by keeping track of the monomials by noting the power of y_{0} that a monomial can contain, we can write S_{t} as:

$$
\begin{gathered}
S_{t}=<y_{0}^{t}>\oplus<y_{0}^{t-1} T_{1}>\oplus \cdots \oplus<y_{0}^{t-\ell} T_{\ell}>\oplus \\
{\left[<y_{0}^{t-(\ell+1)} T_{\ell+1}>\oplus \cdots \oplus T_{t}\right]}
\end{gathered}
$$

Notice that the part of this expression on the second line corresponds to the monomials which are in $\left(\wp^{\ell+1}\right)_{t}$ and hence

$$
\begin{aligned}
{\left[\left(\wp^{\ell+1}\right]_{t}^{-1}=<y_{0}^{t}>\oplus\right.} & <y_{0}^{t-1} T_{1}>\oplus \cdots \oplus<y_{0}^{t-\ell} T_{\ell}> \\
& =y_{0}^{t-\ell} S_{\ell}
\end{aligned}
$$

We thus obtain the following result:
Proposition: Let $\wp=\left(x_{1}, \ldots, x_{n}\right) \subset \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ and let $S=\mathbb{C}\left[y_{0}, \ldots, y_{n}\right]$.
If $\ell \geq 0$ then

$$
\left(\wp^{\ell+1}\right)^{-1}=S_{0} \oplus \cdots \oplus S_{\ell} \oplus y_{0} S_{\ell} \oplus y_{0}^{2} S_{\ell} \oplus \cdots
$$

More generally, if $P=\left[p_{0}: \ldots: p_{n}\right] \in \mathbb{P}^{n}$ and $P \leftrightarrow \wp$, let

$$
L_{P}=p_{0} y_{0}+\cdots+p_{n} y_{n} \in S
$$

Then

$$
\left(\wp^{\ell+1}\right)^{-1}=S_{0} \oplus S_{1} \oplus \cdots \oplus S_{\ell} \oplus L_{P} S_{\ell} \oplus L_{P}^{2} S_{\ell} \oplus \cdots
$$

Now, let's put this all together. We have

$$
\nu_{d}:[L] \longrightarrow\left[L^{d}\right], \quad \mathbb{P}\left(R_{1}\right) \longrightarrow \mathbb{P}\left(R_{d}\right)
$$

the Veronese map.

The tangent space at the point [L^{d}] is the projectivization of $R_{1} L^{d-1} \subset R_{d}$. Thus, by Terracini's Lemma: if we choose $\left[L_{0}^{d}\right],\left[L_{1}^{d}\right], \cdots,\left[L_{t}^{d}\right]$ as general points of $\nu_{d}\left(\mathbb{P}\left(R_{1}\right)\right)$, then

$$
\operatorname{dim} \operatorname{Sec}_{t}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)=\operatorname{dim}_{\mathbb{C}}<L_{0}^{d-1} R_{1}, \ldots, L_{t}^{d-1} R_{1}>-1
$$

But,

$$
\begin{gathered}
\operatorname{dim}_{\mathbb{C}}<L_{0}^{d-1} R_{1}, \ldots, L_{t}^{d-1} R_{1}>= \\
=\operatorname{dim}_{\mathbb{C}}<{\overline{L_{0}}}^{d-1} S_{1}, \ldots,{\overline{L_{t}}}^{d-1} S_{1}>
\end{gathered}
$$

where if $L=a_{i 0} x_{0}+\cdots+a_{i n} x_{n}$ then $\bar{L}=a_{i 0} y_{0}+\cdots+a_{i n} y_{n}$.
Also, $\operatorname{dim}_{\mathbb{C}}{\overline{L_{i}}}^{d-1} S_{1}=\operatorname{dim}_{\mathbb{C}}\left(\wp_{i}^{2}\right)^{-1}$, where $\wp_{i} \leftrightarrow P_{i}$, where

$$
P_{i}=\left[a_{i 0}: \ldots: a_{i n}\right]
$$

It follows that

$$
\begin{gathered}
\operatorname{dim}_{\mathbb{C}}<{\overline{L_{0}}}^{d-1} S_{1}, \ldots,{\overline{L_{t}}}^{d-1} S_{1}>=\operatorname{dim}_{\mathbb{C}}\left(\wp_{0}^{2} \cap \cdots \cap \wp_{t}^{2}\right)_{d}^{-1}= \\
H\left(\frac{R}{\wp_{0}^{2} \cap \cdots \cap \wp_{t}^{2}}, d\right) .
\end{gathered}
$$

Theorem: Let P_{0}, \ldots, P_{t} be general points in \mathbb{P}^{n} and suppose that $P_{i} \leftrightarrow \wp_{i} \subset$ $R=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$. Then,

$$
\operatorname{dim} \operatorname{Sec}_{t}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)=H\left(\frac{R}{\wp_{0}^{2} \cap \cdots \cap \wp_{t}^{2}}, d\right)-1
$$

So, this whole procedure brings us to the study of intersections of ideals of the form \wp^{2}, where \wp is the ideal of a point. How can we think of such ideals?

