# International School on Computer Algebra: COCOA 2007 RISC Hagenberg-Linz (Austria), June 2007 

## Betti Numbers and Generic Initial Ideals

## Lecture 2

Aldo Conca

Tutor Anna Bigatti

- Typeset by FoilTEX -


## Automorphisms of polynomial rings

$K$ infinite field.
$R=K\left[x_{1}, \ldots, x_{n}\right]$ is a $K$-algebra (i.e. a ring and a $K$-vector space)

A $K$-algebra homomorphism

$$
g: R \longrightarrow R
$$

is a ring homomorphism such that $g(a)=a$ for all $a \in K$.
$g$ is determined by the images of $x_{i}$ :
if $g\left(x_{i}\right)=g_{i} \in R$ then

$$
\begin{equation*}
g\left(F\left(x_{1}, \ldots, x_{n}\right)\right)=F\left(g_{1}, \ldots, g_{n}\right) \tag{1}
\end{equation*}
$$

Viceversa, for every $\left(g_{1}, \ldots, g_{n}\right) \in R^{n}$ the map (1) is a $K$-algebra homomorphism.

# $\{K-$ alg.homomorphism $R \longrightarrow R\} \leftrightarrow R^{n}$ 

$g \leftrightarrow\left(g_{1}, \ldots, g_{n}\right), f \leftrightarrow\left(f_{1}, \ldots, f_{n}\right)$
composition of maps $f \circ g \leftrightarrow\left(h_{1}, \ldots, h_{n}\right)$
with $h_{i}=g_{i}\left(f_{1}, \ldots, f_{n}\right)$.
A $K$-algebra automorphism of $R$ is a bijective $K$-algebra homomorphism

How do we decide whether $\left(g_{1}, \ldots, g_{n}\right)$ corresponds to a $K$-alg. automorphism?

It suffices to check that $\left(g_{1}, \ldots, g_{n}\right)$ induces a surjective map,
i.e. $K\left[g_{1}, \ldots, g_{n}\right]=K\left[x_{1}, \ldots, x_{n}\right]$
i.e. for every $i$ there exists $f_{i} \in R$ such that $f_{i}\left(g_{1}, \ldots, g_{n}\right)=x_{i}$.

Jacobian Conjecture (char $K=0$ )
$g\left(x_{i}\right)=g_{i}$ is a $K$-alg automorphism
$\Leftrightarrow$
$\operatorname{det}\left(\partial g_{i} / \partial x_{j}\right) \in K \backslash\{0\}$.
$\Rightarrow$ is easy: if $g$ is an automorphism, then there exists $f_{1}, \ldots, f_{n}$ so that $f_{i}\left(g_{1}, \ldots, g_{n}\right)=x_{i}$. Then use the chain rule: $J_{f}(g) J_{g}=I$ and hence $\operatorname{det} J_{g} \in K \backslash\{0\}$.
$\Leftarrow$ not known even for $n=2$.
Problem: For a given $g$ the Jacobian Conjecture can be checked using GB. Write a CoCoA program which does it. For algebra membership test, see [KR, Ch.3].

## Graded Automorphisms of polynomial rings

A ring homomorphism $g: R \longrightarrow R$ is (standard) graded if it preserves homogeneity and degree.
$K$-algebra graded homomorphism

$\left(g_{1}, \ldots, g_{n}\right)$ with $g_{i}$ homogeneous of degree 1 , $g_{i}=g_{1 i} x_{1}+\cdots+g_{n i} x_{n}$

$$
\begin{gathered}
\downarrow \\
\left(g_{i j}\right) \in M_{n n}(K)
\end{gathered}
$$

as semigroups (composition $=$ rows $\times$ columns)

## Conclusion:

## $K$-algebra graded automorphisms of $R$

## $\mathrm{GL}_{n}(K)$

(as groups)
$g=\left(g_{i j}\right) \in \mathrm{GL}_{n}(K)$ acts on $R$ by

$$
g\left(x_{i}\right)=\sum_{j=1}^{n} g_{j i} x_{j}
$$

$$
g\left(F\left(x_{1}, \ldots, x_{n}\right)\right)=F\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)
$$

$R=K\left[x_{1}, \ldots, x_{n}\right]$
$\tau$ t.o. $x_{1}>x_{2}>\cdots>x_{n}$.
$\mathrm{in}_{\tau}=\mathrm{LT}_{\tau}$
$I$ homogeneous ideal
$g \in \mathrm{GL}_{n}=\mathrm{GL}_{n}(K)$
$g(I)$ is an isomorphic copy of $I$
$g(I)$ is $I$ written wrt a different system of coordinates.
$R / I \simeq R / g(I)$ as graded $K$-algebras.
Any graded $K$-algebra automorphism

$$
R / I \longrightarrow R / I
$$

is induced by a $g \in \mathrm{GL}_{n}$ such that $g(I)=I$.

## Problem

$G \subseteq \mathrm{GL}_{n}$ a subgroup, we say that $I$ is $G$-fixed if $g(I)=I$ for every $g \in G$.

Show that:
If $G$ is generated (as a group) by a subset $W \subset G$, then $I$ is $G$-fixed iff $g(I)=I$ for every $g \in W$.
$I$ is $G$-fixed iff $g(I) \subset I$ for every $g \in G$.
$\bigcap_{g \in G} g(I)$ is the largest $G$-fixed ideal contained in $I$.
$\sum_{g \in G} g(I)$ is the smallest $G$-fixed ideal containing $I$.

Sums, products, intersections and colon of $G$ fixed ideals are $G$-fixed.
$I$ is monomial iff $I$ is $T$-fixed where $T=\left(K^{*}\right)^{n}$ is the diagonal subgroup ( $K$ is infinite).

If char $K=0$, then the only $\mathrm{GL}_{n}$-fixed ideals are the powers of $\left(x_{1}, \ldots, x_{n}\right)$.

For $G=S_{n}$ write a CoCoA function to check whether a given ideal is $G$-fixed.

Given an ideal $I$ the set $G_{I}=\left\{g \in \mathrm{GL}_{n}\right.$ : $g(I)=I\}$ is a subgroup of $G$. Write a CoCoA function to compute $G_{I}$ for a $I=(f)$ and $f$ form of degree $d$ in $K\left[x_{1}, x_{2}, x_{3}\right]$.

## Generic initial ideals

Given $\tau$ and $I$ consider the family

$$
\operatorname{in}_{\tau}(g(I)) \quad g \in \mathrm{GL}_{n}
$$

$B_{n}=$ upper triangular invertible (Borel group)
$U_{n}=$ upper triangular with 1 on the diagonal (unipotent group)
$U_{n} \subset B_{n} \subset \mathrm{GL}_{n}$
$\mathrm{GL}_{n}$ is Zariski-open in $\mathbb{A}^{n^{2}}$.

THM (Galligo, Bayer-Stillman)

1) For a generic $g \in \mathrm{GL}_{n}$ the ideal $\mathrm{in}_{\tau}(g(I))$ is "constant", i.e. there exists a non-empty Zariski-open subset $U$ of $\mathrm{GL}_{n}$ such that

$$
\operatorname{in}_{\tau}(g(I))=\operatorname{in}_{\tau}(h(I)) \forall g, h \in U
$$

Set $\operatorname{gin}_{\tau}(I)=\operatorname{in}_{\tau}(g(I))$ with $g \in U$
$\operatorname{gin}_{\tau}(I)$ is the generic initial ideal (gin) wrt $\tau$.
$J=\operatorname{gin}_{\tau}(I)$.
2) $J$ is Borel-fixed, i.e $B_{n}$-fixed.
3) $\operatorname{in}_{\tau}(g(I))=J$ for a generic $g \in U_{n}$.

Proof 1): Take $G=\left(G_{i j}\right)$ of size $n \times n$ where $G_{i j}$ are variables over $K$. Consider $K^{\prime}=$ $K\left(G_{i j}\right), R^{\prime}=K^{\prime}\left[x_{1}, \ldots, x_{n}\right], G \in \mathrm{GL}_{n}\left(K^{\prime}\right)$ and $I R^{\prime}$ the extension of $I$ to $R^{\prime}$.

Apply Buchberger algorithm to $G\left(I R^{\prime}\right)$,
The coefficients of the polynomials showing up are elements of $K^{\prime}$, i.e. rational functions in the variables $G_{i j}$.
$F=$ the product of the numerators and denominators of the leading coefficients of the polynomials showing up in the GB computation.

If $g \in$ is in $\mathrm{GL}_{n}(K)$ and $F(g) \neq 0$ then the Buchberger algorithm applied to $g(I)$ reproduces the "same" GB, with $G_{i j}$ replaced by $g_{i j}$. Hence $\mathrm{in}_{\tau}(g(I))$ is "equal" to $\mathrm{in}_{\tau}(G(I))$.

$$
\text { Set } U=\left\{g \in \mathrm{GL}_{n}: F(g) \neq 0\right\} .
$$

Example: $R=K[x, y], I=\left(x^{2}, y^{2}\right), \tau=x>$ $y$.
$G=\left(\begin{array}{ll}G_{11} & G_{12} \\ G_{21} & G_{22}\end{array}\right)$
$G(I)$ is generated by $\left(G_{11} x+G_{21} y\right)^{2}$ and $\left(G_{12} x+G_{22} y\right)^{2}$.

If char $K \neq 2$ then $\operatorname{in}(G(I))=\left(x^{2}, x y, y^{3}\right)$ and the "important" coefficients are $\operatorname{det}(G)$ and $G_{11}$ and $G_{12}$.

If char $K=2$ then $G(I)=I$ and $\operatorname{in}(G(I))=I$ the "important" coefficient is $\operatorname{det} G$. It follows:

$$
\operatorname{gin}_{\tau}(I)= \begin{cases}\left(x^{2}, x y, y^{3}\right) & \operatorname{char} K \neq 2 \\ & g_{11} g_{12} \neq 0 \\ & \\ \left(x^{2}, y^{2}\right) & \operatorname{char} K=2 \\ & \forall g\end{cases}
$$

The proofs 2) and 3) require a better desription of $\operatorname{gin}_{\tau}(I)$.

Given $\tau$ t.o. and $V$ a $K$-subspace of $R$ define

$$
\operatorname{in}_{\tau}(V)=\left\langle\operatorname{in}_{\tau}(f): f \in V \quad f \neq 0\right\rangle
$$

if $V$ is an ideal then $\operatorname{in}_{\tau}(V)$ is an ideal
if $V$ is a $K$-algebra then $\mathrm{in}_{\tau}(V)$ is a $K$-algebra.
If $V$ has finite vector space dimension then $\operatorname{dim} V=\operatorname{dimin}_{\tau}(V)$

If $I$ is an homogeneous ideal then $\operatorname{in}_{\tau}(I)=$ $\oplus_{i} \operatorname{in}_{\tau}\left(I_{i}\right)$, equivalently,

$$
\operatorname{in}_{\tau}(I)_{i}=\operatorname{in}_{\tau}\left(I_{i}\right)
$$

Computing $\operatorname{in}_{\tau}(V)$ when $V$ is finite dimensional $=$ Gauss reduction.

Here is why: If $V$ is generated by $f_{1}, \ldots, f_{k}$ then we apply Gauss reduction to $f_{1}, \ldots, f_{k}$ which consists of the iteration of the following step: whenever two polynomials $f_{i}$ and $f_{j}(i<j)$ of the list have the same initial monomial then replace $f_{j}$ with

$$
f_{j}:=f_{j}-(a / b) f_{i}
$$

where $a$ is the initial coefficient of $f_{j}$ and $b$ is that of $f_{i}$. Get rid of the 0 's. At the end we get a system of generators (indeed a basis) of $V$ say $f_{1}^{\prime}, \ldots, f_{h}^{\prime}$, such that $\operatorname{in}_{\tau}\left(f_{i}^{\prime}\right) \neq \operatorname{in}\left(f_{j}^{\prime}\right)$ if $i \neq j$. Then

$$
\operatorname{in}_{\tau}(V)=\left\langle\operatorname{in}_{\tau}\left(f_{1}^{\prime}\right), \ldots, \operatorname{in}_{\tau}\left(f_{h}^{\prime}\right)\right\rangle
$$

## Example:

$$
\begin{aligned}
& n=3, K=\mathbb{Q}, \tau=\operatorname{Lex}, V=\left\langle f_{1}, f_{2}, f_{3}\right\rangle \text { with } \\
& \qquad \begin{array}{l}
f_{1}=x_{1}^{2}+x_{1} x_{2}, \\
f_{3}=x_{1}^{2}+2 x_{1} x_{2}+x_{1} x_{3}
\end{array} \quad f_{2}=2 x_{1}^{2}+x_{2}^{2}
\end{aligned}
$$

## Gauss reduction

$$
\begin{gathered}
f_{2}:=f_{2}-2 f_{1}=-2 x_{1} x_{2}+x_{2}^{2} \\
f_{3}:=f_{3}-f_{1}=x_{1} x_{2}+x_{1} x_{3} \\
f_{3}:=f_{3}+1 / 2 f_{2}=x_{1} x_{3}+1 / 2 x_{2}^{2}
\end{gathered}
$$

$$
\begin{aligned}
& f_{1}^{\prime}=x_{1}^{2}+x_{1} x_{2}, \quad f_{2}^{\prime}=-2 x_{1} x_{2}+x_{2}^{2}, \\
& f_{3}^{\prime}=x_{1} x_{3}+1 / 2 x_{2}^{2} \\
& \quad \operatorname{in}_{\tau}(V)=\left\langle x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}\right\rangle
\end{aligned}
$$

Example: Same as before

$$
\begin{aligned}
& f_{1}=x_{1}^{2}+x_{1} x_{2}, \quad f_{2}=2 x_{1}^{2}+x_{2}^{2} \\
& f_{3}=x_{1}^{2}+2 x_{1} x_{2}+x_{1} x_{3}
\end{aligned}
$$

$M_{V}=$ matrix with 3 rows corresponding to $f_{1}, f_{2}, f_{3}$ and 4 columns corresponding to the monomials $x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2}^{2}$ (Lex order).

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
2 & 0 & 0 & 1 \\
1 & 2 & 1 & 0
\end{array}\right)
$$

then $[1,2,3 \mid 1,2,3]_{M_{V}} \neq 0$ and hence

$$
\operatorname{in}_{\tau}(V)=\left\langle x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}\right\rangle
$$

$V$ vector space of forms of degree $i$ and dimension $d$. Wrt the monomial basis and given a basis of $V, V$ is represented by a matrix $d \times\binom{ n-1+i}{i}$, call it $M_{V}$. For distinct monomials $m_{1}, \ldots, m_{d}$ of degree $i$ we put
$\left[m_{1}, \ldots, m_{d}\right]_{V}=$
det minor $M_{V}$ with columns $m_{1}, \ldots, m_{d}$
defined up to sign, "essentially" not depending on the given basis but only on $V$.

$$
\begin{gathered}
\operatorname{Supp}(V)= \\
\left\{\left\{m_{1}, \ldots, m_{d}\right\}:\left[m_{1}, \ldots, m_{d}\right]_{V} \neq 0\right\}
\end{gathered}
$$

Alternative description: $\wedge^{d} V$ is a 1-dimensional subspace of $\wedge^{d} R_{i}$, and $\operatorname{Supp}(V)$ is the set of exterior monomials....
*1) Gauss reduction: Order colum according to $\tau$. There exists $\left\{m_{1}, \ldots, m_{d}\right\} \in \operatorname{Supp}(V)$ such that

$$
m_{1}>m_{2}>\cdots>m_{d}
$$

and $\forall\left\{n_{1}, \ldots, n_{d}\right\} \in \operatorname{Supp}(V)$ with

$$
n_{1}>n_{2}>\cdots>n_{d}
$$

one has

$$
m_{j} \geq n_{j} \quad \forall j
$$

Call $\left\{m_{1}, \ldots, m_{d}\right\}$ the $\max _{\tau}$ of $\operatorname{Supp}(V)$.
By construction,

$$
\operatorname{in}_{\tau}(V)=\left\langle m_{1}, \ldots, m_{d}\right\rangle
$$

*2) "maximal and constant"

$$
\operatorname{gin}_{\tau}\left(I_{i}\right)=\left\langle m_{1}, \ldots, m_{d}\right\rangle
$$

where $\left\{m_{1}, \ldots, m_{d}\right\}$ is the $\max _{\tau}$ of $\operatorname{Supp}\left(G\left(I_{i}\right)\right)$, $G$ matrix of variables as in the proof of 1).
$\forall g \in \mathrm{GL}_{n}$ one has

$$
\operatorname{Supp}\left(g\left(I_{i}\right)\right) \subseteq \operatorname{Supp}\left(G\left(I_{i}\right)\right)
$$

with $=$ for $g$ generic.
$\forall g$ and $\forall\left\{n_{1}, \ldots, n_{d}\right\} \in \operatorname{Supp}\left(g\left(I_{i}\right)\right)$ with $n_{1}>\cdots>n_{d}$ one has $n_{j} \leq m_{j} \forall j$
*3) Main Lemma: if $V$ is a space of dimension $d$ of forms of degree $i$ and $\tau$ a t.o. then

$$
\operatorname{Supp}\left(g\left(\operatorname{in}_{\tau}(V)\right)\right) \subseteq \operatorname{Supp}(g(V))
$$

for a generic $g \in \mathrm{GL}_{n}$.
Proof: For $G=\left(G_{i j}\right)$ and give $\operatorname{deg} G_{i j}=e_{j} \in$ $\mathbb{Z}^{n}$. For monomials $n_{1}, \ldots, n_{d}$, the element $\left[n_{1}, \ldots, n_{d}\right]_{G\left(\mathrm{in}_{\tau}(V)\right)}$ is a multi-homogeneous polynomial in the $G_{i j}$ and it is a multihomogeneous component of $\left[n_{1}, \ldots, n_{d}\right]_{G(V)}$.

So if the first does not vanish, then the second does not vanish.
*4) For every space or ideal $V$ and for every $g$ lower tringular one has

$$
\operatorname{in}_{\tau}(g(V))=\operatorname{in}_{\tau}(V)
$$

Proof: Let $g$ be lower triangular. Then for every monomial $m$ we have $\operatorname{in}_{\tau}(g(m))=m$. Hence for every polynomial $f$ we have $\operatorname{in}_{\tau}(g(f))=$ $\operatorname{in}_{\tau}(f)$. Therefore for every vector space $V$ $\operatorname{in}_{\tau}(g(V))=\operatorname{in}_{\tau}(V)$.
*5) Given monomials $m_{1}>\cdots>m_{d}$ set $V=$ $\left\langle m_{1}, \ldots, m_{d}\right\rangle$. For $g$ upper tringular and every $\left\{n_{1}>\cdots>n_{d}\right\}$ in $\operatorname{Supp}(g(V))$ one has $n_{j} \geq$ $m_{j}$.
*6) $\operatorname{Supp}(V)=\left\{\left\{m_{1}, \ldots, m_{d}\right\}\right\}$ iff $V=$ $\left\langle m_{1}, \ldots, m_{d}\right\rangle$.

Proof 2): $J$ is Borel-fixed if its homogeneous components are Borel-fixed. Consider $J_{i}$ and write

$$
J_{i}=\left\langle m_{1}, \ldots, m_{d}\right\rangle=\operatorname{in}_{\tau}\left(g_{1}\left(I_{i}\right)\right)
$$

with $g_{1}$ generic. Apply the Main Lemma to $V=g_{1}\left(I_{i}\right)$. We have:

$$
\operatorname{Supp}\left(g\left(J_{i}\right)\right) \subseteq \operatorname{Supp}\left(g g_{1}\left(I_{i}\right)\right)
$$

with $g$ generic.
By ${ }^{*} 2$ ) we have that for all $g \in \mathrm{GL}_{n}$ every $\left\{n_{1}>\cdots>n_{d}\right\} \in \operatorname{Supp}\left(g g_{1}\left(I_{i}\right)\right.$ one has $n_{i} \leq$ $m_{i}$.
(*) Hence for all $g \in \mathrm{GL}_{n}$ and every $\left\{n_{1}>\right.$ $\left.\cdots>n_{d}\right\} \in \operatorname{Supp}\left(g\left(J_{i}\right)\right)$ one has $n_{i} \leq m_{i}$.

We may take $g=h \in B_{n}$. Combining $\left(^{*}\right)$ and $\left.{ }^{*} 5\right)$ we have that $\operatorname{Supp}\left(h\left(J_{i}\right)\right)=$ $\left\{\left\{m_{1}, \ldots, m_{d}\right\}\right\}$ for all $h \in B_{n}$. By $\left.6^{*}\right)$ we conclude that $h\left(J_{i}\right)=J_{i}$ for all $h \in B_{n}$.

Proof 3: Let $g \in \mathrm{GL}_{n}$ generic so that $\operatorname{in}_{\tau}(g(I))=J$ and so that $g$ has a LDUdecomposition. Say $g=a b$ with $a$ lower (with arbitrary diagonal elements) and $b \in U_{n}$. Then by *4)

$$
J=\operatorname{in}_{\tau}(g(I))=\operatorname{in}_{\tau}(a b(I))=\operatorname{in}_{\tau}(b(I))
$$

So $J$ is obtained with a $b \in U_{n}$. By the "maximality" of $J$, it is obtained also by the generic $b \in U_{n}$.

How to compute the gin?

1) $g \in \mathrm{GL}_{n}$ "random" upper triangular and compute $\operatorname{in}_{\tau}(g(I))$;
the result is the $\operatorname{gin}_{\tau}(I)$ only with high probability
2) $G=\left(G_{i j}\right)$ upper triangular with $G_{i j}, i<$ $j$, algebraically independent over $K$ and compute $\operatorname{in}_{\tau}(G(I))$

- too many variables -

Problem: Find an efficent algorithm to compute gin

Example: Compute gin lex and revlex of $I=\left(x^{2}, y^{2}, z^{2}\right)$. Take an upper triangular of variables:

$$
G=\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

$$
G(I)=\left(x^{2},(a x+y)^{2},(b x+c y+z)^{2}\right)
$$

We have to determine

$$
\operatorname{in}(G(I))
$$

From degree 4 on $I$ contains everything, so the action takes place in degree 2 and 3 . Computing the supports of $G(I)_{2}$ and $G(I)_{3}$ one gets the following results:

$$
\begin{aligned}
& \left(x^{2}, x y, x z, y^{3}, y^{2} z, y z^{2}, z^{4}\right) \\
& \operatorname{char} K \neq 2,3 \quad a b c(a c-b) \neq 0 \\
& \left(x^{2}, x y, x z, y^{3}, y^{2} z, z^{3}\right) \\
& \operatorname{char} K=3 \quad a b(a c+b) \neq 0 \\
& I \\
& \operatorname{char} K=2
\end{aligned}
$$



In this example we see that:
*) The gin depends on the term order
*) The gin revlex is "smaller" than the gin lex (true in general)
*) In char 0 the gins are "segments" (not true in general)

