# International School on Computer Algebra: COCOA 2007 RISC Hagenberg-Linz (Austria), June 2007 

## Betti Numbers and Generic Initial Ideals

## Lecture 5

Aldo Conca
Tutor Anna Bigatti

- Typeset by FoilTEX -


## Linear resolutions

Definition $I$ has a linear resolution (or $d$-linear resolution) if it is generated in degree $d$ and $\operatorname{reg}(I)=d$,
i.e. $\beta_{i j}(I)=0$ for all $j \neq d+i$
i.e. the Betti diagram is just one line.

Example $I=\left(x_{1} x_{3}-x_{2}^{2}, x_{1} x_{4}-x_{2} x_{3}, x_{2} x_{4}-x_{3}^{2}\right)$ has 2 -linear resolution.

$$
0 \longrightarrow R(-3)^{2} \longrightarrow R(-2)^{3} \longrightarrow I
$$

BettiDiagram(I);


Remark If $I$ and $J$ have linear resolutions and the same HF, they have the same Betti numbers.

Remark If $I$ has a linear resolution then $\beta_{i j}(I)=$ $\beta_{i j}\left(\operatorname{gin}_{\text {rlex }}(I)\right)$.

Definition $I$ homogeneous, $d \in \mathbb{N}$. Define $I_{\langle d\rangle}$ to be the ideal generated by the elements of degree $d$ in $I$.

Example $I=\left(x^{2}+y^{2}, x^{3}, z^{4}\right)$ in $K[x, y, z]$.
Then $I_{\langle 3\rangle}$ is $I=\left(x^{2}+y^{2}\right)(x, y, z)+\left(x^{3}\right)$.

Definition $I$ is componentwise linear if for every $d$ the ideal $I_{\langle d\rangle}$ has a linear resolution.

Lemma $I$ is componentwise linear iff $I_{\langle d\rangle}$ has a linear resolution for those $d$ such that $I$ has minimal generators of degree $d$.

Corollary $I$ has a linear resolution $\Rightarrow I$ is componentwise linear.

Lemma If $I$ is stable (e.g. strongly stable) then $I$ is componentwise linear.

Proof: $I_{\langle d\rangle}$ is stable + EK.

Definition A vector space $V$ of forms of degree $i$ is said to be Gotzmann if $\operatorname{dim} V R_{1}$ is the smallest possible,
i.e. $\operatorname{dim} V R_{1}=\operatorname{dim} L R_{1}$ where $L=\operatorname{Lex}(V)$,
i.e. $\operatorname{Lex}\left(V R_{1}\right)=R_{1} \operatorname{Lex}(V)$.

An ideal $I$ Gotzmann if $I_{i}$ is Gotzmann for all $i$.
Gotzmann Persistence: $V$ Gotzmann $\Rightarrow V R_{1}$ Gotzmann.

Lemma $I$ is Gotzmann $\Rightarrow I$ is componentwise linear.

Proof: Gotzmann Persistence Thm.+ Bigatti-Hulett-Pardue Thm.

Theorem (Aramova-Herzog-Hibi) char 0, $J=\operatorname{gin}_{\text {rlex }}(I)$. TFAE

1) $I$ is componentwise linear
2) $\beta_{i j}(I)=\beta_{i j}(J)$ all $i, j$
3) $\beta_{0 j}(I)=\beta_{0 j}(J)$ all $j$
4) In generic coordinates, $I$ is minimally generated by a revlex Gröbner basis.
$1) \Rightarrow 2)$ true for all char.
$3) \Rightarrow 1)$ needs char 0: $I=\left(x^{p}, y^{p}\right)$ does not have a linear resolution and $I=\operatorname{gin}_{\mathrm{rlex}}(I)$ in char $p$.

Crucial fact: the crystallization principle for gins.

## Crystallization Principle

Theorem (Crystallization) In char 0, if $I$ is generated in degree $\leq d$ and $\operatorname{gin}_{\tau}(I)$ has no generators in degree $d+1$, then $\operatorname{gin}_{\tau}(I)$ has no generators in degree $>d$ i.e. $\operatorname{reg}(I) \leq d$.

Proof: Replace $I$ with $I_{\langle d\rangle}$, $\operatorname{gin}_{\tau}(I)$ is strongly stable, hence it has linear syzygies+ Buchberger algorithm.

Use $R:=Q[x[1 . .4]]$;
I:=Ideal (x[1], x[2])*Ideal (x[3], x[4]) *Ideal (x[1], x[3]) ;

BettiDiagram(I);

|  | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 3 : | 8 | 12 | 6 | 1 |
| Tot: | 8 | 12 | 6 | 1 |
| $\mathrm{G}:=\mathrm{Gin}(\mathrm{I})$; BettiDiagram(G) |  |  |  |  |
|  | 0 | 1 | 2 | 3 |
| 3 : | 8 | 12 | 6 | 1 |
| Tot: | 8 | 12 | 6 | 1 |

Use R::=Q[x[1..4]], Lex;
I:=Ideal (x[1], x[2])*Ideal (x[3], x[4]) *Ideal (x[1] , x[3]) ;

BettiDiagram(I);

|  | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $3:$ | 8 | 12 | 6 | 1 |
| Tot: | 8 | 12 | 6 | 1 |
| $\mathrm{G}:=\mathrm{Gin}(\mathrm{I})$ |  | BettiDiagram(G) |  |  |
|  |  | 1 | 2 | 3 |
| 3 : | 8 | 13 | 8 | 2 |
| 4 : | 1 | 2 | 1 | - |
| Tot: | 9 | 15 | 9 | 2 |

Generalizing, we have proved the following "rigidity" behaviour:

Theorem (-Herzog-Hibi) char $0, J=\operatorname{gin}_{\text {rlex }}(I)$ and $k$ a number. TFAE

1) $\beta_{i j}(I)=\beta_{i j}(J)$ all $j$ and all $i \geq k$
2) $\beta_{k j}(I)=\beta_{k j}(J)$ all $j$

New ingredient of the proof: generic Koszul homology. Koszul homology wrt generic sequences of linear forms.

If $y_{1}, \ldots, y_{n}$ are general linear forms and $1 \leq t \leq n$, set
$H_{i}(t, R / I)=$ i-th homology of Koszul complex associated to $y_{1}, \ldots, y_{t}$ over $R / I$

Key point: transfer of annihilation, that is, if for a given $i$ and all $t$ one has $\mathbf{m} H_{i}(t, R / I)=0$ then $\mathbf{m} H_{i+1}(t, R / I)=0$ for all $t$.

Description of extremal behaviour in Bigatti-Hulett-Pardue THM:

Theorem (Herzog-Hibi) $L=\operatorname{Lex}(I)$. TFAE

1) $I$ is Gotzmann
2) $\beta_{0 j}(I)=\beta_{0 j}(L)$ all $j$
3) $\beta_{i j}(I)=\beta_{i j}(L)$ all $i, j$

We have rigidity wrt to $\operatorname{Lex}(I)$ and any other gins:

Theorem (-Herzog-Hibi) char $0, J=\operatorname{gin}_{\tau}(I)$ or $J=\operatorname{Lex}(I)$ and $k$ a number. TFAE

1) $\beta_{i j}(I)=\beta_{i j}(J)$ all $j$ and all $i \geq k$
2) $\beta_{k j}(I)=\beta_{k j}(J)$ all $j$

Proof: Rigidity vs gin-revlex+EK

## Polarizzations and Distractions

Pardue's proof of the extremality of Lex wrt Betti numbers in arbitrary characteristic is based on polarizzations and distractions.
$R=K\left[x_{1}, \ldots, x_{n}\right]$.
Distractions: $L=\left(L_{i j}\right)$ a $n \times \mathbb{Z}$ matrix with $L_{i j}$ linear forms

$$
i=1, \ldots, n \quad \text { and } \quad j \in \mathbb{Z}
$$

Take a monomial $m=x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$

$$
D_{L}(m)=\prod_{i=1}^{n} \prod_{j=1}^{a_{i}} L_{i j}
$$

$$
D_{L}\left(x_{1}^{2} x_{2} x_{3}^{3}\right)=L_{1,1} L_{1,2} L_{2,1} L_{3,1} L_{3,2} L_{3,3}
$$

$$
D_{L}: R \longrightarrow R
$$

$K$-linear map, but not a $K$-algebra homomorpism.

Definition $D_{L}$ is a distraction if $D_{L}$ is bijective Remark $D_{L}$ is a distraction iff elements in different rows of $L$ are linearly independent, i.e.

$$
<L_{1, j_{1}}, L_{2, j_{2}}, \ldots, L_{n, j_{n}}>=R_{1}
$$

for all $j_{1}, \ldots, j_{n} \in \mathbb{Z}$.
Example 1) $L_{i j}=x_{i}($ trivial $)$

$$
\text { 2) } L_{i j}=x_{i}+\sum_{k>i} * x_{k} \text { (triangular) }
$$

Theorem $L$ distraction and $I$ monomial ideal then

1) $D_{L}(I)$ is an ideal
2) $I$ and $D_{L}(I)$ have the same HF and Betti numbers
3) If $F$ is any $\mathbb{Z}^{n}$-graded free resolution of $I$ then $D_{L}(F)$ is a graded free resolution of $D_{L}(I)$.

Proof: 1) the key point is that

$$
D_{L}\left(m R_{1}\right)=D_{L}(m) R_{1}
$$

for every monomial $m$.
2) That $I$ and $D_{L}(I)$ have the same HF follows because $D_{L}$ is an isomorphism of vector spaces. That they have the same Betti numbers follows from 3) applied to a minimal free resolution.
3) One extends the action of $D_{L}$ to multigraded free modules and maps and shows that the
resulting $D_{L}$ acts as a functor from $\mathbb{Z}^{n}$-graded objects to $\mathbb{Z}$-graded objects which preserves HF of homology modules and so exactness.

The saturation of $I$ is

$$
I^{\mathrm{sat}}=\left\{f \in R: f x_{i}^{k} \in I \forall i \text { and } k \gg 0\right\}
$$

$I$ is saturated jiff $I=I^{\text {sat }}$, equivalently $R / I$ has at least a non-invertible homogeneous nzd.

An important observation:
Lemma If $I$ is a monomial saturated ideal and $L$ is "generic enough" then $D_{L}(I)$ is radical.
"generic enough": for every $k<n$ and for every $1 \leq i_{1}<\cdots<i_{k} \leq$ $n$ the linear spaces $\left\langle L_{i_{1} j_{1}}, L_{i_{2} j_{2}}, \ldots, L_{i_{k} j_{k}}\right\rangle$ and $\left\langle L_{i_{1} v_{1}}, L_{i_{2} v_{2}}, \ldots, L_{i_{k} v_{k}}\right\rangle$ are distinct if $\left(j_{1}, \ldots, j_{k}\right) \neq\left(v_{1}, \ldots, v_{k}\right)$.

Proof: $D_{L}$ commutes with taking intersection. Enough to deal with irreducible ideals.

Theorem (Bigatti-C-Robbiano) If $I$ is strongly stable monomial ideal then

$$
\operatorname{gin}_{\mathrm{rlex}}\left(D_{L}(I)\right)=I
$$

for every distraction $D_{L}$.
Corollary Every saturated strongly stable ideal $I$ is the Gin-revlex of a reduced ideal

Corollary If $I$ is strongly stable and $P$ is its polarizzation (a square-free monomial ideal in many more variables) then

$$
\operatorname{gin}(P)=I
$$

Example $I=\left(x_{1}^{2}, x_{1} x_{2}, x_{2}^{3}\right)$
$P=\left(x_{11} x_{12}, x_{11} x_{21}, x_{21} x_{22} x_{23}\right)$
$\operatorname{gin}(P)=I$ after $x_{i j} \longrightarrow x_{i}$.

In general $\operatorname{gin}_{\tau}\left(D_{L}(I)\right) \neq I$ if $I$ is strongly stable and $\tau$ is not revlex.

Pardue: if $L$ is generic then

$$
\begin{gathered}
\operatorname{gin}_{L e x}\left(D_{L}(I)\right)=I \\
\text { if and only if } \\
I \text { is a lex-segment ideal }
\end{gathered}
$$

One can ask

$$
\operatorname{gin}\left(D_{L}(I)\right)=\operatorname{gin}(I) \quad ? ? ? ?
$$

for a general monomial ideal.

One has
Lemma If $I$ is componentwise linear (Gotzmann) then $D_{L}(I)$ is componentwise linear (Gotzmann).

Corollary If $I$ is componentwise linear (e.g. stable) then $\operatorname{gin}(I)$ and $\operatorname{gin}\left(D_{L}(I)\right)$ have the same Betti numbers

Surprise: there exist stable monomial ideals $I$ and a distractions $L$ such that

$$
\operatorname{gin}\left(D_{L}(I)\right) \neq \operatorname{gin}(I)
$$

$G:=\left[x_{3}^{2} x_{4}^{2}, x_{2}^{3}\right] ;$

## $\mathrm{I}:=$ Stable(G);

the smallest stable ideal containing $G$.
$\mathrm{J}:=$ GenericDistraction(I);
$\operatorname{Gin}(\mathrm{I})=\operatorname{Gin}(\mathrm{J}) ;$
FALSE $\left(x_{1} x_{3}^{2} x_{4}\right.$ in Ginl and not in GinJ and $x_{2}^{2} x_{3} x_{4}$ in GinJ and not in Ginl)

## But:

Theorem If $m$ is a monomial and $I=$ Stable ( $m$ ) then

$$
\operatorname{gin}\left(D_{L}(I)\right)=\operatorname{gin}(I)
$$

for all $L$.

Gin, in and reduction numbers
Gin and Fröberg conjecture
Gin of complete intersections
Gin Lex
Gin and shifting

