International School on Computer Algebra: COCOA 2007 RISC Hagenberg-Linz (Austria), June 2007

Betti Numbers and Generic Initial Ideals

Lecture 3

Aldo Conca

Tutor Anna Bigatti

– Typeset by $\ensuremath{\mathsf{FoilT}}\xspace{T_E\!X}$ –

I homogeneous ideal of $R = K[x_1, \ldots, x_n]$

Hilbert function and polynomial of R/I and of I

$$HF(R/I, i) \ i \in \mathbb{N} \longrightarrow \dim_K[R/I]_i$$

 $HF(I,i) \ i \in \mathbb{N} \longrightarrow \dim_K I_i$

$$HF(R/I,i) + HF(I,i) = \binom{n-1+i}{n-1}$$

HF(R/I, i) agrees for i >> 0 with a polynomial, Hilbert polynomial of R/I, whose degree is one less than the Krull dimension of R/I.

I and $in_{\tau}(I)$ have the same Hilbert function.

I and $gin_{\tau}(I)$ have the same Hilbert function.

Segments of monomials

Let τ be t.o. on $R = K[x_1, \ldots, x_n]$.

Assume that $x_1 > \cdots > x_n$.

V be a vector space generated by monomials of degree i.

Definition V is a τ -segment if whenever m_1, m_2 are monomials of degree i such that $m_1 > m_2$ and $m_2 \in V$ then also $m_1 \in V$. Given τ , i and

$$d \le \dim R_i = \binom{n-1+i}{n-1}$$

there exists exactly one τ -segment of dimension d and degree i: it is vector space generated by the d largest monomials of degree i.

Denote it by $\text{Seg}_{\tau}^{n}(i,d)$ or just by $\text{Seg}_{\tau}(i,d)$ if n is clear from the context.

Example If n = 3 then

$$\operatorname{Seg}_{\operatorname{lex}}^{3}(2,4) = \operatorname{Seg}_{\operatorname{rlex}}^{3}(2,4) = \langle x_{1}^{2}, x_{1}x_{2}, x_{2}^{2}, x_{1}x_{3} \rangle$$

If n = 4 then

$$\operatorname{Seg}_{\operatorname{lex}}^{4}(2,4) = \langle x_{1}^{2}, x_{1}x_{2}, x_{1}x_{3}, x_{1}x_{4} \rangle$$
$$\operatorname{Seg}_{\operatorname{rlex}}^{4}(2,4) = \langle x_{1}^{2}, x_{1}x_{2}, x_{2}^{2}, x_{1}x_{3} \rangle$$

Remark $\operatorname{Seg}_{\operatorname{rlex}}^{n}(i,d)$ is independent of n.

Definition A monomial ideal I is a $\tau\text{-segment}$ if every homogeneous component I_i of I is a $\tau\text{-segment},$ equivalently ,

if m_1, m_2 are monomials of the same degree and $m_1 > m_2 \in I$ then $m_1 \in I$.

Warning: Not enough to test the condition for idealgenerators:

Example (x_1) is a revlex-segment in degree 1 but not in degree 2 since $x_2^2 > x_1x_3 \in I$ and $x_2^2 \notin I$.

But it is enough to test ideal-generators to check whether an ideal is a lex-segment, i.e.

A monomial ideal I is a lex-segment if whenever m_1, m_2 are monomials of the same degree and $m_1 > m_2$ and m_2 is a generator of I then $m_1 \in I$. The gins (generic initial ideals) "tend" to be segments since the maximal potential support for a vector space of dimension d of forms of degree i "is" the correspondent τ -segment.

But in general they are not. An obstruction comes from Hilbert functions.

A monomial τ -segment I is determined by its Hilbert function,

$$I = \oplus_i \operatorname{Seg}_{\tau}^n(i, \dim I_i)$$

Given a function $h : \mathbb{N} \longrightarrow \mathbb{N}$ we say that h supports a τ -segment if h is the Hilbert function of R/I where I is a τ -segment. This is equivalent to the following conditions 1) h(0) = 1, h(1) = n, 2) $h_i^* \ge 0$, 3) $\oplus_i \operatorname{Seg}_{\tau}^n(i, h_i^*)$ is an ideal

where

$$h_i^* = \binom{n-1+i}{n-1} - h(i)$$

Certain rings have Hilbert functions which do not support τ -segment ideals, for instance:

Lemma A function of $h : \mathbb{N} \longrightarrow \mathbb{N}$ with h(0) = 1 and h(1) = n supports a revlex-segment ideal iff $h(i+1) \le h(i)$ for all $i \ge \min\{j : h(j) < \binom{n-1+j}{n-1}\}$

Prove the only if part.

It follows that the Hilbert functions of proper (*) quotients of R with Krull dimension > 1 do not support revlex segments.

In particular, if $I \neq 0$, does not contain linear forms and R/I has Krull dimension > 1 then $gin_{rlex}(I)$ is NOT a revlex-segment.

The Lemma can be used also for some 0-dimensional ring:

Example $I = (x^5, y^5, z^5)$, h = HF of R/I then h(5) = 18and h(6) = 19. So $gin_{rlex}(I)$ is NOT a revlex-segment simply because there are no revlex-segment ideals with that HF. But ALL Hilbert functions support lex-segment ideals. This is (a possible formulation) of Macaulay characterization of HF:

Theorem (Macaulay): A function $h : \mathbb{N} \longrightarrow \mathbb{N}$ with h(0) = 1 and h(1) = n is the Hilbert function of a quotient of R iff $\bigoplus_i \operatorname{Seg}_{lex}^n(i, h_i^*)$ is an ideal of R.

$$h_i^* = \binom{n-1+i}{n-1} - h(i)$$

If $h : \mathbb{N} \longrightarrow \mathbb{N}$ is a HF, then the ideal $\bigoplus_i \operatorname{Seg}_{lex}^n(i, h_i^*)$ is denoted by $\operatorname{Lex}(h)$. It is called the lex-segment associated with h.

If I is an ideal and h is the Hilbert function of R/I then Lex(h) is denoted also by Lex(I).

An essentially equivalent formulation of Macaulay Theorem is:

For every vector space $V \subset R_i$ of dimension d set $L = Seg_{lex}^n(i, d)$. Then one has

$\dim VR_1 \ge \dim LR_1$

The vector spaces V satisfying equality deserve a special name:

Definition Let V be a vector space $V \subset R_i$ with dim V = d and set $L = \text{Seg}_{\text{lex}}^n(i, d)$. Then V is called Gotzmann if dim $VR_1 = \dim LR_1$.

Problem Describe some Gotzmann spaces for n = 3, i = 2 and d = 4. Let $L = \text{Seg}_{\text{lex}}^3(2, 4)$, describe all the Gotzmann spaces V with $\text{in}_{\text{lex}}(V) = L$.

Problem Given an Artinian function $h : \mathbb{N} \longrightarrow \mathbb{N}$ (that is h(i) = 0 for i >> 0) and a term order τ write a Cocoa function to check whether h supports a τ -segment.

Example

Then Lex(I) is generated by the 1 largest monomials in degree 2, by the 4 largest monomials of degree 3, and so on.

So Lex(I) = Lex(h) is generated by the 10 monomials. $(x^2, xy^2, xyz^2, xz^3, y^5, y^4z, y^3z^2, y^2z^4, yz^5, z^7)$

How do Borel-fixed ideals look like?

An ideal I is Borel-fixed iff it is monomial and verifies the following condition

for every monomial $m \in I$ for every $1 \le j < i \le n$ let t be the exponent of x_i in m.

Then $(x_j/x_i)^r m \in I$ for all $r = 1, \ldots, t$ such $\binom{t}{r} \neq 0$ in K.

Enough to test with m ideal-generators of I.

Key point: invertible diagonal matrices + elementary upper triangular matrices generate the Borel-group B_n .

Elementary upper triangular matrices $E_{ji}(a)$ with j < i correspond to automorphisms:

 $\begin{array}{l} x_k \longrightarrow x_k \text{ for } k \neq i \\ x_i \longrightarrow x_i + a x_j \end{array}$

Strongly stable ideals

If char 0 then $\binom{t}{r} \neq 0$.

Definition A monomial ideal I is strongly stable if whenever $mx_i \in I$ for some monomial m then $mx_j \in I$ for every j < i.

Equivalently, $I: x_i = I: (x_1, \ldots, x_i)$ for every i.

Strongly stable \Rightarrow Borel-fixed.

In $\operatorname{char} 0$, Borel-fixed is equivalent to strongly stable.

 (x_1^p, x_2^p) Borex-fixed in char p, not strongly stable.

 $(x_1^2, x_1x_2, x_2^2, x_1x_3^2, x_3^3)$ Borex-fixed in char 3, not strongly stable.

Sums, products, intersections and colon ideals of Borelfixed ideals are Borel-fixed.

*) Segments are strongly stable since $x_jm > x_im$ if j < i.

*) In $K[x_1, x_2]$ strongly stable ideals are segments (lex-segments)

*) For ≥ 3 variables strongly stable ideals are, in general, not segments:

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Example

The ideal $(x_1^3, x_1^2x_2, x_1^2x_3, x_1x_2^3, x_2^4)$ is strongly stable and not a segment.

If, by contradiction, there exists a t.o. τ such that it is a segment, then since $x_1^2x_3$ is in and $x_1x_2^2$ is out, we have $x_1^2x_3 >_{\tau} x_1x_2^2$.

It follows $x_1x_3 >_{\tau} x_2^2$ and $x_1x_2^2x_3 >_{\tau} x_2^4$. But x_2^4 is in and $x_1x_2^2x_3$ is out: a contradiction.

Summing up,

$$\begin{array}{ccc} & & \text{gins} \\ & & \downarrow \\ \text{segments} & \Rightarrow & \text{st.stable} & \Rightarrow & \text{B.fixed} \\ & \not = & & \not = \\ & & \leftarrow & \text{if } n = 2 \\ & & \leftarrow & \text{if } \text{char } 0 \end{array}$$

One can introduce the Borel partial order on the set of monomials of given degree.

A Borel move: in a monomial m replace a variable x_i with x_j with j < i. For example, $x_1 x_2^3 x_3 x_4^2 \longrightarrow x_1 x_2^4 x_4^2$.

Given monomials of same degree we say $m_1 > m_2$ in the Borel order if we can pass fro m_2 to m_1 with a series of Borel moves.

If $m_1 = x^a$ and $m_2 = x^b$, $a, b \in \mathbb{N}^n$ then $m_1 > m_2$ in the Borel order iff $a_1 \ge b_1$ and $a_1 + a_2 \ge b_1 + b_2$ and

The Borel order is a partial order on the set of monomials of degree i.

Let x^a and x^b be monomials of degree i. Then $x^a > x^b$ in the Borel order iff $x^a >_{\tau} x^b$ for all term orders τ with $x_1 > \cdots > x_n$.

A strongly stable ideal I is one satisfying the condition:

For every $m \in I$ and every $m_1 > m$ in the Borel-order one has $m_1 \in I$.

– Typeset by Foil $\mathrm{T}_{E}\mathrm{X}$ –

Ideals whose gin is known

*) If
$$I = (f)$$
 and $\deg f = i$, then $gin_{\tau}(I) = (x_1^i)$

*) If I is Borel-fixed then ${\rm gin}_\tau(I)=I$

*) In char 0 and 2-variables the gin is the (lex-)segment. Hence gin(I) is determined by the HF of I.

*) If I is strongly stable non-segment then $gin_{\tau}(I) = I$. So gin lex is not always the lex-segment.

*) If I = g(J) for some $g \in \operatorname{GL}_n$ then $\operatorname{gin}_{\tau}(I) = \operatorname{gin}_{\tau}(J)$

*) If I is generated by r independent linear forms then ${\rm gin}_\tau(I)=(x_1,\ldots,x_r)$

*) If $I \subset R = K[x_1, \dots, x_{n-1}]$ and $S = R[x_n]$ then $gin_{\tau}(IS) = gin_{\tau}(I)S$

Problem: Check with CoCoA.

In general:

(1)
$$gin(I+J) \supseteq gin(I) + gin(J)$$

```
(2) gin(IJ) \supseteq gin(I) gin(J)
```

(3)
$$gin(I \cap J) \subseteq gin(I) \cap gin(J)$$

usually strict.

Problem: Check with CoCoA.

Problem: Given an ideal I shows that $\{gin(I^i)\}_i \in \mathbb{N}$ is a filtration. Is the associated Rees ring Noetherian? Sometimes yes, but I do not know in general what is going on.

Problem: If $I \subset R = K[x_1, \ldots, x_n]$ and $J \subset S = K[y_1, \ldots, y_m]$ what is the relation between gin(I), gin(J) and gin(I+J)? Say the term order is revlex. Any guess?