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Introduction I

Some techniques borrowed from numerical linear algebra, together with
new ideas about stability in the polynomial arena allow a new approach to
several real world problems.

Border bases, approximate Buchberger-Moeller algorithm, and the
search for low degree polynomials in the "approximate vanishing ideal" of
a finite set of points are among the most relevant objects in this
fascinating new game.

A new important entry: CoCoA 5 (project of J. Abbott and A. Bigatti)

Recent developments in the collaboration between the CoCoA Team and
industry highlight the importance of a new emerging field named
Approximate Commutative Algebra (ApCoA).

But do not forget that the basis of the game is still the old fashioned
Commutative Algebra
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Introduction II

Approximate Commutative Algebra is the expression chosen
by myself to name a conference held in Hagenberg-RISC
(Linz, Austria) in 2006 in the frame of the SPECIAL SEMESTER
ON GRÖBNER BASES AND RELATED METHODS.

It is a risky name, and indeed it has already received some criticism
(see Stetter [S1]),... but I like it!

Invitation to contribute to Approximate Commutative Algebra.
Submission of articles to be considered for inclusion

15th September 2007

http://www.dima.unige.it/ ˜abbott/ApCoA.html
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The algebraic setting

Polynomial systems

Suppose we are given f1, . . . , fs in the polynomial ring P = K [x1, . . . , xn]
over a field K . We want to solve the following system of polynomial
equations: 





f1(x1, . . . , xn) = 0
...

fs(x1, . . . , xn) = 0

If the polynomials f1, . . . , fs have degrees ≤ 1 , how to solve it is a
well-known result in Linear Algebra. Moreover, the size of the set of
solutions does not depend on the field K .

However, as soon as at least one of the polynomials f1, . . . , fs has
degree ≥ 2 , it turns to be more appropriate to look for the set of
solutions in K

n
, where K is the algebraic closure of K .

A first observation is that solving the above system of equations means to
determine the set of zeros of the ideal I = (f1, . . . , fs) .
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The algebraic setting

Notation

In the sequel, let K be a field, let P = K [x1, . . . , xn] , let f1, . . . , fs ∈ P ,
and let I = (f1, . . . , fs) . Moreover, let K be the algebraic closure of K ,
and let P = K [x1, . . . , xn] .
By S we shall denote the system of polynomial equations






f1(x1, . . . , xn) = 0
...

fs(x1, . . . , xn) = 0

We recall that while Z(I) denotes the set of all the zeros of I in K
n

,
we denote by ZK (I) the set of all the zeros of I in K n .
Given a system S as above, there can be finitely or infinitely many
solutions in K

n
, i.e. the set Z(I) may be finite or infinite. Next

proposition provides an algorithmic criterion for finiteness.
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The algebraic setting

Finiteness Criterion

Proposition (Finiteness Criterion)
Let σ be a term ordering on Tn. The following conditions are equivalent.

1 The system of equations S has only finitely many solutions.

2 The ideal IP is contained in only finitely maximal ideals of P.

3 For i = 1, . . . , n , we have I ∩ K [xi ] %= (0).

4 The K -vector space K [x1, . . . , xn]/I is finite-dimensional.

5 The set Tn \ LTσ{I} is finite.

6 For every i ∈ {1, . . . , n} , there exists a number αi ≥ 0 such that we
have xαi

i ∈ LTσ(I) .
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The algebraic setting

Zero-dimensional ideals

Definition
An ideal I = (f1, . . . , fs) in P = K [x1, . . . , xn] is called zero-dimensional if it
satisfies the equivalent conditions of the Finiteness Criterion.

Corollary

With the same assumptions and notation as in the Finiteness Criterion, let I
and J be ideals in P .

1 If I is maximal, then I is zero-dimensional.
2 If I is zero-dimensional and I ⊆ J , then J is zero-dimensional.
3 If I is zero-dimensional, then IP is also zero-dimensional and

dimK (P/I) = dimK (P/IP)

We shall assume from now on that there are only finitely many such
solutions, i.e. that the ideal I = (f1, . . . , fs) is zero-dimensional.
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The algebraic setting

How many solutions?

The Finiteness Criterion yields an easy bound for the number of solutions
of S . For, we use condition (3) and deduce that the number of solutions
of S is at most deg(g1) · · ·deg(gn) .

In fact, a much sharper bound is available and to prove it we need a
ring-theoretic version of the Chinese Remainder Theorem.

Proposition (Bound for the Number of Solutions)
Let f1, . . . , fs ∈ P generate a zero-dimensional ideal I = (f1, . . . , fs) . Then
the system of equations

f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0

has at most dimK (P/I) solutions in K
n

.

Lorenzo Robbiano (Università di Genova) Approximate Methods in Commutative Algebra June 2007 10 / 60



The algebraic setting

How many solutions?

Example

Let us consider the three polynomials f1 = x2 + y + z − 1 , f2 = x + y2 + z − 1 ,
and f3 = x + y + z2 − 1 in P = Q[x , y , z] . They define a system of polynomial
equations f1 = f2 = f3 = 0 and generate an ideal I = (f1, f2, f3) in P .

We observe that {f1, f2, f3} is a DegRevLex-Gröbner Basis of I and deduce
that LTDegRevlex(I) = (x2, y2, z2) , so that dimQ(P/I) = 8 . Therefore 8 is an
upper bound for the number of solutions. How sharp is this a bound?

When we compute generators gi of the elimination ideals I ∩Q[xi ] for
i = 1, 2, 3 and factor them, we get

g1 = x6 − 4x4 + 4x3 − x2 = x2(x − 1)2(x + 1 +
√

2)(x + 1−
√

2)
g2 = y6 − 4y4 + 4y3 − y2 = y2(y − 1)2(y + 1 +

√
2)(y + 1−

√
2)

g3 = z6 − 4z4 + 4z3 − z2 = z2(z − 1)2(z + 1 +
√

2)(z + 1−
√

2)

Each of those polynomials has four different zeros. By substituting them into the
original system of equations, we see that of the 64 possible combinations only the
five tuples {(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1 +

√
2,−1 +

√
2,−1 +

√
2),

(−1−
√

2,−1−
√

2,−1−
√

2)} are actual solutions.
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The algebraic setting

Radical ideals

In this example, we see other phenomena emerging. For instance, it is
clear that the last step of the procedure applied in this example breaks
down if the zeros of the polynomials g1, . . . , gn cannot be represented
by radicals.

Another important fact is that, while the bound given by the Proposition
is 8 , the actual number of solutions is 5 .

If a polynomial f vanishes at the set of solutions of S , then also
sqfree(f ) vanishes at that set. Consequently, the system S has the
same set of solutions as the system S ′ , where S ′ is obtained from S
by adding the squarefree parts of some polynomials in S . Looking at the
example above, we can now understand why the upper bound given by
the Proposition is not sharp.

We have Z(I) = Z(
√

I) , and dimK (P/I) ≥ dimK (P/
√

I) .

The radical of I , i.e.
√

I can be computed if K has charachteristic zero
or is a perfect field of characteristic p > 0 having effective pth roots.
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The algebraic setting

Exact number of solutions

If the system of polynomial equations S corresponds to a
zero-dimensional radical ideal, and if the base field is perfect, the bound
for the number of solutions given in the Proposition is sharp, i.e. we have
the following formula for the exact number of solutions.

Theorem (Exact Number of Solutions)

Let I be a zero-dimensional radical ideal in P , let K be the algebraic
closure of K , and let P = K [x1, . . . , xn] . If K is a perfect field, the number
of solutions of the system of equations S is equal to the number of maximal
ideals of P containing IP , and this number is precisely dimK (P/I) .
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From equations to points: the Lex method

Normal position

The Lex method is based on the idea of extending the technique of
Gaussian elimination.
We want to solve a system f1 = · · · = fs = 0 and may assume that
I = (f1, . . . , fs) is a zero-dimensional radical ideal in P = K [x1, . . . , xn] .
Our next goal is to perform a linear change of coordinates in such a way
that the resulting system of equations has the additional property that its
solutions in K

n
have pairwise distinct last coordinates. Let us introduce

the following name for this property.

Definition
Suppose that I is a zero-dimensional ideal in the polynomial ring P , and let
i ∈ {1, . . . , n} . We say that I is in normal xi -position if any two zeros
(a1, . . . , an), (b1, . . . , bn) ∈ K

n
of I satisfy ai %= bi .

If the field K has enough elements (in particular if it is infinite), a linear
transformation can be explicitly computed which puts the ideal I in
normal xi -position.
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From equations to points: the Lex method

Shape

Theorem (The Shape Lemma)
Let K be a perfect field, let I ⊆ P be a zero-dimensional radical ideal in
normal xn -position, let gn ∈ K [xn] be the monic generator of the elimination
ideal I ∩ K [xn] , and let d = deg(gn) .

1 The reduced Gröbner basis of the ideal I with respect to Lex is of the
form {x1 − g1, . . . , xn−1 − gn−1, gn} , where g1, . . . , gn−1 ∈ K [xn] .

2 The polynomial gn has d distinct zeros a1, . . . , ad ∈ K , and the set of
zeros of I is

Z(I) = {(g1(ai), . . . , gn−1(ai), ai) | i = 1, . . . , d}
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From equations to points: the Lex method

Solving
Corollary (Solving Systems Effectively)

Let K be a field of characteristic zero or a perfect field of characteristic p > 0 having effective pth roots. Furthermore, let
f1, . . . , fs ∈ P = K [x1, . . . , xn ] , and let I = (f1, . . . , fs ) . Consider the following sequence of instructions.

1 For i = 1, . . . , n , compute a generator gi of the elimination ideal I ∩ K [xi ] . If gi = 0 for some i ∈ {1, . . . , n} , then return
Infinite Solution Set and stop.

2 Compute hi = sqfree(gi ) for i = 1, . . . , n , then replace I by I + (h1, . . . , hn) .

3 Compute d = #(Tn \ LTσ{I}) .

4 Check if deg(hn) = d . In this case, let (c1, . . . , cn−1) = (0, . . . , 0) and continue with step 8).

5 If K is finite, enlarge it so that it has more than
“d

2

”
elements.

6 Choose a tuple (c1, . . . , cn−1) ∈ K n−1 . Apply the coordinate transformation x1 $→ x1, . . . , xn−1 $→ xn−1 ,
xn $→ xn − c1x1 − · · · − cn−1xn−1 to I and get an ideal J .

7 Compute a generator of J ∩ K [xn ] and check if it has degree d . If not, repeat steps 6) and 7) until this is the case. Then rename J and call
it I .

8 Compute the reduced Gröbner basis of I with respect to Lex. It has the shape {x1 − g1, . . . , xn−1 − gn−1, gn} with polynomials
g1, . . . , gn ∈ K [xn ] and with deg(gn) = d . Return the tuples (c1, . . . , cn−1) and (g1, . . . , gn) and stop.

This is an algorithm which decides whether the system of polynomial equations S given by f1 = · · · = fs = 0 has finitely many solutions.

In that case, it returns tuples (c1, . . . , cn−1) ∈ K n−1 and (g1, . . . , gn) ∈ K [xn ]n such that, after we perform the linear change of
coordinates x1 $→ x1, . . . , xn−1 $→ xn−1 , xn $→ xn − c1x1 − · · · − cn−1xn−1 , the transformed system of equations has the

set of solutions {(g1(ai ), . . . , gn−1(ai ), ai ) | i = 1, . . . , d} , where a1, . . . , ad ∈ K are the zeros of gn .
In other words, the original system of equations has the set of solutions

{(g1(ai ), . . . , gn−1(ai ), ai − c1g1(ai ) − · · · − cn−1gn−1(ai )) | i = 1, . . . , d}
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