International School on Computer Algebra: COCOA 2007 RISC Hagenberg-Linz (Austria), June 2007

Betti Numbers and Generic Initial Ideals

Lecture 2

Aldo Conca

Tutor Anna Bigatti

– Typeset by $\ensuremath{\mathsf{FoilT}}\xspace{T_E\!X}$ –

Automorphisms of polynomial rings

K infinite field.

 $R = K[x_1, \ldots, x_n]$ is a K-algebra (i.e. a ring and a K-vector space)

A K-algebra homomorphism

$$g: R \longrightarrow R$$

is a ring homomorphism such that g(a) = a for all $a \in K$.

g is determined by the images of x_i : if $g(x_i) = g_i \in R$ then

$$g(F(x_1,\ldots,x_n)) = F(g_1,\ldots,g_n) \quad (1)$$

Viceversa, for every $(g_1, \ldots, g_n) \in \mathbb{R}^n$ the map (1) is a *K*-algebra homomorphism.

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

 $\{K - \text{alg.homomorphism } R \longrightarrow R\} \leftrightarrow R^n$

$$g \leftrightarrow (g_1, \ldots, g_n)$$
 , $f \leftrightarrow (f_1, \ldots, f_n)$

composition of maps $f \circ g \leftrightarrow (h_1, \ldots, h_n)$

with
$$h_i = g_i(f_1, \ldots, f_n)$$
.

A K-algebra automorphism of R is a bijective K-algebra homomorphism

How do we decide whether (g_1, \ldots, g_n) corresponds to a K-alg. automorphism?

It suffices to check that (g_1, \ldots, g_n) induces a surjective map,

i.e. $K[g_1, \ldots, g_n] = K[x_1, \ldots, x_n]$ i.e. for every *i* there exists $f_i \in R$ such that $f_i(g_1, \ldots, g_n) = x_i$. Jacobian Conjecture (char K = 0) $g(x_i) = g_i$ is a K-alg automorphism \Leftrightarrow

$$\det(\partial g_i/\partial x_j) \in K \setminus \{0\}.$$

 \Rightarrow is easy: if g is an automorphism, then there exists f_1, \ldots, f_n so that $f_i(g_1, \ldots, g_n) = x_i$. Then use the chain rule: $J_f(g)J_g = I$ and hence det $J_g \in K \setminus \{0\}$.

 \Leftarrow not known even for n = 2.

Problem: For a given *g* the Jacobian Conjecture can be checked using GB. Write a CoCoA program which does it. For algebra membership test, see [KR, Ch.3]. Graded Automorphisms of polynomial rings

A ring homomorphism $g : R \longrightarrow R$ is (standard) graded if it preserves homogeneity and degree.

K-algebra graded homomorphism

 (g_1, \ldots, g_n) with g_i homogeneous of degree 1, $g_i = g_{1i}x_1 + \cdots + g_{ni}x_n$

Î

 \uparrow

$$(g_{ij}) \in M_{nn}(K)$$

as semigroups (composition = rows×columns)

Conclusion:

 $K\mbox{-algebra}$ graded automorphisms of R

$\operatorname{GL}_n(K)$

 \uparrow

(as groups)

 $g = (g_{ij}) \in \operatorname{GL}_n(K)$ acts on R by

$$g(x_i) = \sum_{j=1}^n g_{ji} x_j$$

$$g(F(x_1,\ldots,x_n)) = F(g(x_1),\ldots,g(x_n))$$

 $R = K[x_1, \ldots, x_n]$

 τ t.o. $x_1 > x_2 > \cdots > x_n$.

 $in_{\tau} = LT_{\tau}$

I homogeneous ideal

 $g \in \mathrm{GL}_n = \mathrm{GL}_n(K)$

g(I) is an isomorphic copy of I

g(I) is I written wrt a different system of coordinates.

 $R/I \simeq R/g(I)$ as graded K-algebras.

Any graded K-algebra automorphism

$$R/I \longrightarrow R/I$$

is induced by a $g \in GL_n$ such that g(I) = I.

– Typeset by FoilT $_{\!E\!}\mathrm{X}$ –

Problem

 $G \subseteq \operatorname{GL}_n$ a subgroup, we say that I is G-fixed if g(I) = I for every $g \in G$.

Show that:

If G is generated (as a group) by a subset $W \subset G$, then I is G-fixed iff g(I) = I for every $g \in W$.

I is G-fixed iff $g(I) \subset I$ for every $g \in G$.

 $\bigcap_{g\in G} g(I)$ is the largest G-fixed ideal contained in I.

 $\sum_{g\in G} g(I)$ is the smallest G-fixed ideal containing I.

Sums, products, intersections and colon of G-fixed ideals are G-fixed.

I is monomial iff I is T-fixed where $T = (K^*)^n$ is the diagonal subgroup (K is infinite).

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

If char K = 0, then the only GL_n -fixed ideals are the powers of (x_1, \ldots, x_n) .

For $G = S_n$ write a CoCoA function to check whether a given ideal is G-fixed.

Given an ideal I the set $G_I = \{g \in GL_n : g(I) = I\}$ is a subgroup of G. Write a CoCoA function to compute G_I for a I = (f) and f form of degree d in $K[x_1, x_2, x_3]$.

Generic initial ideals

Given τ and I consider the family

$$\operatorname{in}_{\tau}(g(I)) \quad g \in \operatorname{GL}_n$$

 B_n =upper triangular invertible (Borel group)

 U_n =upper triangular with 1 on the diagonal (unipotent group)

 $U_n \subset B_n \subset \mathrm{GL}_n$

 GL_n is Zariski-open in \mathbb{A}^{n^2} .

THM (Galligo, Bayer–Stillman)

1) For a generic $g \in GL_n$ the ideal $in_{\tau}(g(I))$ is "constant", i.e. there exists a non-empty Zariski-open subset U of GL_n such that

$$\operatorname{in}_{\tau}(g(I)) = \operatorname{in}_{\tau}(h(I)) \,\forall \, g, h \in U$$

Set $gin_{\tau}(I) = in_{\tau}(g(I))$ with $g \in U$ $gin_{\tau}(I)$ is the generic initial ideal (gin) wrt τ . $J = gin_{\tau}(I)$. 2) J is Borel-fixed, i.e B_n -fixed.

3) $\operatorname{in}_{\tau}(g(I)) = J$ for a generic $g \in U_n$.

Proof 1): Take $G = (G_{ij})$ of size $n \times n$ where G_{ij} are variables over K. Consider $K' = K(G_{ij})$, $R' = K'[x_1, \ldots, x_n]$, $G \in \operatorname{GL}_n(K')$ and IR' the extension of I to R'.

Apply Buchberger algorithm to G(IR'),

The coefficients of the polynomials showing up are elements of K', i.e. rational functions in the variables G_{ij} .

F=the product of the numerators and denominators of the leading coefficients of the polynomials showing up in the GB computation.

If $g \in$ is in $\operatorname{GL}_n(K)$ and $F(g) \neq 0$ then the Buchberger algorithm applied to g(I)reproduces the "same" GB, with G_{ij} replaced by g_{ij} . Hence $\operatorname{in}_{\tau}(g(I))$ is "equal" to $\operatorname{in}_{\tau}(G(I))$. Set $U = \{g \in \operatorname{GL}_n : F(g) \neq 0\}$. Example: R = K[x, y], $I = (x^2, y^2)$, $\tau = x > y$.

$$G = \left(\begin{array}{cc} G_{11} & G_{12} \\ G_{21} & G_{22} \end{array}\right)$$

G(I) is generated by $(G_{11}x+G_{21}y)^2$ and $(G_{12}x+G_{22}y)^2.$

If char $K \neq 2$ then $in(G(I)) = (x^2, xy, y^3)$ and the "important" coefficients are det(G) and G_{11} and G_{12} .

If char K = 2 then G(I) = I and in(G(I)) = Ithe "important" coefficient is det G. It follows:

$$\operatorname{gin}_{\tau}(I) = \begin{cases} (x^2, xy, y^3) & \operatorname{char} K \neq 2 \\ g_{11}g_{12} \neq 0 \\ (x^2, y^2) & \operatorname{char} K = 2 \\ & \forall g \end{cases}$$

The proofs 2) and 3) require a better desription of $gin_{\tau}(I)$.

Given τ t.o. and V a K-subspace of R define

$$\operatorname{in}_{\tau}(V) = \langle \operatorname{in}_{\tau}(f) : f \in V \quad f \neq 0 \rangle$$

if V is an ideal then $in_{\tau}(V)$ is an ideal

if V is a K-algebra then $in_{\tau}(V)$ is a K-algebra.

If V has finite vector space dimension then $\dim V = \dim \operatorname{in}_{\tau}(V)$

If I is an homogeneous ideal then $in_{\tau}(I) = \bigoplus_{i} in_{\tau}(I_i)$, equivalently,

$$\operatorname{in}_{\tau}(I)_i = \operatorname{in}_{\tau}(I_i)$$

Computing $in_{\tau}(V)$ when V is finite dimensional=Gauss reduction.

Here is why: If V is generated by f_1, \ldots, f_k then we apply Gauss reduction to f_1, \ldots, f_k which consists of the iteration of the following step: whenever two polynomials f_i and f_j (i < j)of the list have the same initial monomial then replace f_j with

$$f_j := f_j - (a/b)f_i$$

where a is the initial coefficient of f_j and b is that of f_i . Get rid of the 0's. At the end we get a system of generators (indeed a basis) of V say f'_1, \ldots, f'_h , such that $in_{\tau}(f'_i) \neq in(f'_j)$ if $i \neq j$. Then

$$\operatorname{in}_{\tau}(V) = \langle \operatorname{in}_{\tau}(f_1'), \dots, \operatorname{in}_{\tau}(f_h') \rangle$$

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

Example:

$$n = 3, K = \mathbb{Q}, \tau = \text{Lex}, V = \langle f_1, f_2, f_3 \rangle$$
 with
 $f_1 = x_1^2 + x_1 x_2, \qquad f_2 = 2x_1^2 + x_2^2$
 $f_3 = x_1^2 + 2x_1 x_2 + x_1 x_3$

Gauss reduction

$$f_2 := f_2 - 2f_1 = -2x_1x_2 + x_2^2$$
$$f_3 := f_3 - f_1 = x_1x_2 + x_1x_3$$
$$f_3 := f_3 + 1/2f_2 = x_1x_3 + 1/2x_2^2$$

$$f'_1 = x_1^2 + x_1 x_2, \qquad f'_2 = -2x_1 x_2 + x_2^2, f'_3 = x_1 x_3 + 1/2x_2^2$$

$$\operatorname{in}_{\tau}(V) = \langle x_1^2, x_1 x_2, x_1 x_3 \rangle$$

Example: Same as before

$$f_1 = x_1^2 + x_1 x_2, \qquad f_2 = 2x_1^2 + x_2^2$$

$$f_3 = x_1^2 + 2x_1 x_2 + x_1 x_3$$

 M_V =matrix with 3 rows corresponding to f_1, f_2, f_3 and 4 columns corresponding to the monomials $x_1^2, x_1x_2, x_1x_3, x_2^2$ (Lex order).

then $[1,2,3|1,2,3]_{M_V} \neq 0$ and hence

$$\operatorname{in}_{\tau}(V) = \langle x_1^2, x_1 x_2, x_1 x_3 \rangle$$

V vector space of forms of degree i and dimension d. Wrt the monomial basis and given a basis of V, V is represented by a matrix $d \times \binom{n-1+i}{i}$, call it M_V . For distinct monomials m_1, \ldots, m_d of degree i we put

$$[m_1,\ldots,m_d]_V =$$

det minor M_V with columns m_1, \ldots, m_d

defined up to sign, "essentially" not depending on the given basis but only on V.

$$\operatorname{Supp}(V) =$$

 $\{\{m_1,\ldots,m_d\}: [m_1,\ldots,m_d]_V \neq 0\}$

Alternative description: $\wedge^d V$ is a 1-dimensional subspace of $\wedge^d R_i$, and $\operatorname{Supp}(V)$ is the set of exterior monomials....

*1) Gauss reduction: Order colums according to τ . There exists $\{m_1, \ldots, m_d\} \in \text{Supp}(V)$ such that

$$m_1 > m_2 > \cdots > m_d$$

and $\forall \{n_1, \ldots, n_d\} \in \operatorname{Supp}(V)$ with

$$n_1 > n_2 > \cdots > n_d$$

one has

$$m_j \ge n_j \ \forall \ j$$

Call $\{m_1, \ldots, m_d\}$ the max_{au} of Supp(V). By construction,

$$\operatorname{in}_{\tau}(V) = \langle m_1, \ldots, m_d \rangle$$

*2) "maximal and constant"

$$gin_{\tau}(I_i) = \langle m_1, \dots, m_d \rangle$$

where $\{m_1, \ldots, m_d\}$ is the \max_{τ} of $\operatorname{Supp}(G(I_i))$, G matrix of variables as in the proof of 1).

 $\forall \ g \in \operatorname{GL}_n$ one has

$$\operatorname{Supp}(g(I_i)) \subseteq \operatorname{Supp}(G(I_i))$$

with = for g generic.

 $\forall g \text{ and } \forall \{n_1, \dots, n_d\} \in \text{Supp}(g(I_i)) \text{ with}$ $n_1 > \dots > n_d \text{ one has } n_j \leq m_j \forall j$ *3) Main Lemma: if V is a space of dimension d of forms of degree i and τ a t.o. then

 $\operatorname{Supp}(g(\operatorname{in}_{\tau}(V))) \subseteq \operatorname{Supp}(g(V))$

for a generic $g \in GL_n$.

Proof: For $G = (G_{ij})$ and give $\deg G_{ij} = e_j \in \mathbb{Z}^n$. For monomials n_1, \ldots, n_d , the element $[n_1, \ldots, n_d]_{G(\operatorname{in}_{\tau}(V))}$ is a multi-homogeneous polynomial in the G_{ij} and it is a multi-homogeneous component of $[n_1, \ldots, n_d]_{G(V)}$.

So if the first does not vanish, then the second does not vanish.

*4) For every space or ideal V and for every g lower tringular one has

$$\operatorname{in}_{\tau}(g(V)) = \operatorname{in}_{\tau}(V)$$

Proof: Let g be lower triangular. Then for every monomial m we have $\operatorname{in}_{\tau}(g(m)) = m$. Hence for every polynomial f we have $\operatorname{in}_{\tau}(g(f)) =$ $\operatorname{in}_{\tau}(f)$. Therefore for every vector space V $\operatorname{in}_{\tau}(g(V)) = \operatorname{in}_{\tau}(V)$.

*5) Given monomials $m_1 > \cdots > m_d$ set $V = \langle m_1, \ldots, m_d \rangle$. For g upper tringular and every $\{n_1 > \cdots > n_d\}$ in $\operatorname{Supp}(g(V))$ one has $n_j \ge m_j$.

*6) $\operatorname{Supp}(V) = \{\{m_1, \ldots, m_d\}\}$ iff $V = \langle m_1, \ldots, m_d \rangle$.

Proof 2): J is Borel-fixed if its homogeneous components are Borel-fixed. Consider J_i and write

$$J_i = \langle m_1, \dots, m_d \rangle = \operatorname{in}_{\tau}(g_1(I_i))$$

with g_1 generic. Apply the Main Lemma to $V = g_1(I_i)$. We have:

$$\operatorname{Supp}(g(J_i)) \subseteq \operatorname{Supp}(gg_1(I_i))$$

with g generic.

By *2) we have that for all $g \in GL_n$ every $\{n_1 > \cdots > n_d\} \in Supp(gg_1(I_i) \text{ one has } n_i \leq m_i.$

(*) Hence for all $g \in GL_n$ and every $\{n_1 > \dots > n_d\} \in \operatorname{Supp}(g(J_i))$ one has $n_i \leq m_i$.

We may take $g = h \in B_n$. Combining (*) and *5) we have that $Supp(h(J_i)) = \{\{m_1, \ldots, m_d\}\}$ for all $h \in B_n$. By 6*) we conclude that $h(J_i) = J_i$ for all $h \in B_n$.

Proof 3: Let $g \in \operatorname{GL}_n$ generic so that $\operatorname{in}_{\tau}(g(I)) = J$ and so that g has a LDU-decomposition. Say g = ab with a lower (with arbitrary diagonal elements) and $b \in U_n$. Then by *4)

$$J = \operatorname{in}_{\tau}(g(I)) = \operatorname{in}_{\tau}(ab(I)) = \operatorname{in}_{\tau}(b(I))$$

So J is obtained with a $b \in U_n$. By the "maximality" of J, it is obtained also by the generic $b \in U_n$.

How to compute the gin?

1) $g \in \operatorname{GL}_n$ "random" upper triangular and compute $\operatorname{in}_{\tau}(g(I))$;

the result is the ${\rm gin}_\tau(I)$ only with high probability

2) $G = (G_{ij})$ upper triangular with G_{ij} , i < j, algebraically independent over K and compute $in_{\tau}(G(I))$

– too many variables –

Problem: Find an efficent algorithm to compute gin

Example: Compute gin lex and revlex of $I = (x^2, y^2, z^2)$. Take an upper triangular of variables:

$$G = \left(\begin{array}{rrrr} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right)$$

$$G(I) = (x^2, (ax + y)^2, (bx + cy + z)^2)$$

We have to determine

 $\operatorname{in}(G(I))$

From degree 4 on I contains everything, so the action takes place in degree 2 and 3. Computing the supports of $G(I)_2$ and $G(I)_3$ one gets the following results:

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

$$\operatorname{gin}_{\operatorname{lex}}(I) = \begin{cases} (x^2, xy, xz, y^3, y^2z, yz^2, z^4) \\ \operatorname{char} K \neq 2, 3 \quad abc(ac-b) \neq 0 \\ (x^2, xy, xz, y^3, y^2z, z^3) \\ \operatorname{char} K = 3 \quad ab(ac+b) \neq 0 \\ I \\ \operatorname{char} K = 2 \end{cases}$$

$$\operatorname{gin}_{\operatorname{rlex}}(I) = \begin{cases} (x^2, xy, y^2, xz^2, yz^2, z^4) \\ \operatorname{char} K \neq 2, 3 \quad c(ac-b) \neq 0 \\ (x^2, xy, y^2, xz^2, z^3) \\ \operatorname{char} K = 3, c(ac-b)(ac+b) \neq 0 \\ I \\ \operatorname{char} K = 2 \end{cases}$$

In this example we see that:

*) The gin depends on the term order

*) The gin revlex is "smaller" than the gin lex (true in general)

*) In char 0 the gins are "segments" (not true in general)