International School on Computer Algebra: COCOA 2007
RISC Hagenberg-Linz (Austria), June 2007

Betti Numbers and Generic Initial
Ideals

Lecture 2

Aldo Conca

Tutor Anna Bigatti

— Typeset by Foil TEX —



Automorphisms of polynomial rings
K infinite field.

R = K|xq,...,x,] is a K-algebra (i.e. a ring
and a K-vector space)

A K-algebra homomorphism
g:R— R

is a ring homomorphism such that g(a) = a for
all a € K.

g is determined by the images of x;:
if g(z;) = g; € R then

g(F(iUl,...,CI?n)):F(gl,...,gn) <1)

Viceversa, for every (gi,...,9,) € R"™ the map
(1) is a K-algebra homomorphism.
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{K — alg.homomorphism R — R} < R"

g<—(91,---59n), < (fi,- -, fn)

composition of maps fog < (hy,...,h,)

with hz — gz'(fla e ooy fn)

A K-algebra automorphism of R is a bijective
K-algebra homomorphism

How do we decide whether (g1,...,9n)
corresponds to a K-alg. automorphism?

It suffices to check that (g1,...,9,) induces a
surjective map,

ie. Klg1,...,9n] = Klz1,...,2,]

i.e. for every ¢ there exists f; € R such that

fi(g1s- -, 9n) = .
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Jacobian Conjecture (char K = 0)
g(x;) = g; is a K-alg automorphism
~

det(0g;/0x;) € K\ {0}.

= Is easy: If g is an automorphism, then there
exists f1,..., fn so that fi(g1,...,9n) = z;.
Then use the chain rule: J¢(g9)J, = I and
hence det J, € K \ {0}.

< not known even for n = 2.

Problem: For a given g the Jacobian Conjecture
can be checked using GB. Write a CoCoA

program which does it. For algebra membership
test, see [KR, Ch.3].
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Graded Automorphisms of polynomial rings

A ring homomorphism g : R — R Is
(standard) graded if it preserves homogeneity
and degree.

K-algebra graded homomorphism

!

(g1, ..,9n) with g; homogeneous of degree 1,
9i = g1iT1 T * T GniTn

!
(gij) < Mnn(K)

as semigroups (composition = rowsxcolumns)
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Conclusion:

K-algebra graded automorphisms of R

!
GL,(K)

(as groups)
g = (g:i;) € GL,(K) acts on R by

g(zi) =Y gjix;
j=1

g(F(x1, - w0)) = F(g(21), .-, 9(2n))
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R=K|xq,...,x,]

TtO0. 1 >X90 >+ > X,

in- = LT,

I homogeneous ideal

g € GL,, = GL,(K)

g(I) is an isomorphic copy of [

g(I) is I written wrt a different system of
coordinates.

R/I ~ R/g(I) as graded K-algebras.

Any graded K-algebra automorphism
R/I — R/I

is induced by a g € GL,, such that g(I) = 1.
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Problem

G C GL,, a subgroup, we say that I is G-fixed
if g(I) = I for every g € G.

Show that:

If G is generated (as a group) by a subset
W C G, then I is G-fixed iff g(I) = I for every
geW.

I is G-fixed iff g(I) C I for every g € G.

Nyeq 9(I) is the largest G-fixed ideal contained
in [.

> gec9(I) is the smallest G-fixed ideal
containing [.

Sums, products, intersections and colon of G-
fixed ideals are GG-fixed.

I is monomial iff I is T-fixed where T' = (K*)"
is the diagonal subgroup (K is infinite).
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If char K = 0, then the only GL,-fixed ideals
are the powers of (x1,...,x,).

For G = S,, write a CoCoA function to check
whether a given ideal is G-fixed.

Given an ideal I the set G; = {g € GL, :
g(I) = 1} is a subgroup of G. Write a CoCoA
function to compute Gy for a I = (f) and f
form of degree d in K|z, x9, x3].
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Generic initial ideals

Given 7 and [ consider the family

in;(g(I)) g€ GL,

B,,=upper triangular invertible (Borel group)

U,=upper triangular with 1 on the diagonal
(unipotent group)

U, C B,, C GL,,

GL,, is Zariski-open in A
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THM (Galligo, Bayer=Stillman)

1) For a generic g € GL,, the ideal in.(g([/))
Is “constant”, i.e. there exists a non-empty
Zariski-open subset U of GL,, such that

in,(g(D)) = in,(h(D)) ¥ g,h € U
Set gin_(I) =in,(g(I)) with g € U

gin_(I) is the generic initial ideal (gin) wrt 7.
J = gin_(I).

2) J is Borel-fixed, i.e B,-fixed.

3) in-(g(I)) = J for a generic g € U,,.
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Proof 1): Take G = (Gj;) of size n x n where
(G;; are variables over K. Consider K' =
K(Gi), Rl = K'|x1,...,2,] , G € GL,(K')
and IR’ the extension of I to R'.

Apply Buchberger algorithm to G(IR’),

The coefficients of the polynomials showing up
are elements of K’ i.e. rational functions in
the variables G;;.

F=the product of the numerators and
denominators of the leading coefficients of the
polynomials showing up in the GB computation.

If g € is in GL,(K) and F(g) # 0 then
the Buchberger algorithm applied to ¢g([)
reproduces the “same” GB, with G;; replaced by
gi;. Hence in (g(I)) is “equal " to in.(G(1)).

Set U ={g € GL,, : F(g) # 0}.
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Example: R = Klz,y|, I = (z%,y?), T =z >
Y.

G G12>
G —
<G21 Gao
G(I) is generated by (G117 + G21y)° and
(Graz + Ga2y)*.

If char K # 2 then in(G(I)) = (z*, zy,y”) and
the “important " coefficients are det(G) and
G11 and G12.

If char K = 2 then G(I) =1 and in(G([)) =1
the “important " coefficient is det &. It follows:

y

(x%, zy,y°) char K # 2
g11912 7 0

gin(I) = «

(2, y?) char K = 2
vy
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The proofs 2) and 3) require a better desription
of gin_(T).

Given 7 t.o. and V a K-subspace of R define

in (V) = (in-(f) : feV [f#0)

if V' is an ideal then in. (V') is an ideal

if V is a K-algebra then in. (V') is a K-algebra.

If V' has finite vector space dimension then
dim V = dimin, (V)

If I is an homogeneous ideal then in, (/) =
@®;in,(I;), equivalently,

inT([)i — 1n7‘([z)
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Computing in.(V) when V is finite
dimensional=Gauss reduction.

Here is why: If V' is generated by f1, ..., fi then
we apply Gauss reduction to f1,..., fr which
consists of the iteration of the following step:
whenever two polynomials f; and f; (i < j)
of the list have the same initial monomial then
replace f; with

fi =i —(a/b)fs

where a is the initial coefficient of f; and b is
that of f;. Get rid of the 0's. At the end we
get a system of generators (indeed a basis) of

Vi say fi,..., [}, such that in (f]) # in(f]) if
v # 3. Then

il’lq-(V) — <il’l7-(f{), s 7in7'(f]{b)>
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Example:

n=3 K=0Q, 7=Lex, V = <f1,f2,f3> with

2 . 2 2
f1 =z + x129, Jo = 221 + x5
f3 = x% + 22179 + T173

Gauss reduction

f2 = f2 — 2f1 = —2[13‘1332 -+ $%
f3:=Jfs — J1 =122 + 2123
fg = fg + 1/2f2 = I1x3 + 1/2$§

fi= I% T T1Z2, fo = 2129 + $%7
fé — I1X3 -+ 1/2513%

in (V) = (27, 2122, T123)
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Example: Same as before

.9 6.2 2
f1=x7 4+ x129, fo =2x7 + x5
f3 = 2% + 22179 + 1173

My =matrix with 3 rows corresponding to
f1, f2, f3 and 4 columns corresponding to the
monomials z%, 172, 7173, 75 (Lex order).

1 1 0 0
2 0 0 1
1 2 1 0
then [1,2,3|1,2, 3|5, # 0 and hence

in (V) = (x7, 2172, T173)
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V' vector space of forms of degree ¢ and
dimension d. Wrt the monomial basis and
given a basis of V', V' is represented by a matrix
dx ("71*"), call it My For distinct monomials

mi, ..., mg of degree 7 we put
m1,...,mgly =
det minor My, with columns mq,...,my

defined up to sign, “essentially” not depending
on the given basis but only on V.

Supp(V) =

{{m1,...,mgq} : [m1,...,myly # 0}

Alternative description: A?V is a 1-dimensional
subspace of AYR;, and Supp(V) is the set of
exterior monomials....
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*1) Gauss reduction: Order colums according
to 7. There exists {mi,...,mgq} € Supp(V)
such that

M1 > Mo > -+ > 1y
and V {n1,...,ng} € Supp(V) with
ny > mng > -+ >Ny

one has
mj Z nj \v4 j

Call {m1,...,mgq} the max, of Supp(V).

By construction,

in (V) = (my,...,mq)
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*2) “maximal and constant”

glnT(IZ) — <m17 <. 7md>
where  {mq,...,mgq} is the max, of

Supp(G(I;)), G matrix of variables as in the
proof of 1).

vV g € GL,, one has

Supp(g(L)) S Supp(G(Ly))
with = for g generic.

V g and V {nq,...,ng} € Supp(g(L;)) with
ny>--->mnqgonehasn; <m;Vy
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*3) Main Lemma: if V is a space of dimension
d of forms of degree 7+ and 7 a t.o. then

Supp(g(in-(V))) € Supp(g(V))

for a generic g € GL,,.

Proof: For G = (G;;) and give degG;; = e; €
Z"™. For monomials nq,...,ng4, the element
n1,...,Nd)G(n, (v)) i1 a multi-homogeneous
polynomial in the G;; and it is a multi-
homogeneous component of [n,...,n4/qv).

So if the first does not vanish, then the second
does not vanish.
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*4) For every space or ideal V' and for every g
lower tringular one has

in-(g(V)) = ing(V)

Proof: Let g be lower triangular. Then for every
monomial m we have in.(g(m)) = m. Hence
for every polynomial f we have in,(g(f)) =
in-(f). Therefore for every vector space V

in, (g(V)) = in, (V).

*5) Given monomials m; > --- > mg set V =
(mq,...,mgq). For g upper tringular and every
{ny > .-+ >mng} in Supp(g(V)) one has n; >
m;.

*6) Supp(V) — {{ml,...,md}} iff V =

<m1, “ e ,md>.
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Proof 2): J is Borel-fixed if its homogeneous
components are Borel-fixed. Consider J; and
write

Ji — <m17 . 7md> — 1117-(91([@))
with g1 generic. Apply the Main Lemma to
V = g1(I;). We have:

Supp(g(J;)) C Supp(ggi(1;))

with g generic.

By *2) we have that for all ¢ € GL,, every
{ny > -+ >ng} € Supp(gg1(I;) one has n; <
;.

(*) Hence for all ¢ € GL,, and every {n; >
.-+ >ng}t € Supp(g(J;)) one has n; < m;.
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We may take ¢ = h € B,. Combining
(*) and *5) we have that Supp(h(J;)) =
{{m1,...,mq}} for all h € B,. By 6*) we
conclude that h(J;) = J; for all h € B,,.

Proof 3: Let g € GL, generic so that
in-(g(I)) = J and so that g has a LDU-
decomposition. Say g = ab with a lower (with
arbitrary diagonal elements) and b € U,,. Then

by *4)
7 = iny(g(1)) = in, (ab(I)) = in, (b(D))

So J is obtained with a b € U,. By the
“maximality” of J, it is obtained also by the
generic b € U,.
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How to compute the gin?

1) g € GL,, "“random” upper triangular and
compute in-(g(I));

the result is the gin_(I) only with high
probability

2) G = (G;;) upper triangular with G;;, © <
7, algebraically independent over K and
compute in(G(1))

— too many variables —

Problem: Find an efficent algorithm to compute
gin
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Example: Compute gin lex and revlex of
I = (22,y% 2°). Take an upper triangular of

variables:

0

|
o O =
O = Q
_ 0 O

G(I) = (2%, (ax +v)*, (bx + cy + 2)?)

We have to determine
in(G(I))

From degree 4 on I contains everything, so the
action takes place in degree 2 and 3. Computing
the supports of G(I)2 and G(I)3 one gets the
following results:
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(CU XY, T2, Y, Y~2,Yz=, 2 )

char K # 2,3 abc(ac — b) # 0

' 2 xy, 2,y yle, 23
glnlex(l) — < ( Yy B v,y )
char K =3 ab(ac+b) # 0

1
char K = 2

( (xZ,xy,y27x227yz27Z4)
char K 7& 2,3 C(CLC— b) # 0

2 2 9 3
ginﬂex([) — < (x 7xy,g s LZ™, 2 )
€ =3, clae ~Doe +5) 40

1
ChaIK — 2
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In this example we see that:
*) The gin depends on the term order

*) The gin revlex is “smaller” than the gin lex
(true in general)

*) In char O the gins are “segments” (not true
in general)
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