From equations to points: Eigenvalues and Eigenvectors

Multiplication map

As before, let K be afield, let P = K[xi,...,xp] ,andlet fi,....fsc P,
let K be the algebraic closure of K ,andlet P = K][xq,...,Xx5] . By S
we denote the system of polynomial equations

f1(X1a"'aXn):0

fs(X1,..., %) =0

By / we denote the ideal (f;,...,f),by A the quotientring P/I, and
by A the quotient ring P/IP . As usual we assume that / is
zero-dimensional so that A is a finite dimensional K -vector space by
the Finiteness Criterion.

Definition

Given a polynomial f € P we consider the following K -linear map

ms: A— A definedby my(g mod /) = fg mod /, and call it the
multiplication map defined by f. We also consider the induced K -linear map
on the dual spaces m; : A* — A* defined by mj(y) = ¢ oms.
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From equations to points: Eigenvalues and Eigenvectors
A first example

Let P=R[x], f=x2+1, [ the ideal generated by the polynomial
2= x4+ x—-1=(x—-1)(x*+1),and A=P/I.

We consider the multiplication map m; : A— A and describe it via its
representation with respect to the R -basis of A givenby (1, x, x?) .

Using the relations x3+x=x>+1 mod /, x*+x*=x2+1 mod /,
we deduce that the matrix which represents m; is

1 1 1

¢ )
It is singular, hence 0 is an eigenvalue. Moreover, Z(/) ={1,i,—i},
and we see that 0 = (i) = f(—/) , but Zg(/) = {1} and 0 # f(1) .

Next theorem makes an important link between Z(/) and eigenvalues,
and the example motivates the reason why we need the assumption that
Zx()=Z(1) .
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Eigenvalues

Theor

Let | be a zero-dimensional ideal in P such that Zx(l) = Z(I), let f€ P,
and let A € K. The following conditions are equivalent

@ The element ) is an eigenvalue of my .
@ There exists a point p € Z(I) such that \ = f(p) .

Let id: A — A denote the identity map.
We know that X\ is an eigenvalue of m; ifandonlyif my — Xid is notinvertible.
Letus prove (1) = (2).

If X does not coincide with any of the values of f atthe points p € Z(/) ,thentheideal J = /+ (f — X) has the property that
ZWU) =0 .

On the other hand the ideal J is defined over K , hence the Weak Nullstellenzatz implies that 1 € J .

It means that there exists g € P suchthat 1 = g(f — X\) +h with h €/ .Then 1 =g(f — X) mod / ,sothat my — X\id is
invertible with inverse mg ,and hence X is not an eigenvalue of mg . This finishes the proof of a) = b) ,

Letusprove (2) — (1).

If X\ is notan eigenvalue of m; ,then my — Xid is an invertible map, in particular it is surjective. So, there exists g € P such that
9(f — X) =1 mod / . Clearly this implies that there cannot exist p € Z(/) suchthat f(p) — A =0
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Th trix ME&
e matrix Mz

o If E=(#,...,t,) isarow of polynomials whose residue classes form a
K -basis of A= P/I,then we use the short form fE to mean the row of
vectors (fty,...,ft,).

@ A way of describing my explicitly is to fix such a K -basis E of A and
represent my via the matrix M5 where the j-column of ML is given
by the coefficients of ff; when written in terms of E . In other words, if

i
fti = > akitk mod /
k=1
then the j™ column of M5 is (aij,a;,...,a,)" . A more compact way
of expressing this fact is the following formula
fE=EMZ mod |/

@ Usually a K -basis E is an order ideal of monomials and hence we may
assume that t; = 1. We may as well assume that the residue classes of
some of the indeterminates (most of the times all) are among the entries
of E.
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Eigenvalues and coordinates of zeros

Corollary

Let x; be such that its class is among the entries of E . Then the x;
coordinates of the points in Zk(I) are the eigenvalues of my, .

It follows immediately from the theorem, since x;(p) is exactly the Xx;
coordinate of p. O]

We observe that, as in the case of the Lex-method, we need the zeros of
a polynomial (in this case the characteristic polynomial), and hence we
hit again an intrinsic obstacle: we need approximation.

The above corollary gives a first method for computing Zx(/) , however
what we get is only a grid of points which is usually a much larger set
than Zk(/) . Sometimes we can do better, but we need a description of
eigenvectors. In the sequel we use the following terminology.

June 2007 23/60

Lorenzo Robbiano (Universita di Genova) Approximate Methods in Commutative Algebra
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Eigenvectors and coordinates of zeros

Definition

Let ¢: V — V be alinear map of K -vector spaces, let A € K be an
eigenvalue of ¢, and let W, = Ker(p — Aid) be the corresponding
eigenspace. Then the non-zero vectors in W, are called A -eigenvectors, or
simply eigenvectors, if the context is clear.

Corollary (Eigenvectors)

Let pe Zk(l),andlet E = (t,...,t,) be arow of power products whose
classes form a K -basis of A . Then the vector E(p) = (t;(p),...,t.(p)) is
an f(p) -eigenvector of mj .

Proof.
We use the formula fE = E MFE mod / and evaluate both sides at p. We get
E
HP)E(p) = E(p) Mfz

By transposing both sides we get v

(P)(EP)™ = (MFE)™ (E(p)

This formula means that E(p) is an f(p)-eigenvector of the matrix (Mﬁ:-)", hence of m;‘ .

]
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From equations to points: Eigenvalues and Eigenvectors

Non-derogatory matrices |

Definition
A square matrix M < Mat,(C) is said to be non-derogatory if the following
equivalent conditions are satisfied.
@ All eigenspaces of M are 1 -dimensional.
@ The Jordan canonical form of M has one Jordan block per eigenvalue.
© MinPoly,, = CharPoly,, .

Next corollary is one of the many variations which can be played around
the above result. It highlights the importance of non-derogatory matrices.
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Non-derogatory matrices Il

Corollary

Let 1,xq1,...,x, be the first n+ 1 -entries of E , assume that the matrix
(ME)™ is non-derogatory, let Zx(l) = Z(I) = {p1,...,pr} , and

let Wsq,...,W, be the 1 -dimensional eigenspaces corresponding to
f(p1),...f(pr) respectively. If we

choose v; = (ayj, azj,...,ar41,,-..) € Wj\0, for j=1,...,r, then we have
the equalities p; = (azj/aj, ..., ar+1j/ay) for j=1,...,r.

We use the above corollary about eigenvectors to deduce that the vector E(pj) = (4 (pj) ..... t (pl-)) is an f(pl-)—eigenvector of f, hence
it is a non-zero vector in W/ for j=1,...,r.

The assumption about (M,EE)" means that all the W/ ’s are 1-dimensional vector spaces, hence the vectors E(pj) and vj are
proportional.

On the other hand, we know that ty =1 , hence t (pj) =1 , hence aU +# 0. We divide the coordinates of vj by a1l- and conclude.

]

We observe that the computation of eigenspaces creates a new difficulty.
Since the eigenvalues are in general given up to a certain degree of
accuracy, the eigenspaces are not computable as kernels of linear maps.
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@ Let / betheidealin P =R[x,y] generated by the set of polynomials
{x®+4/3xy +1/3y?> —7/3x —5/3y +4/3, y>+10/3xy + 7/3y? —
4/3x —20/3y +4/3, xy? —7/3xy —7/3y? —2/3x +11/3y +2/3} .

@ We can check that this set is a DegRevLex-Grébner basis, hence
E =[1,x,y,xy,y?] is abasis modulo /.

@ By computing NF(x2,/), NF(x2y,l), NF(xy?, /), we get

0 —4/3 0o 4/3 —2/3
1 7/3 0 —4/3 2/3
ME=1| o 5/3 0 473 —11/3
0 —4/3 1 1/3 7/3
0 —1/3 0 —2/3 7/3

0 1 0 0 0
- ( —4/3 7/3 5/3 —4/3 —1/3 J
(M) = 0 0 0 1 0
4/3  —4/3 4/3 1/3  —2/3
—2/3 2/3  —11/3 7/3 7/3
@ lts characteristic polynomial is x° — 5x* + 7x® + x® — 8x + 4 which factorizes as
follows (x + 1)(x — 1)%(x —2)? . Since we can check (with CoCoA) that

dim(W;) = 2 , we deduce that (M5)" is derogatory.
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Example I

Example (continued)

@ By computing NF(xy?, 1), NF(y3, /), we get the multiplication matrix

E
MyE =

whose transposed is

@ its characteristic polynomial is y5 = 5y3

oo -+o0o

o—~ooo

coco

4/3

—~oocoo

—2/3
2/3
—11/3
7/3
7/3

1
0

0
—11/3
20/3

—4/3
4/3
20/3
—10/3
—-7/3

0 0
1 0
0 1

7/3 7/3
—10/3 —7/3

+ 4y which factorizes in the following way y(y — 1)(y + 1)(¥ — 2)(y + 2)-

@  We check that all the eigenspaces are 1-dimensional, hence the matrix (M}I/EE)" is non-derogatory.

@ we may choose one non-zero vector inside each of them, for instance the vectors vq = (1,1,0,0,0) , v = (1,1,1,1,1) ,

vz =(1,2,—-1,-2,1), vy=(1,-1,2,-2,4), v5=(1,2, -2, -4, 4) .

@ Therefore, five pointsin Z(/) are (1,0), (1,1), (2, =1), (=1,2), (2, —2) .But dimg(P//) =5 , hence

Zr() = Z() ={(1,0), (1,1, (2, 1), (=1,2), (2, =2)} .
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