
Giovanni Lagorio (lagorio@disi.unige.it)

COCOA 2009

International School on Computer Algebra

Barcelona, 8-12 June 2009

To set the record straight

 I’m a computer scientist

 I cannot tell apart

polynomials and

quinces

 I have write access to the CoCoA source
repository

 If you’re not scared, you were not paying
attention

x2+5x-1

Luckily...
My work and this talk are about the CoCoA

programming language

So far, I haven’t done much damage

At least, that what I’d like to think

Key decisions were already made

Can’t get the blame or praise

Plan of the talk
Why we need backward incompatibility

CoCoA 5

The transition path

Conclusions

CoCoA 4 CoCoA 5
 CoCoA 4 is an incredibly flexible language
 Easy to use!
 Easy to misuse!
 As a newbie, I find that

 some constructs have a “funny semantics”
(they’re probably ok when used properly, but beginners tend
to think outside the box)

 error reporting is rather bad

 CoCoA 5 will be
 still easy to use, but
 way harder to misuse

 The price to pay? It won’t be 100% backward compatible

 Two := 2;

 L := [1, 2, 3];

 2 [1, 2, 3];

 [1, 2, 3] 2;

 2 L;

 L 2;

 Two L;

 L Two;

 Two [1, 2, 3];

 [1, 2, 3] Two;

An warming-up example
-- Assignment of an integer

-- Assignment of a list

-- Multiplication, yields the list [2, 4, 6]

-- Same here

-- Variables and values can be mixed

-- and matched as expected

-- Obviously, yielding the same result

-- …

-- …

-- …

ERROR: Bad parameters
CONTEXT: Two[1][2][3]

Problem: lack of uniformity
 if operator [] allows accessing the n-th element of a

list, why [2, 3, 5] [N] doesn’t work? Remember: L[N]
does work

 (quoting from the manual) “For multiplication, one
may use *, parentheses, or just a space”. Why L [N]
doesn’t multiply L and [N], yet [1, 2, 3]N does multiply
them?

 Why xX is a product but Xx is a single identifier?

 x2 is a product, so they are 2x and 2X, yet X2 is a single
identifier

 ...

A peculiar function definition
Define F(F)

If F (F-1) (F) = 0 Then

Return 1;

Else

Return F(F-1)(F);

Endif

EndDefine;

F := 5;

-(-1 F)F(F -1);

I’d like to point out that
 It’s the definition of a pretty well-known function

 and an example of using it

 Everything is 100% legit CoCoA 4 code
(that is, I’m not exploiting a bug of the interpreter)

 I do know that no one in their right mind would ever
write code like this

 Unless she/he wants to prove a point

 ...and I do

12 occurrences of F; 3 defs, 9 usages
Define F(F)

If F (F-1) (F) = 0 Then

Return 1;

Else

Return F(F-1)(F);

Endif

EndDefine;

F := 5;

-(-1 F)F(F -1);

So, in an expression, what
does F mean?
Which F is which?

So similar, yet so different...
Define F(F)

If F (F-1) (F) = 0 Then

Return 1;

Else

Return F(F-1)(F);

Endif

EndDefine;

F := 5;

-(-1 F)F(F -1);

Define F(F)

If F (F-1) (F) = 0 Then

Return 1;

Else

Return F(F-1)(F);

Endif

EndDefine;

F := 5;

-(-1 F)F(F -1);

Why multiplication is not commutative?

Anyway, here it is the factorial function:

Define F(F)

If F (F-1) (F) = 0 Then

Return 1;

Else

Return F(F-1)(F);

Endif

EndDefine;

F := 5;

-(-1 F)F(F -1); -- as expected, 120, that is, 5!

Bottom line
 CoCoA 4 silently accepts
 dangerous code: every piece of code whose semantics

depends on the presence or absence of a blank is a bomb
waiting to explode

 suspicious code: does 1/2*x mean (1/2)*x or 1/(2*x)?

 CoCoA 5 won’t. It will
 reject suspicious constructs (depending on severity,

warnings or errors will be issued)
 This helps users to avoid common errors and pitfalls

 have a single namespace for variables, functions and
indeterminates (x2, xyz, A42, foo, Bar ... will be valid
identifier for any of those)

Polynomials are special
 5x^2+3xy+1 looks better than 5*x^2+3*x*y+1

 In CoCoA 5 special parentheses allow to use implict
multiplication in well-marked regions; for instance,
P := ${ 5x^2+3xy+1 }$; -- might not be the final syntax

 This is an expression-level construct

 Still, not 100% compatible:
2 x is equivalent to x 2 in CoCoA 4; but
x 2 is rejected by CoCoA 5 (does it mean x*2 or x^2?)

Interactive input is special too
 A context-sensitive prompt helps the user to

understand what’s going on

 Is the interpreter waiting for a new command or for a
closing quote/comment?

 Line numbers in error reporting are not particularly
helpful

 The error recovery strategy can be (and it is) different

fragile
 unmantainable

CoCoA 4 vs CoCoA 5
clean & robust
maintainable

Correct
programs fragile unmantainable

clean & robust
maintainable

Beginners’
common
mistakes

Correct
programs

More powerful
(correct)
programs

L
eg

al
 p

ro
g

ra
m

s

The transition path
 We’re writing a document with the (very original) title:

Differences between CoCoA-4 and CoCoA-5

 Today I’ll give you the idea

 Details are (or should be there)

Identifiers and Keywords
 Only one namespace: when you see a name, you know

it can only refer to one entity (at a time)

 No special casing

 Reserved words

 are actually reserved

 Most of them are the same they were before

 Case insensitive (yet, there are preferred casing); note
that ciao is a single reserved keyword (it’s not c*i*a*o)

Removed features
 Implicit multiplication except inside ${ ... }$

 Cond expressions

 Time expression (but there is now a Time statement)

 “functions” Print/PrintLn

 the @ operator

 NewLine

 trailing If

 Repeat/EndRepeat

 Help and Eof

Conclusions
 We can’t forget the large user base: a smooth transition

path is provided

 Every correct CoCoA 4 program will be either:

 accepted and have the exact same semantics

 rejected (the interpreter will tell you why)

 Restrictions are not artificial: every “clean” CoCoA 4
code should run fine

 Once polynomials (using implicit multiplication) are
parenthesized

