
Giovanni Lagorio (lagorio@disi.unige.it)

COCOA 2009

International School on Computer Algebra

Barcelona, 8-12 June 2009

To set the record straight

 I’m a computer scientist

 I cannot tell apart

polynomials and

quinces

 I have write access to the CoCoA source
repository

 If you’re not scared, you were not paying
attention 

x2+5x-1

Luckily...
My work and this talk are about the CoCoA

programming language

So far, I haven’t done much damage

At least, that what I’d like to think 

Key decisions were already made

Can’t get the blame or praise

Plan of the talk
Why we need backward incompatibility

CoCoA 5

The transition path

Conclusions

CoCoA 4 CoCoA 5
 CoCoA 4 is an incredibly flexible language
 Easy to use!
 Easy to misuse! 
 As a newbie, I find that

 some constructs have a “funny semantics”
(they’re probably ok when used properly, but beginners tend
to think outside the box )

 error reporting is rather bad

 CoCoA 5 will be
 still easy to use, but
 way harder to misuse

 The price to pay? It won’t be 100% backward compatible

 Two := 2;

 L := [1, 2, 3];

 2 [1, 2, 3];

 [1, 2, 3] 2;

 2 L;

 L 2;

 Two L;

 L Two;

 Two [1, 2, 3];

 [1, 2, 3] Two;

An warming-up example
-- Assignment of an integer

-- Assignment of a list

-- Multiplication, yields the list [2, 4, 6]

-- Same here

-- Variables and values can be mixed

-- and matched as expected

-- Obviously, yielding the same result

-- …

-- …

-- …

ERROR: Bad parameters
CONTEXT: Two[1][2][3]

Problem: lack of uniformity
 if operator [] allows accessing the n-th element of a

list, why [2, 3, 5] [N] doesn’t work? Remember: L[N]
does work

 (quoting from the manual) “For multiplication, one
may use *, parentheses, or just a space”. Why L [N]
doesn’t multiply L and [N], yet [1, 2, 3]N does multiply
them?

 Why xX is a product but Xx is a single identifier?

 x2 is a product, so they are 2x and 2X, yet X2 is a single
identifier

 ...

A peculiar function definition
Define F(F)

If F (F-1) (F) = 0 Then

Return 1;

Else

Return F(F-1)(F);

Endif

EndDefine;

F := 5;

-(-1 F)F(F -1);

I’d like to point out that
 It’s the definition of a pretty well-known function

 and an example of using it

 Everything is 100% legit CoCoA 4 code
(that is, I’m not exploiting a bug of the interpreter)

 I do know that no one in their right mind would ever
write code like this

 Unless she/he wants to prove a point

 ...and I do 

12 occurrences of F; 3 defs, 9 usages
Define F(F)

If F (F-1) (F) = 0 Then

Return 1;

Else

Return F(F-1)(F);

Endif

EndDefine;

F := 5;

-(-1 F)F(F -1);

So, in an expression, what
does F mean?
Which F is which?

So similar, yet so different...
Define F(F)

If F (F-1) (F) = 0 Then

Return 1;

Else

Return F(F-1)(F);

Endif

EndDefine;

F := 5;

-(-1 F)F(F -1);

Define F(F)

If F (F-1) (F) = 0 Then

Return 1;

Else

Return F(F-1)(F);

Endif

EndDefine;

F := 5;

-(-1 F)F(F -1);

Why multiplication is not commutative?

Anyway, here it is the factorial function:

Define F(F)

If F (F-1) (F) = 0 Then

Return 1;

Else

Return F(F-1)(F);

Endif

EndDefine;

F := 5;

-(-1 F)F(F -1); -- as expected, 120, that is, 5!

Bottom line
 CoCoA 4 silently accepts
 dangerous code: every piece of code whose semantics

depends on the presence or absence of a blank is a bomb
waiting to explode

 suspicious code: does 1/2*x mean (1/2)*x or 1/(2*x)?

 CoCoA 5 won’t. It will
 reject suspicious constructs (depending on severity,

warnings or errors will be issued)
 This helps users to avoid common errors and pitfalls

 have a single namespace for variables, functions and
indeterminates (x2, xyz, A42, foo, Bar ... will be valid
identifier for any of those)

Polynomials are special
 5x^2+3xy+1 looks better than 5*x^2+3*x*y+1

 In CoCoA 5 special parentheses allow to use implict
multiplication in well-marked regions; for instance,
P := ${ 5x^2+3xy+1 }$; -- might not be the final syntax

 This is an expression-level construct

 Still, not 100% compatible:
2 x is equivalent to x 2 in CoCoA 4; but
x 2 is rejected by CoCoA 5 (does it mean x*2 or x^2?)

Interactive input is special too
 A context-sensitive prompt helps the user to

understand what’s going on

 Is the interpreter waiting for a new command or for a
closing quote/comment?

 Line numbers in error reporting are not particularly
helpful

 The error recovery strategy can be (and it is) different

fragile
 unmantainable

CoCoA 4 vs CoCoA 5
clean & robust
maintainable

Correct
programs fragile unmantainable

clean & robust
maintainable

Beginners’
common
mistakes

Correct
programs

More powerful
(correct)
programs

L
eg

al
 p

ro
g

ra
m

s

The transition path
 We’re writing a document with the (very original) title:

Differences between CoCoA-4 and CoCoA-5

 Today I’ll give you the idea

 Details are (or should be there)

Identifiers and Keywords
 Only one namespace: when you see a name, you know

it can only refer to one entity (at a time)

 No special casing

 Reserved words

 are actually reserved

 Most of them are the same they were before

 Case insensitive (yet, there are preferred casing); note
that ciao is a single reserved keyword (it’s not c*i*a*o)

Removed features
 Implicit multiplication except inside ${ ... }$

 Cond expressions

 Time expression (but there is now a Time statement)

 “functions” Print/PrintLn

 the @ operator

 NewLine

 trailing If

 Repeat/EndRepeat

 Help and Eof

Conclusions
 We can’t forget the large user base: a smooth transition

path is provided

 Every correct CoCoA 4 program will be either:

 accepted and have the exact same semantics

 rejected (the interpreter will tell you why)

 Restrictions are not artificial: every “clean” CoCoA 4
code should run fine

 Once polynomials (using implicit multiplication) are
parenthesized

