International School on Computer Algebra: COCOA 2007 RISC Hagenberg-Linz (Austria), June 2007

Betti Numbers and Generic Initial Ideals

Lecture 3

Aldo Conca
Tutor Anna Bigatti

- Typeset by FoilTEX -
I homogeneous ideal of $R=K\left[x_{1}, \ldots, x_{n}\right]$
Hilbert function and polynomial of R / I and of I

$$
\begin{gathered}
H F(R / I, i) \quad i \in \mathbb{N} \longrightarrow \operatorname{dim}_{K}[R / I]_{i} \\
H F(I, i) \quad i \in \mathbb{N} \longrightarrow \operatorname{dim}_{K} I_{i} \\
H F(R / I, i)+H F(I, i)=\binom{n-1+i}{n-1}
\end{gathered}
$$

$H F(R / I, i)$ agrees for $i \gg 0$ with a polynomial, Hilbert polynomial of R / I, whose degree is one less than the Krull dimension of R / I.
I and $\operatorname{in}_{\tau}(I)$ have the same Hilbert function.
I and $\operatorname{gin}_{\tau}(I)$ have the same Hilbert function.

Segments of monomials

Let τ be t.o. on $R=K\left[x_{1}, \ldots, x_{n}\right]$.
Assume that $x_{1}>\cdots>x_{n}$.
V be a vector space generated by monomials of degree i.
Definition V is a τ-segment if whenever m_{1}, m_{2} are monomials of degree i such that $m_{1}>m_{2}$ and $m_{2} \in V$ then also $m_{1} \in V$.

Given τ, i and

$$
d \leq \operatorname{dim} R_{i}=\binom{n-1+i}{n-1}
$$

there exists exactly one τ-segment of dimension d and degree i : it is vector space generated by the d largest monomials of degree i.

Denote it by $\operatorname{Seg}_{\tau}^{n}(i, d)$ or just by $\operatorname{Seg}_{\tau}(i, d)$ if n is clear from the context.

Example If $n=3$ then

$$
\operatorname{Seg}_{\mathrm{lex}}^{3}(2,4)=\operatorname{Seg}_{\mathrm{rlex}}^{3}(2,4)=\left\langle x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1} x_{3}\right\rangle
$$

If $n=4$ then

$$
\begin{gathered}
\operatorname{Seg}_{\text {lex }}^{4}(2,4)=\left\langle x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}\right\rangle \\
\operatorname{Seg}_{\text {rlex }}^{4}(2,4)=\left\langle x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1} x_{3}\right\rangle
\end{gathered}
$$

Remark $\operatorname{Seg}_{\text {rlex }}^{n}(i, d)$ is independent of n.

Definition A monomial ideal I is a τ-segment if every homogeneous component I_{i} of I is a τ-segment, equivalently,
if m_{1}, m_{2} are monomials of the same degree and $m_{1}>$ $m_{2} \in I$ then $m_{1} \in I$.

Warning: Not enough to test the condition for idealgenerators:

Example $\left(x_{1}\right)$ is a revlex-segment in degree 1 but not in degree 2 since $x_{2}^{2}>x_{1} x_{3} \in I$ and $x_{2}^{2} \notin I$.

But it is enough to test ideal-generators to check whether an ideal is a lex-segment, i.e.

A monomial ideal I is a lex-segment if whenever m_{1}, m_{2} are monomials of the same degree and $m_{1}>m_{2}$ and m_{2} is a generator of I then $m_{1} \in I$.

The gins (generic initial ideals) "tend" to be segments since the maximal potential support for a vector space of dimension d of forms of degree i "is" the correspondent τ-segment.

But in general they are not. An obstruction comes from Hilbert functions.

A monomial τ-segment I is determined by its Hilbert function,

$$
I=\oplus_{i} \operatorname{Seg}_{\tau}^{n}\left(i, \operatorname{dim} I_{i}\right)
$$

Given a function $h: \mathbb{N} \longrightarrow \mathbb{N}$ we say that h supports a τ-segment if h is the Hilbert function of R / I where I is a τ-segment. This is equivalent to the following conditions 1) $h(0)=1, h(1)=n$,
2) $h_{i}^{*} \geq 0$,
3) $\oplus_{i} \operatorname{Seg}_{\tau}^{n}\left(i, h_{i}^{*}\right)$ is an ideal
where

$$
h_{i}^{*}=\binom{n-1+i}{n-1}-h(i)
$$

Certain rings have Hilbert functions which do not support τ-segment ideals, for instance:

Lemma A function of $h: \mathbb{N} \longrightarrow \mathbb{N}$ with $h(0)=1$ and $h(1)=n$ supports a revlex-segment ideal iff
$h(i+1) \leq h(i)$ for all $i \geq \min \left\{j: h(j)<\binom{n-1+j}{n-1}\right\}$ Prove the only if part.

It follows that the Hilbert functions of proper (${ }^{*}$) quotients of R with Krull dimension >1 do not support revlex segments.

In particular, if $I \neq 0$, does not contain linear forms and R / I has Krull dimension >1 then $\operatorname{gin}_{\mathrm{rlex}}(I)$ is NOT a revlex-segment.

The Lemma can be used also for some 0 -dimensional ring:

Example $I=\left(x^{5}, y^{5}, z^{5}\right), h=\mathrm{HF}$ of R / I then $h(5)=18$ and $h(6)=19$. So $\operatorname{gin}_{\text {rlex }}(I)$ is NOT a revlex-segment simply because there are no revlex-segment ideals with that HF.

But ALL Hilbert functions support lex-segment ideals. This is (a possible formulation) of Macaulay characterization of HF:

Theorem (Macaulay): A function $h: \mathbb{N} \longrightarrow \mathbb{N}$ with $h(0)=1$ and $h(1)=n$ is the Hilbert function of a quotient of R iff $\oplus_{i} \operatorname{Seg}_{\text {lex }}^{n}\left(i, h_{i}^{*}\right)$ is an ideal of R.

$$
h_{i}^{*}=\binom{n-1+i}{n-1}-h(i)
$$

If $h: \mathbb{N} \longrightarrow \mathbb{N}$ is a HF, then the ideal $\oplus_{i} \operatorname{Seg}_{\text {lex }}^{n}\left(i, h_{i}^{*}\right)$ is denoted by $\operatorname{Lex}(h)$. It is called the lex-segment associated with h.

If I is an ideal and h is the Hilbert function of R / I then $\operatorname{Lex}(h)$ is denoted also by $\operatorname{Lex}(I)$.

An essentially equivalent formulation of Macaulay Theorem is:

For every vector space $V \subset R_{i}$ of dimension d set $L=$ $\operatorname{Seg}_{\text {lex }}^{n}(i, d)$. Then one has
$\operatorname{dim} V R_{1} \geq \operatorname{dim} L R_{1}$
The vector spaces V satisfying equality deserve a special name:

Definition Let V be a vector space $V \subset R_{i}$ with $\operatorname{dim} V=$ d and set $L=\operatorname{Seg}_{\text {lex }}^{n}(i, d)$. Then V is called Gotzmann if $\operatorname{dim} V R_{1}=\operatorname{dim} L R_{1}$.

Problem Describe some Gotzmann spaces for $n=3$, $i=2$ and $d=4$. Let $L=\operatorname{Seg}_{\text {lex }}^{3}(2,4)$, describe all the Gotzmann spaces V with $\mathrm{in}_{\operatorname{lex}}(V)=L$.

Problem Given an Artinian function $h: \mathbb{N} \longrightarrow \mathbb{N}$ (that is $h(i)=0$ for $i \gg 0$) and a term order τ write a Cocoa function to check whether h supports a τ-segment.

Example

$I=\left(x^{2}, y^{3}, z^{4}\right) \subset R=K[x, y, z]$, the HF of R / I is $h=(1,3,5,6,5,3,1,0)$. So the HF of I is $h^{*}=(0,0,1,4,10,18,27,36, \ldots)$

Then $\operatorname{Lex}(I)$ is generated by the 1 largest monomials in degree 2 , by the 4 largest monomials of degree 3 , and so on.

$$
\begin{array}{ll}
x^{2} & 1 \\
\ldots x^{2} z, x y^{2} & 4 \\
\ldots, x y^{2} z, x y z^{2}, x z^{3} & 10 \\
\ldots, x z^{4}, y^{5}, y^{4} z, y^{3} z^{2} & 18 \\
\ldots, y^{3} z^{3}, y^{2} z^{4}, y z^{5} & 27 \\
\ldots, y z^{6}, z^{7} & 36 \text { all the monomials }
\end{array}
$$

So $\operatorname{Lex}(I)=\operatorname{Lex}(h)$ is generated by the 10 monomials.
$\left(x^{2}, x y^{2}, x y z^{2}, x z^{3}, y^{5}, y^{4} z, y^{3} z^{2}, y^{2} z^{4}, y z^{5}, z^{7}\right)$

How do Borel-fixed ideals look like?

An ideal I is Borel-fixed iff it is monomial and verifies the following condition
for every monomial $m \in I$
for every $1 \leq j<i \leq n$
let t be the exponent of x_{i} in m.
Then $\left(x_{j} / x_{i}\right)^{r} m \in I$ for all $r=1, \ldots, t$ such $\binom{t}{r} \neq 0$ in K.

Enough to test with m ideal-generators of I.
Key point: invertible diagonal matrices + elementary upper triangular matrices generate the Borel-group B_{n}.

Elementary upper triangular matrices $E_{j i}(a)$ with $j<i$ correspond to automorphisms:
$x_{k} \longrightarrow x_{k}$ for $k \neq i$
$x_{i} \longrightarrow x_{i}+a x_{j}$

Strongly stable ideals

If char 0 then $\binom{t}{r} \neq 0$.
Definition A monomial ideal I is strongly stable if whenever $m x_{i} \in I$ for some monomial m then $m x_{j} \in I$ for every $j<i$.

Equivalently, $I: x_{i}=I:\left(x_{1}, \ldots, x_{i}\right)$ for every i.
Strongly stable \Rightarrow Borel-fixed.
In char 0, Borel-fixed is equivalent to strongly stable.
$\left(x_{1}^{p}, x_{2}^{p}\right)$ Borex-fixed in char p, not strongly stable.
$\left(x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1} x_{3}^{2}, x_{3}^{3}\right)$ Borex-fixed in char 3 , not strongly stable.

Sums, products, intersections and colon ideals of Borelfixed ideals are Borel-fixed.
*) Segments are strongly stable since $x_{j} m>x_{i} m$ if $j<i$.
*) In $K\left[x_{1}, x_{2}\right]$ strongly stable ideals are segments (lexsegments)
*) For ≥ 3 variables strongly stable ideals are, in general, not segments:

Example

The ideal $\left(x_{1}^{3}, x_{1}^{2} x_{2}, x_{1}^{2} x_{3}, x_{1} x_{2}^{3}, x_{2}^{4}\right)$ is strongly stable and not a segment.

If, by contradiction, there exists a t.o. τ such that it is a segment, then since $x_{1}^{2} x_{3}$ is in and $x_{1} x_{2}^{2}$ is out, we have $x_{1}^{2} x_{3}>_{\tau} x_{1} x_{2}^{2}$.

It follows $x_{1} x_{3}>_{\tau} x_{2}^{2}$ and $x_{1} x_{2}^{2} x_{3}>_{\tau} x_{2}^{4}$. But x_{2}^{4} is in and $x_{1} x_{2}^{2} x_{3}$ is out: a contradiction.

Summing up,

segments \Rightarrow st.stable \Rightarrow B.fixed
$\nLeftarrow \quad \nLeftarrow$
$\Leftarrow \quad$ if $n=2$
\Leftarrow if char 0

One can introduce the Borel partial order on the set of monomials of given degree.

A Borel move: in a monomial m replace a variable x_{i} with x_{j} with $j<i$. For example, $x_{1} x_{2}^{3} x_{3} x_{4}^{2} \longrightarrow x_{1} x_{2}^{4} x_{4}^{2}$.

Given monomials of same degree we say $m_{1}>m_{2}$ in the Borel order if we can pass fro m_{2} to m_{1} with a series of Borel moves.

If $m_{1}=x^{a}$ and $m_{2}=x^{b}, a, b \in \mathbb{N}^{n}$ then $m_{1}>m_{2}$ in the Borel order iff $a_{1} \geq b_{1}$ and $a_{1}+a_{2} \geq b_{1}+b_{2}$ and \ldots.

The Borel order is a partial order on the set of monomials of degree i.

Let x^{a} and x^{b} be monomials of degree i. Then $x^{a}>x^{b}$ in the Borel order
iff
$x^{a}>_{\tau} x^{b}$ for all term orders τ with $x_{1}>\cdots>x_{n}$.
A strongly stable ideal I is one satisfying the condition:
For every $m \in I$ and every $m_{1}>m$ in the Borel-order one has $m_{1} \in I$.

Ideals whose gin is known
*) If $I=(f)$ and $\operatorname{deg} f=i$, then $\operatorname{gin}_{\tau}(I)=\left(x_{1}^{i}\right)$
*) If I is Borel-fixed then $\operatorname{gin}_{\tau}(I)=I$
*) In char 0 and 2 -variables the gin is the (lex-)segment. Hence $\operatorname{gin}(I)$ is determined by the HF of I.
*) If I is strongly stable non-segment then $\operatorname{gin}_{\tau}(I)=I$. So gin lex is not always the lex-segment.
*) If $I=g(J)$ for some $g \in \mathrm{GL}_{n}$ then $\operatorname{gin}_{\tau}(I)=\operatorname{gin}_{\tau}(J)$
*) If I is generated by r independent linear forms then $\operatorname{gin}_{\tau}(I)=\left(x_{1}, \ldots, x_{r}\right)$
*) If $I \subset R=K\left[x_{1}, \ldots, x_{n-1}\right]$ and $S=R\left[x_{n}\right]$ then $\operatorname{gin}_{\tau}(I S)=\operatorname{gin}_{\tau}(I) S$

Problem: Check with CoCoA.

In general:
(1) $\operatorname{gin}(I+J) \supseteq \operatorname{gin}(I)+\operatorname{gin}(J)$
(2) $\operatorname{gin}(I J) \supseteq \operatorname{gin}(I) \operatorname{gin}(J)$
(3) $\operatorname{gin}(I \cap J) \subseteq \operatorname{gin}(I) \cap \operatorname{gin}(J)$
usually strict.
Problem: Check with CoCoA.
Problem: Given an ideal I shows that $\left\{\operatorname{gin}\left(I^{i}\right)\right\}_{i} \in \mathbb{N}$ is a filtration. Is the associated Rees ring Noetherian? Sometimes yes, but I do not know in general what is going on.

Problem: If $I \subset R=K\left[x_{1}, \ldots, x_{n}\right]$ and $J \subset S=$ $K\left[y_{1}, \ldots, y_{m}\right]$ what is the relation between $\operatorname{gin}(I), \operatorname{gin}(J)$ and $\operatorname{gin}(I+J)$? Say the term order is revlex. Any guess?

