International School on Computer Algebra: COCOA 2007 RISC Hagenberg-Linz (Austria), June 2007

Betti Numbers and Generic Initial Ideals

Lecture 5

Aldo Conca

Tutor Anna Bigatti

– Typeset by $\ensuremath{\mathsf{FoilT}}\xspace{T_E\!X}$ –

Linear resolutions

Definition I has a linear resolution (or d-linear resolution) if it is generated in degree d and reg(I) = d,

i.e.
$$\beta_{ij}(I) = 0$$
 for all $j \neq d + i$

i.e. the Betti diagram is just one line.

Example $I = (x_1x_3 - x_2^2, x_1x_4 - x_2x_3, x_2x_4 - x_3^2)$ has 2-linear resolution.

$$0 \longrightarrow R(-3)^2 \longrightarrow R(-2)^3 \longrightarrow I$$

BettiDiagram(I);

	0	1	
2:	3	2	
 Tot:	3	2	

Remark If I and J have linear resolutions and the same HF, they have the same Betti numbers.

Remark If I has a linear resolution then $\beta_{ij}(I) = \beta_{ij}(gin_{rlex}(I))$.

Definition I homogeneous, $d \in \mathbb{N}$. Define $I_{\langle d \rangle}$ to be the ideal generated by the elements of degree d in I.

Example $I = (x^2 + y^2, x^3, z^4)$ in K[x, y, z]. Then $I_{\langle 3 \rangle}$ is $I = (x^2 + y^2)(x, y, z) + (x^3)$. Definition I is componentwise linear if for every d the ideal $I_{\langle d \rangle}$ has a linear resolution.

Lemma I is componentwise linear iff $I_{\langle d \rangle}$ has a linear resolution for those d such that I has minimal generators of degree d.

Corollary I has a linear resolution \Rightarrow I is componentwise linear.

Lemma If I is stable (e.g. strongly stable) then I is componentwise linear.

Proof: $I_{\langle d \rangle}$ is stable + EK.

Definition A vector space V of forms of degree i is said to be Gotzmann if $\dim VR_1$ is the smallest possible,

i.e. dim $VR_1 = \dim LR_1$ where $L = \operatorname{Lex}(V)$,

i.e. $\operatorname{Lex}(VR_1) = R_1 \operatorname{Lex}(V)$.

An ideal I Gotzmann if I_i is Gotzmann for all i.

Gotzmann Persistence: V Gotzmann $\Rightarrow VR_1$ Gotzmann.

Lemma I is Gotzmann \Rightarrow I is componentwise linear.

Proof: Gotzmann Persistence Thm.+ Bigatti-Hulett-Pardue Thm. Theorem (Aramova-Herzog-Hibi) char 0, $J = gin_{rlex}(I)$. TFAE

1) I is componentwise linear

2)
$$\beta_{ij}(I) = \beta_{ij}(J)$$
 all i, j

3)
$$\beta_{0j}(I) = \beta_{0j}(J)$$
 all j

4) In generic coordinates, I is minimally generated by a revlex Gröbner basis.

 $1) \Rightarrow 2)$ true for all char.

3) \Rightarrow 1) needs char 0: $I = (x^p, y^p)$ does not have a linear resolution and $I = gin_{rlex}(I)$ in char p.

Crucial fact: the crystallization principle for gins.

Crystallization Principle

Theorem (Crystallization) In char0, if I is generated in degree $\leq d$ and $gin_{\tau}(I)$ has no generators in degree d+1, then $gin_{\tau}(I)$ has no generators in degree > d i.e. $reg(I) \leq d$.

Proof: Replace I with $I_{\langle d \rangle}$, $gin_{\tau}(I)$ is strongly stable, hence it has linear syzygies+ Buchberger algorithm.

Use R::=Q[x[1..4]];
I:=Ideal(x[1],x[2])*Ideal(x[3],x[4])
*Ideal(x[1],x[3]);

BettiDiagram(I);

Use R::=Q[x[1..4]], Lex; I:=Ideal(x[1],x[2])*Ideal(x[3],x[4]) *Ideal(x[1],x[3]);

BettiDiagram(I);

	0	1	2	3	. —
3:	8	12	6	1	
Tot:	8	12	6	 1 	
G:=Gin	(I); 0	Bett 1	iDiag 2	ram(G); 3	
3: 4:	8 1	13 2	8 1	2	
Tot:	9	15	9	 2 	

Generalizing, we have proved the following "rigidity" behaviour:

Theorem (–Herzog-Hibi) char 0, $J = gin_{rlex}(I)$ and k a number. TFAE

1)
$$\beta_{ij}(I) = \beta_{ij}(J)$$
 all j and all $i \ge k$

2) $\beta_{kj}(I) = \beta_{kj}(J)$ all j

New ingredient of the proof: generic Koszul homology. Koszul homology wrt generic sequences of linear forms.

If y_1, \ldots, y_n are general linear forms and $1 \le t \le n$, set

 $H_i(t, R/I) =$ i-th homology of Koszul complex associated to y_1, \ldots, y_t over R/I

Key point: transfer of annihilation, that is, if for a given *i* and all *t* one has $\mathbf{m}H_i(t, R/I) = 0$ then $\mathbf{m}H_{i+1}(t, R/I) = 0$ for all *t*.

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Description of extremal behaviour in Bigatti-Hulett-Pardue THM:

Theorem (Herzog-Hibi) L = Lex(I). TFAE

1) I is Gotzmann

2)
$$\beta_{0j}(I) = \beta_{0j}(L)$$
 all j

3) $\beta_{ij}(I) = \beta_{ij}(L)$ all i, j

We have rigidity wrt to Lex(I) and any other gins:

Theorem (–Herzog-Hibi) char 0, $J = gin_{\tau}(I)$ or J = Lex(I) and k a number. TFAE

1)
$$\beta_{ij}(I) = \beta_{ij}(J)$$
 all j and all $i \ge k$

2) $\beta_{kj}(I) = \beta_{kj}(J)$ all j

Proof: Rigidity vs gin-revlex+ EK

Polarizzations and Distractions

Pardue's proof of the extremality of Lex wrt Betti numbers in arbitrary characteristic is based on polarizzations and distractions.

$$R = K[x_1, \ldots, x_n].$$

Distractions: $L = (L_{ij})$ a $n \times \mathbb{Z}$ matrix with L_{ij} linear forms

$$i=1,\ldots,n$$
 and $j\in\mathbb{Z}$

Take a monomial $m = x_1^{a_1} \dots x_n^{a_n}$

$$D_L(m) = \prod_{i=1}^n \prod_{j=1}^{a_i} L_{ij}$$

$$D_L(x_1^2 x_2 x_3^3) = L_{1,1} L_{1,2} L_{2,1} L_{3,1} L_{3,2} L_{3,3}$$

 $D_L: R \longrightarrow R$

K-linear map, but not a K-algebra homomorpism.

Definition D_L is a distraction if D_L is bijective

Remark D_L is a distraction iff elements in different rows of L are linearly independent, i.e.

$$< L_{1,j_1}, L_{2,j_2}, \dots, L_{n,j_n} > = R_1$$

for all $j_1, \ldots, j_n \in \mathbb{Z}$.

Example 1)
$$L_{ij} = x_i$$
 (trivial)
2) $L_{ij} = x_i + \sum_{k>i} *x_k$ (triangular)

Theorem L distraction and I monomial ideal then

1) $D_L(I)$ is an ideal

2) I and $D_L(I)$ have the same HF and Betti numbers

3) If F is any \mathbb{Z}^n -graded free resolution of I then $D_L(F)$ is a graded free resolution of $D_L(I)$.

Proof: 1) the key point is that

$$D_L(mR_1) = D_L(m)R_1$$

for every monomial m.

2) That I and $D_L(I)$ have the same HF follows because D_L is an isomorphism of vector spaces. That they have the same Betti numbers follows from 3) applied to a minimal free resolution.

3) One extends the action of D_L to multigraded free modules and maps and shows that the

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

resulting D_L acts as a functor from \mathbb{Z}^n -graded objects to \mathbb{Z} -graded objects which preserves HF of homology modules and so exactness.

The saturation of I is

 $I^{\text{sat}} = \{ f \in R : fx_i^k \in I \forall i \text{ and } k >> 0 \}$

I is saturated iff $I = I^{\text{sat}}$, equivalently R/I has at least a non-invertible homogeneous nzd.

An important observation:

Lemma If I is a monomial saturated ideal and L is "generic enough" then $D_L(I)$ is radical.

"generic enough": for every k < nand for every $1 \leq i_1 < \cdots < i_k \leq$ n the linear spaces $\langle L_{i_1j_1}, L_{i_2j_2}, \ldots, L_{i_kj_k} \rangle$ and $\langle L_{i_1v_1}, L_{i_2v_2}, \ldots, L_{i_kv_k} \rangle$ are distinct if $(j_1, \ldots, j_k) \neq (v_1, \ldots, v_k)$.

Proof: D_L commutes with taking intersection. Enough to deal with irreducible ideals.

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Theorem (Bigatti-C-Robbiano) If I is strongly stable monomial ideal then

$$\operatorname{gin}_{\operatorname{rlex}}(D_L(I)) = I$$

for every distraction D_L .

Corollary Every saturated strongly stable ideal *I* is the Gin-revlex of a reduced ideal

Corollary If I is strongly stable and P is its polarizzation (a square-free monomial ideal in many more variables) then

$$gin(P) = I$$

Example $I = (x_1^2, x_1 x_2, x_2^3)$

$$P = (x_{11}x_{12}, x_{11}x_{21}, x_{21}x_{22}x_{23})$$

gin(P) = I after $x_{ij} \longrightarrow x_i$.

In general $gin_{\tau}(D_L(I)) \neq I$ if I is strongly stable and τ is not revlex.

Pardue: if L is generic then

 $gin_{Lex}(D_L(I)) = I$

if and only if I is a lex-segment ideal

One can ask

 $gin(D_L(I)) = gin(I) \quad ????$

for a general monomial ideal.

One has

Lemma If I is componentwise linear (Gotzmann) then $D_L(I)$ is componentwise linear (Gotzmann).

Corollary If I is componentwise linear (e.g. stable) then gin(I) and $gin(D_L(I))$ have the same Betti numbers

Surprise : there exist stable monomial ideals I and a distractions L such that

 $gin(D_L(I)) \neq gin(I)$

 $G := [x_3^2 x_4^2, x_2^3];$

I:=Stable(G);

the smallest stable ideal containing G.

J:=GenericDistraction(I);

Gin(I) = Gin(J);

FALSE $(x_1x_3^2x_4$ in Ginl and not in GinJ and $x_2^2x_3x_4$ in GinJ and not in Ginl)

But:

Theorem If m is a monomial and I = Stable(m) then

$gin(D_L(I)) = gin(I)$

for all L.

Gin, in and reduction numbers Gin and Fröberg conjecture Gin of complete intersections Gin Lex

Gin and shifting