
From equations to points: Eigenvalues and Eigenvectors

Multiplication map

As before, let K be a field, let P = K [x1, . . . , xn] , and let f1, . . . , fs ∈ P ,
let K be the algebraic closure of K , and let P = K [x1, . . . , xn] . By S
we denote the system of polynomial equations






f1(x1, . . . , xn) = 0
...

fs(x1, . . . , xn) = 0

By I we denote the ideal (f1, . . . , fs) , by A the quotient ring P/I , and
by A the quotient ring P/IP . As usual we assume that I is
zero-dimensional so that A is a finite dimensional K -vector space by
the Finiteness Criterion.

Definition
Given a polynomial f ∈ P we consider the following K -linear map
mf : A −→ A defined by mf (g mod I) = fg mod I , and call it the
multiplication map defined by f . We also consider the induced K -linear map
on the dual spaces m∗

f : A∗ −→ A∗ defined by m∗
f (ϕ) = ϕ ◦mf .
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From equations to points: Eigenvalues and Eigenvectors

A first example

Example

Let P = R[x ] , f = x2 + 1 , I the ideal generated by the polynomial
x3 − x2 + x − 1 = (x − 1)(x2 + 1) , and A = P/I .
We consider the multiplication map mf : A −→ A and describe it via its
representation with respect to the R -basis of A given by (1, x , x2) .
Using the relations x3 + x = x2 + 1 mod I , x4 + x2 = x2 + 1 mod I ,
we deduce that the matrix which represents mf is

0

@
1 1 1
0 0 0
1 1 1

1

A

It is singular, hence 0 is an eigenvalue. Moreover, Z(I) = {1, i ,−i} ,
and we see that 0 = f (i) = f (−i) , but ZR(I) = {1} and 0 %= f (1) .

Next theorem makes an important link between Z(I) and eigenvalues,
and the example motivates the reason why we need the assumption that
ZK (I) = Z(I) .
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Eigenvalues

Theorem
Let I be a zero-dimensional ideal in P such that ZK (I) = Z(I) , let f ∈ P ,
and let λ ∈ K . The following conditions are equivalent

1 The element λ is an eigenvalue of mf .
2 There exists a point p ∈ Z(I) such that λ = f (p) .

Proof.

Let id : A −→ A denote the identity map.

We know that λ is an eigenvalue of mf if and only if mf − λ id is not invertible.

Let us prove (1) =⇒ (2) .

If λ does not coincide with any of the values of f at the points p ∈ Z(I) , then the ideal J = I + (f − λ) has the property that
Z(J) = ∅ .

On the other hand the ideal J is defined over K , hence the Weak Nullstellenzatz implies that 1 ∈ J .

It means that there exists g ∈ P such that 1 = g(f − λ) + h with h ∈ I . Then 1 = g(f − λ) mod I , so that mf − λ id is
invertible with inverse mg , and hence λ is not an eigenvalue of mf . This finishes the proof of a) =⇒ b) ,

Let us prove (2) =⇒ (1) .

If λ is not an eigenvalue of mf , then mf − λ id is an invertible map, in particular it is surjective. So, there exists g ∈ P such that
g(f − λ) = 1 mod I . Clearly this implies that there cannot exist p ∈ Z(I) such that f (p) − λ = 0

Lorenzo Robbiano (Università di Genova) Approximate Methods in Commutative Algebra June 2007 21 / 60



From equations to points: Eigenvalues and Eigenvectors

The matrix ME
fE

If E = (t1, . . . , tµ) is a row of polynomials whose residue classes form a
K -basis of A = P/I , then we use the short form fE to mean the row of
vectors (f t1, . . . , f tµ) .
A way of describing mf explicitly is to fix such a K -basis E of A and
represent mf via the matrix ME

fE where the j -column of ME
fE is given

by the coefficients of f tj when written in terms of E . In other words, if

f tj =
µ∑

k=1
akj tk mod I

then the j th column of ME
fE is (a1j , a2j , . . . , aµj)tr . A more compact way

of expressing this fact is the following formula

fE = E ME
fE mod I

Usually a K -basis E is an order ideal of monomials and hence we may
assume that t1 = 1 . We may as well assume that the residue classes of
some of the indeterminates (most of the times all) are among the entries
of E .
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Eigenvalues and coordinates of zeros

Corollary
Let xi be such that its class is among the entries of E . Then the xi
coordinates of the points in ZK (I) are the eigenvalues of mxi .

Proof.
It follows immediately from the theorem, since xi(p) is exactly the xi
coordinate of p.

We observe that, as in the case of the Lex-method, we need the zeros of
a polynomial (in this case the characteristic polynomial), and hence we
hit again an intrinsic obstacle: we need approximation.

The above corollary gives a first method for computing ZK (I) , however
what we get is only a grid of points which is usually a much larger set
than ZK (I) . Sometimes we can do better, but we need a description of
eigenvectors. In the sequel we use the following terminology.
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Eigenvectors and coordinates of zeros

Definition
Let ϕ : V −→ V be a linear map of K -vector spaces, let λ ∈ K be an
eigenvalue of ϕ , and let Wλ = Ker(ϕ− λ id) be the corresponding
eigenspace. Then the non-zero vectors in Wλ are called λ -eigenvectors, or
simply eigenvectors, if the context is clear.

Corollary (Eigenvectors)
Let p ∈ ZK (I) , and let E = (t1, . . . , tµ) be a row of power products whose
classes form a K -basis of A . Then the vector E(p) = (t1(p), . . . , tµ(p)) is
an f (p) -eigenvector of m∗

f .

Proof.

We use the formula fE = E ME
fE mod I and evaluate both sides at p . We get

f (p)E(p) = E(p) ME
fE

By transposing both sides we get
f (p)(E(p))tr = (ME

fE )tr (E(p))tr

This formula means that E(p) is an f (p) -eigenvector of the matrix (ME
fE )tr , hence of m∗f .
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Non-derogatory matrices I

Definition
A square matrix M ∈ Matµ(C) is said to be non-derogatory if the following
equivalent conditions are satisfied.

1 All eigenspaces of M are 1 -dimensional.
2 The Jordan canonical form of M has one Jordan block per eigenvalue.
3 MinPolyM = CharPolyM .

Next corollary is one of the many variations which can be played around
the above result. It highlights the importance of non-derogatory matrices.
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Non-derogatory matrices II

Corollary

Let 1, x1, . . . , xn be the first n + 1 -entries of E , assume that the matrix
(ME

fE)tr is non-derogatory, let ZK (I) = Z(I) = {p1, . . . , pr} , and
let W1, . . . , Wr be the 1 -dimensional eigenspaces corresponding to
f (p1), . . . f (pr ) respectively. If we
choose vj = (a1j , a2j , . . . , ar+1,j , . . . ) ∈ Wj \ 0 , for j = 1, . . . , r , then we have
the equalities pj = (a2j/a1j , . . . , ar+1,j/a1j) for j = 1, . . . , r.

Proof.

We use the above corollary about eigenvectors to deduce that the vector E(pj ) = (t1(pj ), . . . , tµ(pj )) is an f (pj ) -eigenvector of f , hence
it is a non-zero vector in Wj for j = 1, . . . , r .

The assumption about (ME
fE )tr means that all the Wj ’s are 1-dimensional vector spaces, hence the vectors E(pj ) and vj are

proportional.

On the other hand, we know that t1 = 1 , hence t1(pj ) = 1 , hence a1j '= 0. We divide the coordinates of vj by a1j and conclude.

We observe that the computation of eigenspaces creates a new difficulty.
Since the eigenvalues are in general given up to a certain degree of
accuracy, the eigenspaces are not computable as kernels of linear maps.
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Example I

Example
Let I be the ideal in P = R[x , y ] generated by the set of polynomials
{x2 + 4/3xy + 1/3y2 − 7/3x − 5/3y + 4/3, y3 + 10/3xy + 7/3y2 −
4/3x − 20/3y + 4/3, xy2 − 7/3xy − 7/3y2 − 2/3x + 11/3y + 2/3} .
We can check that this set is a DegRevLex-Gröbner basis, hence
E = [1, x , y , xy , y2] is a basis modulo I .
By computing NF(x2, I) , NF(x2y , I) , NF(xy2, I) , we get

ME
xE =

0

BBBB@

0 −4/3 0 4/3 −2/3
1 7/3 0 −4/3 2/3
0 5/3 0 4/3 −11/3
0 −4/3 1 1/3 7/3
0 −1/3 0 −2/3 7/3

1

CCCCA

(ME
xE )tr =

0

BBBB@

0 1 0 0 0
−4/3 7/3 5/3 −4/3 −1/3

0 0 0 1 0
4/3 −4/3 4/3 1/3 −2/3

−2/3 2/3 −11/3 7/3 7/3

1

CCCCA

Its characteristic polynomial is x5 − 5x4 + 7x3 + x2 − 8x + 4 which factorizes as
follows (x + 1)(x − 1)2(x − 2)2 . Since we can check (with CoCoA) that
dim(W1) = 2 , we deduce that (ME

xE)tr is derogatory.
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Example II

Example (continued)

By computing NF(xy2, I) , NF(y3, I) , we get the multiplication matrix

ME
yE =

0

BBBB@

0 0 0 −2/3 −4/3
0 0 0 2/3 4/3
1 0 0 −11/3 20/3
0 1 0 7/3 −10/3
0 0 1 7/3 −7/3

1

CCCCA

whose transposed is

(ME
yE )tr =

0

BBBB@

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−2/3 2/3 −11/3 7/3 7/3
−4/3 4/3 20/3 −10/3 −7/3

1

CCCCA

Its characteristic polynomial is y5 − 5y3 + 4y which factorizes in the following way y(y − 1)(y + 1)(y − 2)(y + 2) .

We check that all the eigenspaces are 1-dimensional, hence the matrix (ME
yE )tr is non-derogatory.

We may choose one non-zero vector inside each of them, for instance the vectors v1 = (1, 1, 0, 0, 0) , v2 = (1, 1, 1, 1, 1) ,

v3 = (1, 2,−1,−2, 1) , v4 = (1,−1, 2,−2, 4) , v5 = (1, 2,−2,−4, 4) .

Therefore, five points in Z(I) are (1, 0) , (1, 1) , (2,−1) , (−1, 2) , (2,−2) . But dimR(P/I) = 5 , hence

ZR(I) = Z(I) = {(1, 0), (1, 1), (2,−1), (−1, 2), (2,−2)} .
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