## Multiplication map

As before, let $K$ be a field, let $P=K\left[x_{1}, \ldots, x_{n}\right]$, and let $f_{1}, \ldots, f_{s} \in P$, let $\bar{K}$ be the algebraic closure of $K$, and let $\bar{P}=\bar{K}\left[x_{1}, \ldots, x_{n}\right]$. By $\mathcal{S}$ we denote the system of polynomial equations

$$
\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\vdots \\
f_{s}\left(x_{1}, \ldots, x_{n}\right)=0
\end{array}\right.
$$

By $I$ we denote the ideal $\left(f_{1}, \ldots, f_{s}\right)$, by $A$ the quotient ring $P / I$, and by $\bar{A}$ the quotient ring $\bar{P} / I \bar{P}$. As usual we assume that $l$ is zero-dimensional so that $A$ is a finite dimensional $K$-vector space by the Finiteness Criterion.

## Definition

Given a polynomial $f \in P$ we consider the following $K$-linear map $m_{f}: A \longrightarrow A$ defined by $m_{f}(g \bmod I)=f g \bmod I$, and call it the multiplication map defined by $f$. We also consider the induced $K$-linear map on the dual spaces $m_{f}^{*}: \boldsymbol{A}^{*} \longrightarrow \boldsymbol{A}^{*}$ defined by $m_{f}^{*}(\varphi)=\varphi \circ m_{f}$.

## A first example

## Example

- Let $P=\mathbb{R}[x], f=x^{2}+1, I$ the ideal generated by the polynomial $x^{3}-x^{2}+x-1=(x-1)\left(x^{2}+1\right)$, and $A=P / I$.
- We consider the multiplication map $m_{f}: A \longrightarrow A$ and describe it via its representation with respect to the $\mathbb{R}$-basis of $A$ given by $\left(1, x, x^{2}\right)$.
- Using the relations $x^{3}+x=x^{2}+1 \bmod I, x^{4}+x^{2}=x^{2}+1 \bmod I$, we deduce that the matrix which represents $m_{f}$ is

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & 0 \\
1
\end{array}\right)
$$

- It is singular, hence 0 is an eigenvalue. Moreover, $\mathcal{Z}(I)=\{1, i,-i\}$, and we see that $0=f(i)=f(-i)$, but $\mathcal{Z}_{\mathbb{R}}(I)=\{1\}$ and $0 \neq f(1)$
- Next theorem makes an important link between $\mathcal{Z}(I)$ and eigenvalues, and the example motivates the reason why we need the assumption that $\mathcal{Z}_{K}(I)=\mathcal{Z}(I)$.



## The matrix $M_{f E}^{E}$

- If $E=\left(t_{1}, \ldots, t_{\mu}\right)$ is a row of polynomials whose residue classes form a $K$-basis of $A=P / I$, then we use the short form $f E$ to mean the row of vectors $\left(f t_{1}, \ldots, f t_{\mu}\right)$.
- A way of describing $m_{f}$ explicitly is to fix such a $K$-basis $E$ of $A$ and represent $m_{f}$ via the matrix $M_{f E}^{E}$ where the $j$-column of $M_{f E}^{E}$ is given by the coefficients of $f t_{j}$ when written in terms of $E$. In other words, if

$$
f t_{j}=\sum_{k=1}^{\mu} a_{k j} t_{k} \bmod I
$$

then the $j^{\text {th }}$ column of $M_{f E}^{E}$ is $\left(a_{1 j}, a_{2 j}, \ldots, a_{\mu j}\right)^{\text {tr }}$. A more compact way of expressing this fact is the following formula

$$
f E=E M_{f E}^{E} \quad \bmod I
$$

- Usually a $K$-basis $E$ is an order ideal of monomials and hence we may assume that $t_{1}=1$. We may as well assume that the residue classes of some of the indeterminates (most of the times all) are among the entries of $E$.


## Eigenvalues and coordinates of zeros

## Corollary <br> Let $x_{i}$ be such that its class is among the entries of $E$. Then the $x_{i}$ coordinates of the points in $\mathcal{Z}_{K}(I)$ are the eigenvalues of $m_{x_{i}}$.

## Proof

It follows immediately from the theorem, since $x_{i}(p)$ is exactly the $x_{i}$ coordinate of $p$.

We observe that, as in the case of the Lex-method, we need the zeros of a polynomial (in this case the characteristic polynomial), and hence we hit again an intrinsic obstacle: we need approximation.

The above corollary gives a first method for computing $\mathcal{Z}_{K}(I)$, however what we get is only a grid of points which is usually a much larger set than $\mathcal{Z}_{K}(I)$. Sometimes we can do better, but we need a description of eigenvectors. In the sequel we use the following terminology.


# Non-derogatory matrices I <br> <br> Definition <br> <br> Definition <br> A square matrix $M \in \operatorname{Mat}_{\mu}(\mathbb{C})$ is said to be non-derogatory if the following equivalent conditions are satisfied. <br> ( All eigenspaces of $M$ are 1 -dimensional. <br> (2) The Jordan canonical form of $M$ has one Jordan block per eigenvalue. <br> (3) MinPoly $_{M}=$ CharPoly $_{M}$. 

Next corollary is one of the many variations which can be played around
the above result. It highlights the importance of non-derogatory matrices.

## Non-derogatory matrices II

## Corollary

Let $1, x_{1}, \ldots, x_{n}$ be the first $n+1$-entries of $E$, assume that the matrix $\left(M_{f E}^{E}\right)^{\text {tr }}$ is non-derogatory, let $\mathcal{Z}_{K}(I)=\mathcal{Z}(I)=\left\{p_{1}, \ldots, p_{r}\right\}$, and
let $W_{1}, \ldots, W_{r}$ be the 1 -dimensional eigenspaces corresponding to
$f\left(p_{1}\right), \ldots f\left(p_{r}\right)$ respectively. If we
choose $v_{j}=\left(a_{1 j}, a_{2 j}, \ldots, a_{r+1, j}, \ldots\right) \in W_{j} \backslash 0$, for $j=1, \ldots, r$, then we have the equalities $p_{j}=\left(a_{2 j} / a_{1 j}, \ldots, a_{r+1, j} / a_{1 j}\right)$ for $j=1, \ldots, r$.

Proof.
We use the above corollary about eigenvectors to deduce that the vector $E\left(p_{j}\right)=\left(t_{1}\left(p_{j}\right), \ldots, t_{\mu}\left(p_{j}\right)\right)$ is an $f\left(p_{j}\right)$-eigenvector of $t$, hence it is a non-zero vector in $w_{j}$ for $j=1$,
The assumption about $\left(M_{F E}^{E}\right)^{\text {tr }}$ means that all the $w_{j}$ 's are 1 -dimensional vector spaces, hence the vectors $E\left(p_{j}\right)$ and $v_{j}$ are proportional.
On the other hand, we know that $t_{1}=1$, hence $t_{1}\left(p_{j}\right)=1$, hence $a_{1 j} \neq 0$. We divide the coordinates of $v_{j}$ by $a_{1 j}$ and conclude.

We observe that the computation of eigenspaces creates a new difficulty. Since the eigenvalues are in general given up to a certain degree of accuracy, the eigenspaces are not computable as kernels of linear maps.

## Example I

## Example

- Let $/$ be the ideal in $P=\mathbb{R}[x, y]$ generated by the set of polynomials $\left\{x^{2}+4 / 3 x y+1 / 3 y^{2}-7 / 3 x-5 / 3 y+4 / 3, y^{3}+10 / 3 x y+7 / 3 y^{2}-\right.$ $\left.4 / 3 x-20 / 3 y+4 / 3, x y^{2}-7 / 3 x y-7 / 3 y^{2}-2 / 3 x+11 / 3 y+2 / 3\right\}$.
- We can check that this set is a DegRevLex-Gröbner basis, hence $E=\left[1, x, y, x y, y^{2}\right]$ is a basis modulo $I$.
- By computing $\operatorname{NF}\left(x^{2}, l\right), \mathrm{NF}\left(x^{2} y, l\right), \mathrm{NF}\left(x y^{2}, l\right)$, we get

- Its characteristic polynomial is $x^{5}-5 x^{4}+7 x^{3}+x^{2}-8 x+4$ which factorizes as follows $(x+1)(x-1)^{2}(x-2)^{2}$. Since we can check (with CoCoA) that $\operatorname{dim}\left(W_{1}\right)=2$, we deduce that $\left(M_{x E}^{E}\right)^{\text {tr }}$ is derogatory.


## Example II

Example (continued)

- By computing $\mathrm{NF}\left(x y^{2}, I\right), \mathrm{NF}\left(y^{3}, l\right)$, we get the multiplication matrix

$$
M_{Y F E}^{E}=\left(\begin{array}{rrrrr}
0 & 0 & 0 & -2 / 3 & -4 / 3 \\
0 & 0 & 0 & 2 / 3 & -4 / 3 \\
1 & 0 & 0 & -1 / 3 & 20 / 3 \\
0 & 1 & 0 & -17 / 3 & -10 / 3 \\
0 & 0 & 1 & 7 / 3 & -7 / 3
\end{array}\right)
$$

whose transposed is

$$
\left(M_{y E}^{E}\right)^{\mathrm{tr}}=\left(\begin{array}{rrrrr}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
-2 / 3 & 2 / 3 & -11 / 3 & 7 / 3 & 7 / 3 \\
-4 / 3 & 4 / 3 & 20 / 3 & -10 / 3 & -7 / 3
\end{array}\right)
$$

- Its characteristic polynomial is $y^{5}-5 y^{3}+4 y$ which factorizes in the following way $y(y-1)(y+1)(y-2)(y+2)$.
- We check that all the eigenspaces are 1 -dimensional, hence the matrix $\left(M_{y E}^{E}\right)^{\text {tr }}$ is non-derogatory.
- We may choose one non-zero vector inside each of them, for instance the vectors $v_{1}=(1,1,0,0,0), v_{2}=(1,1,1,1,1)$, $v_{3}=(1,2,-1,-2,1), \quad v_{4}=(1,-1,2,-2,4), \quad v_{5}=(1,2,-2,-4,4)$.
- Therefore, five points in $\mathcal{Z}(1)$ are $(1,0),(1,1),(2,-1),(-1,2),(2,-2)$. But $\operatorname{dim}_{\mathbb{R}}(P / I)=5$, hence $\mathcal{Z}_{\mathbb{R}}(I)=\mathcal{Z}(I)=\{(1,0),(1,1),(2,-1),(-1,2),(2,-2)\}$

