
From points to equations: the Buchberger-Möller Algorithm

History I

In the 1970s and early 1980s, algebraic geometry was essentially
synonymous with Grothendieck’s scheme theory.

Most geometers were busily developing new cohomology theories and
proving vanishing theorems in them; some had never seen the equations
of a non-trivial example for their theories.

In this atmosphere the few hardy folks who dared to give talks about such
down-to-earth topics as finite sets of points in affine or projective spaces
were confronted with disinterest or even ridicule.

Now, about a quarter of a century later, the tide has turned completely:
finite sets of points are an active and well-respected branch of algebraic
geometry. How did this change come about?
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From points to equations: the Buchberger-Möller Algorithm

History II

When one starts to reduce deep problems in algebraic geometry to their
essential parts, it frequently turns out that at their core lies a question
which has been studied for a long time, and sometimes this question is
related to finite sets of points.

For instance, already in the eighteenth century G. Cramer and L. Euler
discussed (in their correspondence) a phenomenon which is nowadays
called the Cayley-Bacharach property.

Later, in 1843, A. Cayley formulated a theorem which was a vast
generalization of what Cramer and Euler had stumbled upon. But
unfortunately the claim was false and the proof invalid.

This was not corrected until 1886, when I. Bacharach used M. Noether’s
“ AΦ + BΨ ”-theorem to give a correct statement and a true proof.

Many decades later it turned out that the Cayley-Bacharach property is
connected to the “Gorenstein property” of the homogeneous coordinate
ring of a projective point set, and today a generalization of this property is
central to an important conjecture by D. Eisenbud, M. Green and J.
Harris.
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History III

What does all of this have to do with Computational Commutative
Algebra?

We think that finite sets of points provide excellent examples for the ways
in which computer algebra methods can be applied.

They show up in many branches of mathematics besides algebraic
geometry, for instance in interpolation, coding theory, and statistics.

Efficient algorithms help us to compute with larger and larger point sets,
to check results and conjectures, and to discover new ones.

And today we have a new entry in the game: ideals of finite sets of points
with approximate coordinates.
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Separators and Interpolators

We start with a finite set of points X in the affine space and call it an
affine point set. Its vanishing ideal in P is called I(X) .
If we want to perform polynomial interpolation, we also need to know the
following polynomials.

Definition
Let X = {p1, . . . , ps} ⊆ K n be an affine point set, and let X be the tuple
(p1, . . . , ps) .

1 Let i ∈ {1, . . . , s} . A polynomial f ∈ P is called a separator of pi from X \ pi

if f (pi) = 1 and f (pj) = 0 for j "= i .
2 Let a1, . . . , as ∈ K . A polynomial f ∈ P is called an interpolator for the tuple

(a1, . . . , as) at X if f (pi) = ai for i = 1, . . . , s .
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Separators exist

It is clear that separators and interpolators are not unique. Two
separators of pi and two interpolators for a tuple (a1, . . . , as) ∈ K s

differ by an element of I(X) .

Proposition

Let X = {p1, . . . , ps} ⊆ K n be an affine point set, and let X be the tuple
(p1, . . . , ps) .

1 For every i ∈ {1, . . . , s} , there exists a separator of pi from X \ pi .
2 For every (a1, . . . , as) ∈ K s , there exists an interpolator for (a1, . . . , as) at X .
3 Let Y be an affine point set contained in X . For every pi ∈ X , let fi ∈ P be a

separator of pi from X \ pi , and let fX\Y =
P

pi∈X\Y fi . Then we have
I(Y) = I(X) + (fX\Y) .
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The BM Algorithm I

Theorem (The Buchberger-Möller Algorithm)
Let σ be a term ordering on Tn , and let X = {p1, . . . , ps} be an affine point
set in K n whose points pi = (ci1, . . . , cin) are given via their coordinates
cij ∈ K . Consider the following sequence of instructions.

(1) Let G = ∅ , O = ∅ , S = ∅ , L = {1} , and let M = (mij ) ∈ Mat0,s (K ) be a matrix having s columns and initially zero rows.

(2) If L = ∅ , return the pair (G, O) and stop. Otherwise, choose the term t = minσ (L) and delete it from L .

(3) Compute the evaluation vector (t(p1), . . . , t(ps )) ∈ K s and reduce it against the rows of M to obtain

(v1, . . . , vs ) = (t(p1), . . . , t(ps )) −
P

i
ai (mi1, . . . , mis )

with ai ∈ K .

(4) If (v1, . . . , vs ) = (0, . . . , 0) then append the polynomial t −
P

i ai si to G where si is the i th element in S . Remove
from L all multiples of t . Then continue with step 2).

(5) Otherwise (v1, . . . , vs ) $= (0, . . . , 0) , so append (v1, . . . , vs ) as a new row to M and t −
P

i ai si as a new element to S .
Add t to O , and add to L those elements of {x1 t, . . . , xnt} which are neither multiples of an element of L nor of LTσ (G) .
Continue with step 2).

This is an algorithm which returns (G, O) such that G is the
reduced σ -Gröbner basis of I(X) and O = Tn \ LTσ{I(X)} .
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The BM Algorithm II

A small alteration of this algorithm allows us to compute the separators
of X as well.

Corollary
In the setting of the theorem, replace step 2) by the following instruction.

(2’) If L = ∅ then row reduce M to a diagonal matrix and mimic these row
operations on the elements of S (considered as a column vector). Next
replace S by M−1S , return the triple (G, O,S) , and stop. If L $= ∅ ,
choose the term t = minσ(L) and delete it from L .

The resulting sequence of instructions defines again an algorithm. It
returns a triple (G, O,S) such that G is the reduced σ -Gröbner basis
of I(X) , such that O = Tn \ LTσ{I(X)} , and the tuple S contains the
separators of pi from X \ pi for i = 1, . . . , s .
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Remarks

More details on BM can be found in the two papers (see [ABKR] and
[AKR]).

Using Buchberger-Möller algorithm and its corollary it is possible to
compute ideals of points and to solve the problem of interpolation.

What happens if the data are not exact?

Approximate versions of the above results should be able to construct
sets of polynomials which almost vanish at X , almost separators and
almost interpolators.

Of course new problems of stability arise in this context.
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Border Bases

Bases of P/I

In the last section we pointed to questions of stability. We have seen that
methods for solving polynomial systems inevitably feature problems of
approximation. On the other hand, problems of the same type arise if the
data are not exact.
If we go back for a moment to the eigenvalue method, we remember that
it requires multiplication matrices which, in turn, require the choice of a
basis of A = P/I as a K -vector space.
One way to get a basis of A is via Gröbner bases. If σ is a term
ordering on Tn and G = {f1, . . . , fs} is a σ -Gröbner basis of I , then
LTσ(I) = (LTσ(f1), . . . , LTσ(fs)) . We know that the residue classes of the
elements of Tn \ LTσ(I) form a K -basis of A .

Therefore, once a σ -Gröbner basis of I is computed, a basis is
available. If we change σ we may get different bases of A , and a first
question arises here.

Question 1 Are these the only bases?

And in connection with the stability issue, the next question is.

Question 2 What are the most stable bases?
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Border Bases

Filtration cycle I

Before answering these question, we make a digression into the realm of
statistics (see Tutorial 92 of [KR2]).
A classical real world problem reads as follows. A number of similar
chemical plants had been successfully operating for several years in
different locations. In a newly constructed plant the filtration cycle took
almost twice as long as in the older plants. Seven possible causes of the
difficulty were considered by the experts.

1 The water for the new plant was different in mineral content.
2 The raw material was not identical in all respects to that used in the older

plants.
3 The temperature of filtration in the new plant was slightly lower than in the

older plants.
4 A new recycle device was absent in the older plants.
5 The rate of addition of caustic soda was higher in the new plant.
6 A new type of filter cloth was being used in the new plant.
7 The holdup time was lower than in the older plants.
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Border Bases

Filtration cycle II

These causes lead to seven variables x1, . . . , x7 .

Each of them can assume only two values, namely old and new which we
denote by 0 and 1, respectively. All possible combinations of these
values form the full design D = {0, 1}7 ⊆ A7(Q) .

Its vanishing ideal is I(D) = (x2
1 − x1, x2

2 − x2, . . . , x2
7 − x7) in the

polynomial ring Q[x1, . . . , x7] .

Our task is to identify an unknown function f̄ : D −→ K , namely the
length of a filtration cycle. This function is called the model, since it is a
mathematical model of the quantity which has to be computed or
optimized.
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Border Bases

Filtration cycle III

In order to fully identify it, we would have to perform 128 = 27 cycles.
This is impracticable since it would require too much time and money.

On the other hand, suppose for a moment that we had conducted all
experiments and the result was f̄ = a + b x1 + c x2 for some
a, b, c ∈ Q . At this point it becomes clear that we have wasted many
resources. Had we known in advance that f̄ is given by a polynomial
having only three unknown coefficients, we could have identified them by
performing only three suitable experiments! Namely, if we determine
three values of a + b x1 + c x2 and the associated matrix of coefficients
is invertible, we can easily find a, b, c by solving a system of three linear
equations in these three unknowns.

However, a priori one does not know that the answer has the shape
indicated above. In practice, one has to make some guesses, perform
well-chosen experiments, and possibly modify the guesses until the
process yields the desired answer.

In the case of the chemical plant, it turned out that only x1 and x5 were
relevant for identifying the model.

Lorenzo Robbiano (Università di Genova) Approximate Methods in Commutative Algebra June 2007 42 / 60



Border Bases

Fractions

Motivated by this example, we introduce a piece of notation.

Let K be a field. For i = 1, . . . , n , let "i ≥ 1 and
Di = {ai1, ai2, . . . , ai"i} ⊆ K . Then we say that the full design
D = D1 × · · ·× Dn ⊆ An(K ) has levels ("1, . . . "n) .

The polynomials fi = (xi − ai1) · · · (xi − ai"i ) with i = 1, . . . , n generate
the vanishing ideal I(D) ⊆ P of D . They are called the canonical
polynomials of D . For any term ordering σ on Tn , the canonical
polynomials are the reduced σ -Gröbner basis of I(D) .

Thus the order ideal

OD = {xα1
1 · · · xαn

n | 0 ≤ αi < "i for i = 1, . . . , n}

is canonically associated to D and represents a K -basis of P/I(D) .

Our main task is to identify an unknown function f̄ : D −→ K called the
model. We want to choose a fraction F ⊆ D that allows us to identify the
model if we have some extra knowledge about the form of f̄ .
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Border Bases

Inverse problem

Given a full design D and an order ideal O ⊆ OD , which
fractions F ⊆ D have the property that the residue classes of the
elements of O are a K -basis of P/I(F ) ?

It is called the inverse problem in DoE (Design of Experiments).

The solution of this problem already in year 2001 (see [CR]) showed the
importance of a new notion in commutative algebra, that of border basis.

It was a first answer to Question 1. Let us move to Question 2 by
considering the following example.
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