8th June 2008

Exercise 1 Consider the homogeneous coordinate ring of the "twisted cubic":

$$
R=K\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right]
$$

1. Prove that $R=P / I$ where $P=K\left[x_{0}, \ldots, x_{3}\right]$ and $I=I_{2}\left(\begin{array}{lll}x_{0} & x_{1} & x_{2} \\ x_{1} & x_{2} & x_{3}\end{array}\right)$
2. Prove that R is $C M$
3. Compute $\operatorname{HF}_{R}(j)$, reg $-\operatorname{index}(R)$
4. Compare $\operatorname{reg}(I)$ and $\operatorname{reg}\left(L T_{\tau}(I)\right)$ with τ any term ordering

Exercise 2 Consider the homogeneous coordinate ring of the smooth rational quartic in \mathbb{P}^{3}

$$
R=K\left[s^{4}, s^{3} t, s t^{3}, t^{4}\right]
$$

1. Prove that $R \simeq P / I$ where $P=K\left[x_{0}, \ldots, x_{3}\right]$ and $I=I_{2}\left(\begin{array}{cccc}x_{0} & x_{1}^{2} & x_{1} x_{3} & x_{2} \\ x_{1} & x_{0} x_{2} & x_{2}^{2} & x_{3}\end{array}\right)$
2. Prove that R is not $C M$
3. Compute reg(I)

Exercise 3 (Trung) Let $\mathcal{C} \subseteq \mathbb{P}^{3}$ be a curve whose homogeneous coordinate ring is

$$
R=K\left[t^{\alpha+\beta}, t^{\alpha} s^{\beta}, t^{\beta} s^{\alpha}, s^{\alpha+\beta}\right] \quad \text { with } \alpha>\beta, \operatorname{GCD}(\alpha, \beta)=1
$$

and consider $I=I_{\mathcal{C}} \subseteq K\left[x_{0}, \ldots, x_{3}\right]$. Then $\operatorname{reg}\left(I_{\mathcal{C}}\right)=\alpha$. Check it in some examples. What about the Cohen-Macaulyness of R ?

Exercise 4 Compute the Betti diagram of 11 randomly chosen points in \mathbb{P}^{7}. Compute regularity index (RegularityIndex) and regularity.

Exercise 5 Let $P=K\left[x_{1}, \ldots, x_{n}\right]$ and $F_{1}, F_{2}, F_{3} \in P$ homogeneous polynomials which form a regular sequence.

1. Assume $d_{i}=\operatorname{deg}\left(F_{i}\right)$ and compute $\operatorname{reg}(I)$ where $I=\left(F_{1}, F_{2}, F_{3}\right)$
2. Can you compute the value of $\operatorname{reg}(I)$ where I is generated by a regular sequence of degrees d_{1}, \ldots, d_{r} ?

Exercise 6 Describe Hilbert function, Hilbert polynomial, Betti diagram, regularity of each possible configuration of 4 distinct points in \mathbb{P}^{2}.

