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I homogeneous ideal of R = K[x1, . . . , xn]

m = (x1, . . . , xn).

Hilbert function and series

HF (R/I, i) i ∈ N −→ dimK[R/I]i

HS(R/I, z) =
∑

dimK[R/I]izi

HS(R/I, z) =
h(z)

(1− z)d

h(1) $= 0 and d =Krull dimension of R/I.

h(1) is called degree or multiplicity of R/I.
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Betti numbers and minimal free resolutions

I = (f1, . . . , fk) minimal generators we get a surjective
R-module homomorphism

ψ : Rk −→ I defined by ei −→ fi

Syz1(I) = Ker ψ — first syzygies

Taking minimal generators of Syz1(I) we can iterate the
procedure.

By Hilbert syzygy theorem, after a finite number of
step we get a trivial kernel. We obtain a minimal free
resolution. It is unique up to isomorphism of complexes.

β0(I)=number of minimal generators of I = dim I/mI

β0j(I)=number of minimal generators of degree j
= dim Ij/R1Ij−1

βi(I)=number of minimal i-syzygies of I

βij(I) =number of minimal i-syzygies of I of degree j
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0 −→ ⊕R(−j)βpj −→ . . . −→ ⊕R(−j)β0j −→ I

Projective dimension (=length of the resolution)

proj.dim(I) = max{i : βij(I) $= 0 some j}

Castelnuovo-Mumford regularity (=the width of the
resolution)

reg(I) = max{j − i : βij(I) $= 0}
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After Krull dimension and degree, the Castelnuovo
Mumford regularity is the most import invariant of I
as it bounds simultaneously

degrees of syzygies of I,

vanishing of local cohomology modules Hi
m(R/I) of R/I,

the gratest integer for which HFunction and HPolynomial
of R/I do not agree

degree of elements in revlex Gröbner bases I in generic
coordinates.
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Example I = (x2, xy, xz, y3)

β02(I) = 3, β03(I) = 1

ψ1 : R4 −→ I defined by

e1 −→ x2

e2 −→ xy
e3 −→ xz
e4 −→ y3

Syz1(I) is generated by

s1 = ye1 − xe2

s2 = ze1 − xe3

s3 = ze2 − ye3

s4 = y2e2 − xe4

ei gets the degree of its target. So, for instance, s1 has
degree 3.

β13(I) = 3, β14(I) = 1

ψ2 : R4 −→ Syz1(I) sending e′i −→ si

Syz2(I) is generated by ze′1 − ye′2 + xe′3.

β24(I) = 1
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0 −→ (−4) −→
(−3)3
⊕

(−4)
−→

(−2)3
⊕

(−3)
−→ I

Betti Diagram:

BettiDiagram(I);
0 1 2

--------------------
2: 3 3 1
3: 1 1 -
--------------------
Tot: 4 4 1
-------------------------------

proj.dim(I) = 2

reg(I) = 3
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Remark The Betti numbers of I determine the HF of I.
If βij are the Betti numbers of I then the Hilbert series
of R/I is given by

HS(R/I, z) =
1 +

∑
ij(−1)i+1βijzj

(1− z)n

Not the other way round: two ideals can have the
same HF but different Betti numbers. I = (x2, y2) and
(x2, xy, y3) have both HF (1, 2, 1, 0) and different number
of generators.

Definition I has a pure resolution if for all i the minimal
i-syzygies (if any) have all the same degree, that is for
all i there exits at most one j so that βij(I) $= 0.

If I, J have the same HF and both have pure resolution
then they have the same Betti numbers.

Definition I has a linear resolution if it is generated in
one degree, say d, and βij(I) = 0 for all j $= i + d.

Problem Consider an homogeneous ideal I in K[x, y, z, t].
Compute with CoCoA its regularity, say it is r. Set
I≥k = I ∩mk. Compute the resolution of I≥k for some
values k < r and some values k ≥ r. Guess what it is
going on.
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Invariants and deformations

τ term order → initial ideal inτ(I)

I and inτ(I) have the same Hilbert function

βij(I) ≤ βij(inτ(I))

proj.dim(I) ≤ proj.dim(inτ(I))

reg(I) ≤ reg(inτ(I))

(usually <)

Problem Check with CoCoA in some examples.
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Gin-revlex

For ideals I and J one defines

I : J = {f ∈ R : fJ ⊆ I}

Note: f is a n.z.d. mod I iff I : (f) = I

The revlex order has some peculiar properties, for
instance:

*) in(I : (xn)) = in(I) : xn

*) in(I + (xn)) = in(I) + (xn)

*) xj, . . . , xn form a regular sequence mod I iff xj, . . . , xn

form a regular sequence mod inrlex(I)

For a monomial m denote

max(m) = max{i : xi|m}
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These properties play the key role in the proof of:

Theorem (Bayer-Stillman) J = ginrlex(I)

proj.dim(I) = proj.dim(J)

reg(I) = reg(J)
and if J = (m1, . . . ,mk) then

proj.dim(J) = max
i

{max(mi)}− 1

Recent works Caviglia-Sbarra, Caviglia and Bermejo-
Gimenez show that THM holds also by replacing
ginrlex(I) with inrlex(I) provided that inrlex(I) has only
associated prime ideals of type (x1, x2 . . . , xk).
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In char 0, the regularity of a Borel-fixed(=strongly stable)
ideal J is max{deg(mi)}

Corollary In char 0, let ginrlex(I) = (m1, . . . ,mk) then

proj.dim(I) = max{max(mi)}− 1

reg(I) = max{deg(mi)}

Syzygies of (strongly) stable ideals

J strongly stable ideal with generators m1, . . . ,mk. Order
the mi so that deg(mi) < deg(mi+1) or deg(mi) =
deg(mi+1) and mi > mi+1 revlex.

For every mv with i = max(mv) and for every j < i we
have (xj/xi)mv ∈ J i.e. there exists w and n such that

(xj/xi)mv = nmw

Since either deg mw < deg mv or (mw > mv revlex) then
w < v.

xjmv = xinmw

This is a syzygy of the mi’s.
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ψ : Rk −→ J ψ(ei) = mi

t(v, j) := xjev − xinew ∈ Syz1(J)

Indeed,

Proposition The syzygies t(v, j) with v > 1, j <
max(mv) minimally generate Syz1(J).

Sketch: The binomial syzygies s(i, j) = aei − bej with
GCD(a, b) = 1 and i > j generates Syz1(J).

Enough to prove the s(i, j) are combinations of the
t(v, j). Induction on i, j, s(2, 1) is t(2, 1).

If there is a variable xk in a with k < max(mi) then
substracting from s(i, j) a multiple of t(i, k) we get
a multiple of s(w, j) or s(j, w) with w < i....done by
induction.

If all the variables xk in a have k ≥ max(mi) then either
deg mi = deg mj and mj > mi or deg mj < deg mi and
mi not a minimal generator. Contradiction.

It follows that if J is strongly stable minimally generated
by m1, . . . ,mk then:

β1(J) =
∑

v

(max(mv)− 1)
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β1j(J) =
∑

∗
(max(mv)− 1)

where
∑

∗ is sum over the v with deg(mv) = j − 1.

One can generalize in two ways: larger class and full
resolution!!!

Eliahou-Kervaire resolution

Definitin A monomial ideal J is stable if for all m ∈ J
and j < i = max(m) then (xj/xi)m ∈ J . (enough test
generators).

For a set of monomials A we put:

Mi(A) = |{m ∈ A : max(m) = i}|
M≤i(A) = |{u ∈ A : max(u) ≤ i}|

Mij(A) = |{m ∈ A : max(m) = i and
deg(m) = j

}|

If J is an ideal or a vector space minimally generated by
a set of monomials A we set

Mi(J) = Mi(A) and Mij(J) = Mij(A)
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Theorem (Eliahou-Kervaire) J stable monomial ideal.
Then

βi(J) =
n∑

s=i+1

Ms(J)
(

s− 1
i

)

βij(J) =
n∑

s=i+1

Ms,j−i(I)
(

s− 1
i

)

We have the B-lemmata:

LEMMA Let I, J be strongly stable ideals with the same
Hilbert function. If M≤i(Jj) ≤ M≤i(Ij) for all i, j then

i) Mi(I) ≤ Mi(J) for all i.

ii) βij(I) ≤ βij(J) for all i, j.

LEMMA (Bigatti, Bayer) Let I be a strongly stable ideal
and L = Lex(I) be the corresponding lex-segment. Then
M≤i(Lj) ≤ M≤i(Ij) for all i, j.
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Extremality of Lex and Betti numbers

In the class of the ideals with a given HF the Lex-segment
has the largest Betti numbers.

Theorem (Bigatti, Hulett, Pardue) I homogeneous ideal,
L = Lex(I) corresponding lex-segment. Then

βij(I) ≤ βij(L)

Proved in char 0 by Bigatti and Hulett. Extended to
arbitrary char by K.Pardue via polarizations-distractions.

Proof in char 0: Replacing I with gin(I) we may assume
that I is strongly stable. Then use EK and the B-
lemmata.

Among the “gins”, the gin-revlex gives the best upper
approximation of the Betti numbers

Theorem (-) In char 0: If τ is any t.o. and G =
ginrevlex(I)

βij(I) ≤ βij(G) ≤ βij(ginτ(I))
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One could ask whether, among the gins of I, the gin-
lex has the largest Betti numbers. Or whether among
the gins of I there exists an ideal whose Betti numbers
bounds above the Betti numbers of any other gins. The
answer is negative in both cases.

Relevant examples are constructed by using almost Borel
fixed ideals.

Let A be a strongly stable vector space of monomial of
degree i.

A lower neighbor of A is a monomial m not in A but
moved into A by any Borel move.

Let W be the vector space generated by the lower
neighbors of A.

Let V ⊆ W be a subspace.

The vector space A + V is called an almost Borel fixed
space.

A homogeneous ideal I is said to be almost Borel-fixed if
for each d ∈ N the space Id is almost Borel-fixed.
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The main property of almost Borel-fixed spaces and ideals

For every term order τ one has:

ginτ(A + V ) = A + inτ(V )

Example The simplest almost Borel-fixed space (which is
not Borel-fixed) is the following: in 3 variables,

A = 〈x2
1, x1x2〉, lower neighbors are {x1x3, x2

2} V =
〈x1x3 + x2

2〉.

Then the almost Borel-fixed space A + V has only two
distinct gins, the gin-revlex A + 〈x2

2〉 and the gin-lex
A + 〈x1x3〉.
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When does it happen that βij(I) = βij(ginrlex(I))?

For special values of i, j it is an equality.

Definition A Betti number βij(I) is extremal if βhk(I) = 0
for all h ≥ i and k ≥ j + 1.

Theorem (Bayer-Charalambous-Popescu) The positions
and the values of the extremal Betti numbers of I and
ginrlex(I) are the same.
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Example

I
(x2

1, x1x2, x1x3, x1x4, x2
2, x3x5)

gin-revlex
(x2

1, x1x2, x2
2, x1x3, x2x3, x1x4, x3

3)

gin-lex
(x2

1, x1x2, x1x3, x1x4, x1x5, x2
2, x2x3x4, x2x2

3,
x2x3x5, x2x3

4, x
4
3)

lex-segment
(x2

1, x1x2, x1x3, x1x4, x1x5, x2
2, x2x2

3, x2x3x4,
x2x3x5, x2x3

4, x2x2
4x5, x2x4x3

5, x2x4
5, x

5
3x4, x6

3,
x5

3x5, x4
3x

3
4)
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I
2| 6 8 4 1
3| 0 1 1 0

gin-revlex
2| 6 9 5 1
3| 1 2 1 0

gin-lex
2| 6 11 10 5 1
3| 3 9 10 5 1
4| 2 5 4 1 0

lex-segment
2| 6 11 10 5 1
3| 3 9 10 5 1
4| 2 7 9 5 1
5| 2 8 12 8 2
6| 3 9 10 5 1
7| 1 3 3 1 0
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