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Automorphisms of polynomial rings

K infinite field.

R = K[x1, . . . , xn] is a K-algebra (i.e. a ring

and a K-vector space)

A K-algebra homomorphism

g : R −→ R

is a ring homomorphism such that g(a) = a for

all a ∈ K.

g is determined by the images of xi:

if g(xi) = gi ∈ R then

g(F (x1, . . . , xn)) = F (g1, . . . , gn) (1)

Viceversa, for every (g1, . . . , gn) ∈ Rn the map

(1) is a K-algebra homomorphism.
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{K − alg.homomorphism R −→ R} ↔ Rn

g ↔ (g1, . . . , gn) , f ↔ (f1, . . . , fn)

composition of maps f ◦ g ↔ (h1, . . . , hn)

with hi = gi(f1, . . . , fn).

A K-algebra automorphism of R is a bijective

K-algebra homomorphism

How do we decide whether (g1, . . . , gn)
corresponds to a K-alg. automorphism?

It suffices to check that (g1, . . . , gn) induces a

surjective map,

i.e. K[g1, . . . , gn] = K[x1, . . . , xn]
i.e. for every i there exists fi ∈ R such that

fi(g1, . . . , gn) = xi.
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Jacobian Conjecture (char K = 0)

g(xi) = gi is a K-alg automorphism

⇔

det(∂gi/∂xj) ∈ K \ {0}.

⇒ is easy: if g is an automorphism, then there

exists f1, . . . , fn so that fi(g1, . . . , gn) = xi.

Then use the chain rule: Jf(g)Jg = I and

hence det Jg ∈ K \ {0}.

⇐ not known even for n = 2.

Problem: For a given g the Jacobian Conjecture

can be checked using GB. Write a CoCoA

program which does it. For algebra membership

test, see [KR, Ch.3].
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Graded Automorphisms of polynomial rings

A ring homomorphism g : R −→ R is

(standard) graded if it preserves homogeneity

and degree.

K-algebra graded homomorphism

l

(g1, . . . , gn) with gi homogeneous of degree 1,

gi = g1ix1 + · · ·+ gnixn

l

(gij) ∈ Mnn(K)

as semigroups (composition = rows×columns)
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Conclusion:

K-algebra graded automorphisms of R

l

GLn(K)

(as groups)

g = (gij) ∈ GLn(K) acts on R by

g(xi) =
n∑

j=1

gjixj

g(F (x1, . . . , xn)) = F (g(x1), . . . , g(xn))
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R = K[x1, . . . , xn]

τ t.o. x1 > x2 > · · · > xn.

inτ = LTτ

I homogeneous ideal

g ∈ GLn = GLn(K)

g(I) is an isomorphic copy of I

g(I) is I written wrt a different system of

coordinates.

R/I ' R/g(I) as graded K-algebras.

Any graded K-algebra automorphism

R/I −→ R/I

is induced by a g ∈ GLn such that g(I) = I.
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Problem

G ⊆ GLn a subgroup, we say that I is G-fixed

if g(I) = I for every g ∈ G.

Show that:

If G is generated (as a group) by a subset

W ⊂ G, then I is G-fixed iff g(I) = I for every

g ∈ W .

I is G-fixed iff g(I) ⊂ I for every g ∈ G.⋂
g∈G g(I) is the largest G-fixed ideal contained

in I.∑
g∈G g(I) is the smallest G-fixed ideal

containing I.

Sums, products, intersections and colon of G-

fixed ideals are G-fixed.

I is monomial iff I is T -fixed where T = (K∗)n

is the diagonal subgroup (K is infinite).
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If char K = 0, then the only GLn-fixed ideals

are the powers of (x1, . . . , xn).

For G = Sn write a CoCoA function to check

whether a given ideal is G-fixed.

Given an ideal I the set GI = {g ∈ GLn :
g(I) = I} is a subgroup of G. Write a CoCoA

function to compute GI for a I = (f) and f

form of degree d in K[x1, x2, x3].
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Generic initial ideals

Given τ and I consider the family

inτ(g(I)) g ∈ GLn

Bn=upper triangular invertible (Borel group)

Un=upper triangular with 1 on the diagonal

(unipotent group)

Un ⊂ Bn ⊂ GLn

GLn is Zariski-open in An2
.
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THM (Galligo, Bayer–Stillman)

1) For a generic g ∈ GLn the ideal inτ(g(I))
is “constant”, i.e. there exists a non-empty

Zariski-open subset U of GLn such that

inτ(g(I)) = inτ(h(I)) ∀ g, h ∈ U

Set ginτ(I) = inτ(g(I)) with g ∈ U

ginτ(I) is the generic initial ideal (gin) wrt τ .

J = ginτ(I).

2) J is Borel-fixed, i.e Bn-fixed.

3) inτ(g(I)) = J for a generic g ∈ Un.
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Proof 1): Take G = (Gij) of size n × n where

Gij are variables over K. Consider K ′ =
K(Gij), R′ = K ′[x1, . . . , xn] , G ∈ GLn(K ′)
and IR′ the extension of I to R′.

Apply Buchberger algorithm to G(IR′),

The coefficients of the polynomials showing up

are elements of K ′, i.e. rational functions in

the variables Gij.

F=the product of the numerators and

denominators of the leading coefficients of the

polynomials showing up in the GB computation.

If g ∈ is in GLn(K) and F (g) 6= 0 then

the Buchberger algorithm applied to g(I)
reproduces the “same” GB, with Gij replaced by

gij. Hence inτ(g(I)) is “equal ” to inτ(G(I)).

Set U = {g ∈ GLn : F (g) 6= 0}.
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Example: R = K[x, y], I = (x2, y2), τ = x >

y.

G =
(

G11 G12

G21 G22

)
G(I) is generated by (G11x + G21y)2 and

(G12x + G22y)2.

If char K 6= 2 then in(G(I)) = (x2, xy, y3) and

the “important ” coefficients are det(G) and

G11 and G12.

If char K = 2 then G(I) = I and in(G(I)) = I

the “important ” coefficient is det G. It follows:

ginτ(I) =



(x2, xy, y3) charK 6= 2
g11g12 6= 0

(x2, y2) charK = 2
∀ g
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The proofs 2) and 3) require a better desription

of ginτ(I).

Given τ t.o. and V a K-subspace of R define

inτ(V ) = 〈inτ(f) : f ∈ V f 6= 0〉

if V is an ideal then inτ(V ) is an ideal

if V is a K-algebra then inτ(V ) is a K-algebra.

If V has finite vector space dimension then

dim V = dim inτ(V )

If I is an homogeneous ideal then inτ(I) =
⊕i inτ(Ii), equivalently,

inτ(I)i = inτ(Ii)
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Computing inτ(V ) when V is finite

dimensional=Gauss reduction.

Here is why: If V is generated by f1, . . . , fk then

we apply Gauss reduction to f1, . . . , fk which

consists of the iteration of the following step:

whenever two polynomials fi and fj (i < j)

of the list have the same initial monomial then

replace fj with

fj := fj − (a/b)fi

where a is the initial coefficient of fj and b is

that of fi. Get rid of the 0’s. At the end we

get a system of generators (indeed a basis) of

V say f ′1, . . . , f
′
h, such that inτ(f ′i) 6= in(f ′j) if

i 6= j. Then

inτ(V ) = 〈inτ(f ′1), . . . , inτ(f ′h)〉
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Example:

n = 3, K = Q, τ = Lex, V = 〈f1, f2, f3〉 with

f1 = x2
1 + x1x2, f2 = 2x2

1 + x2
2

f3 = x2
1 + 2x1x2 + x1x3

Gauss reduction

f2 := f2 − 2f1 = −2x1x2 + x2
2

f3 := f3 − f1 = x1x2 + x1x3

f3 := f3 + 1/2f2 = x1x3 + 1/2x2
2

f ′1 = x2
1 + x1x2, f ′2 = −2x1x2 + x2

2,

f ′3 = x1x3 + 1/2x2
2

inτ(V ) = 〈x2
1, x1x2, x1x3〉
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Example: Same as before

f1 = x2
1 + x1x2, f2 = 2x2

1 + x2
2

f3 = x2
1 + 2x1x2 + x1x3

MV =matrix with 3 rows corresponding to

f1, f2, f3 and 4 columns corresponding to the

monomials x2
1, x1x2, x1x3, x

2
2 (Lex order).

 1 1 0 0
2 0 0 1
1 2 1 0


then [1, 2, 3|1, 2, 3]MV

6= 0 and hence

inτ(V ) = 〈x2
1, x1x2, x1x3〉
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V vector space of forms of degree i and

dimension d. Wrt the monomial basis and

given a basis of V , V is represented by a matrix

d×
(
n−1+i

i

)
, call it MV . For distinct monomials

m1, . . . ,md of degree i we put

[m1, . . . ,md]V =

det minor MV with columns m1, . . . ,md

defined up to sign, “essentially” not depending

on the given basis but only on V .

Supp(V ) =

{{m1, . . . ,md} : [m1, . . . ,md]V 6= 0}

Alternative description: ∧dV is a 1-dimensional

subspace of ∧dRi, and Supp(V ) is the set of

exterior monomials....

– Typeset by FoilTEX – 17



*1) Gauss reduction: Order colums according

to τ . There exists {m1, . . . ,md} ∈ Supp(V )
such that

m1 > m2 > · · · > md

and ∀ {n1, . . . , nd} ∈ Supp(V ) with

n1 > n2 > · · · > nd

one has

mj ≥ nj ∀ j

Call {m1, . . . ,md} the maxτ of Supp(V ).

By construction,

inτ(V ) = 〈m1, . . . ,md〉
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*2) “maximal and constant”

ginτ(Ii) = 〈m1, . . . ,md〉
where {m1, . . . ,md} is the maxτ of

Supp(G(Ii)), G matrix of variables as in the

proof of 1).

∀ g ∈ GLn one has

Supp(g(Ii)) ⊆ Supp(G(Ii))

with = for g generic.

∀ g and ∀ {n1, . . . , nd} ∈ Supp(g(Ii)) with

n1 > · · · > nd one has nj ≤ mj ∀ j
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*3) Main Lemma: if V is a space of dimension

d of forms of degree i and τ a t.o. then

Supp(g(inτ(V ))) ⊆ Supp(g(V ))

for a generic g ∈ GLn.

Proof: For G = (Gij) and give deg Gij = ej ∈
Zn. For monomials n1, . . . , nd, the element

[n1, . . . , nd]G(inτ(V )) is a multi-homogeneous

polynomial in the Gij and it is a multi-

homogeneous component of [n1, . . . , nd]G(V ).

So if the first does not vanish, then the second

does not vanish.
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*4) For every space or ideal V and for every g

lower tringular one has

inτ(g(V )) = inτ(V )

Proof: Let g be lower triangular. Then for every

monomial m we have inτ(g(m)) = m. Hence

for every polynomial f we have inτ(g(f)) =
inτ(f). Therefore for every vector space V

inτ(g(V )) = inτ(V ).

*5) Given monomials m1 > · · · > md set V =
〈m1, . . . ,md〉. For g upper tringular and every

{n1 > · · · > nd} in Supp(g(V )) one has nj ≥
mj.

*6) Supp(V ) = {{m1, . . . ,md}} iff V =
〈m1, . . . ,md〉.

– Typeset by FoilTEX – 21



Proof 2): J is Borel-fixed if its homogeneous

components are Borel-fixed. Consider Ji and

write

Ji = 〈m1, . . . ,md〉 = inτ(g1(Ii))

with g1 generic. Apply the Main Lemma to

V = g1(Ii). We have:

Supp(g(Ji)) ⊆ Supp(gg1(Ii))

with g generic.

By *2) we have that for all g ∈ GLn every

{n1 > · · · > nd} ∈ Supp(gg1(Ii) one has ni ≤
mi.

(*) Hence for all g ∈ GLn and every {n1 >

· · · > nd} ∈ Supp(g(Ji)) one has ni ≤ mi.
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We may take g = h ∈ Bn. Combining

(*) and *5) we have that Supp(h(Ji)) =
{{m1, . . . ,md}} for all h ∈ Bn. By 6*) we

conclude that h(Ji) = Ji for all h ∈ Bn.

Proof 3: Let g ∈ GLn generic so that

inτ(g(I)) = J and so that g has a LDU-

decomposition. Say g = ab with a lower (with

arbitrary diagonal elements) and b ∈ Un. Then

by *4)

J = inτ(g(I)) = inτ(ab(I)) = inτ(b(I))

So J is obtained with a b ∈ Un. By the

“maximality” of J , it is obtained also by the

generic b ∈ Un.
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How to compute the gin?

1) g ∈ GLn “random” upper triangular and

compute inτ(g(I));

the result is the ginτ(I) only with high

probability

2) G = (Gij) upper triangular with Gij, i <

j, algebraically independent over K and

compute inτ(G(I))

– too many variables –

Problem: Find an efficent algorithm to compute

gin
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Example: Compute gin lex and revlex of

I = (x2, y2, z2). Take an upper triangular of

variables:

G =

 1 a b

0 1 c

0 0 1



G(I) = (x2, (ax + y)2, (bx + cy + z)2)

We have to determine

in(G(I))

From degree 4 on I contains everything, so the

action takes place in degree 2 and 3. Computing

the supports of G(I)2 and G(I)3 one gets the

following results:
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ginlex(I) =



(x2, xy, xz, y3, y2z, yz2, z4)
char K 6= 2, 3 abc(ac− b) 6= 0

(x2, xy, xz, y3, y2z, z3)
char K = 3 ab(ac + b) 6= 0

I

char K = 2

ginrlex(I) =



(x2, xy, y2, xz2, yz2, z4)
char K 6= 2, 3 c(ac− b) 6= 0

(x2, xy, y2, xz2, z3)
char K = 3, c(ac− b)(ac + b) 6= 0

I

char K = 2
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In this example we see that:

*) The gin depends on the term order

*) The gin revlex is “smaller” than the gin lex

(true in general)

*) In char 0 the gins are “segments” (not true

in general)
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