THE DEFICIENCY MODULE OF A CURVE AND ITS
SUBMODULES

GUNTRAM HAINKE AND ALMAR KAID

1. INTRODUCTION

This is a summary of the fifth tutorial handed out at the CoCoA
summer school 2005. We discuss the so-called deficiency module for
projective curves. In particular, we provide the necessary CoCoA (ver-
sion 4.6) codes for implementation. We thank Holger Brenner, Martin
Kreuzer and Juan Migliore for helpful discussions.

Let K be a field and P := KJxy,...,x,] be a polynomial algebra
equipped with the standard grading. By m := (zg,...,z,) we denote
the graded maximal ideal. Moreover, by I C P we denote a homoge-
neous ideal defining a curve C' C P"* = P, = Proj P and let R := P/l
be the coordinate ring of C'. Throughout this article we assume that
all ideals defining a projective subscheme are saturated, i.e.

I=r"={fePm-fcCI for somet >0}

This can be checked with CoCoA, for example, with the function

Define IsSaturated(I)

M:=Ideal(Indets());
Return Saturation(I,M)=I;
EndDefine;

Definition 1.1. The deficiency module or Hartshorne-Rao module of
a curve C' C P" is the graded P-module

M(C) == @ H'(P", To (1)),

teZ
where o = INC is the ideal sheaf corresponding to I¢.

The deficiency module is also describable as the first local cohomol-
ogy of R = P/I¢.
1
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Proposition 1.2. Let C C P"*, n > 2, be a curve with coordinate ring
R = P/Ic. Then M(C) = H}(R).

Proof. From the short exact sequence
0—Ig—P—R—0
we derive the exact sequence in cohomology
Hy(P) — Hy(R) — Hy(Ic) — Hy(P).

Since n > 2, we have H}:(P) = 0 = H2(P) (cf. [2, Corollary A1.6)).
Therefore, HL(R) =2 H2(I¢). Now the assertion follows, since

Hy(Ie) = @ H'(P", e (1))
teZ

(cf. [2, Corollary A1.12(2)]). O

Definition 1.3. A curve C' C P" is called arithmetically Cohen-Mac-
aulay if its coordinate ring R = P/l is Cohen-Macaulay, i.e. dim R =
depth R.

We have the following characterization for arithmetic Cohen-Macau-
lay curves utilizing its deficiency module.

Corollary 1.4. Let C C P", n > 2, be a curve. Then C is arithmeti-
cally Cohen-Macaulay if and only if M(C) = 0.

Proof. Let C be arithmetically Cohen-Macaulay. Then we have that
Hi(R) = 0 for all i < 2, since dim R = depth R = 2. Hence by
Proposition 1.2 we have M(C) = HL(R) = 0. On the other hand,
supppose that M (C) = H}(R) = 0. Because I¢ is saturated, H)(R) =
0. Since dimR = 2, we have H2(R) # 0 and H.(R) = 0 for all
1 > 2. Hence dim R = depth R, i.e. R is Cohen-Macaulay and therefore
C' is arithmetically Cohen-Macaulay. (For all the vanishing and non-
vanishing statements cf. [2, Proposition A1.16].) O

By using Proposition 1.2 above we can express the deficiency module
of a curve in terms of Ext-modules.

Theorem 1.5. Let C C P", n > 2, be a curve with coordinate ring
R. Then the modules M(C) and Homg (Extb(R, P), K)(n 4+ 1) are
isomorphic as graded P-modules.

Proof. By Proposition 1.2, we have M (C) = HL(R). The local duality
Theorem (cf. [2, Theorem A1.9]) yields

HL(R) = Extb(R, P(—n — 1))* = Homg (Ext»(R, P), K)(n + 1)
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and proves the claim. O

Theorem 1.5 allows a quick computation of the K-dual of M(C)
with CoCoA, using the implemented Ext-package. This is convenient
for most of our computations in this paper. Therefore, we define
the CoCoA-function DeficiencyDual(I) which takes the vanishing
ideal I of a curve C' and computes a presentation of the Ext-module
Ext'’: (R, P), where R is the coordinate ring of C:

Define DeficiencyDual(I)
N:=NumIndets()-1;

Return Ext(N,CurrentRing()/I,Ideal(1));

EndDefine;

We now turn to finding a presentation of the K-dual of a P-module
M which is a finite-dimensional K —vector space. Here we follow es-
sentially the explanations in [1]. So let M = P¥/N be a presentation
of M and < a module term ordering on P*. Then a K —vector space
basis of M is given by

B:=T"" ey, ... e)\LT-(N),

where T"*1{ey, ..., e;) denotes the set of terms in K[z, ...,z,]" and
LT (N) the leading term module of N with respect to <. For te; € B,
let ¢ ; denote the dual K-linear map, i.e. ¢ ;(te;) =1 and ¢y ;(v) =0
for all v € B,v # te;. By definition of the P-linear structure on M™*,
we have f-p:m — o(f-m) for f € P, € Homg (M, K) and m € M.
This implies that ;- p;; = 0if x; { ¢t and z; - @13 = @y, if z;t’ =t
In particular, a minimal system of generators for the K-dual M* as a
P—module is given by

E:={pi:zj te; e LT(N) for j=0,...,n}.

Clearly, there are two kinds of relations we have to take into account.
The syzygies involving only one element correspond to the annihilator

)

Annp g = <$80, BREE 2
where b; = deg,.(t) + 1. The syzygies involving two elements are gen-
erated by those of the form
t ' t Ly
gcd(t,t’)(pt’Z gcd(t,t’)% I
where ¢ = j. Similar to the reasoning in [1, Proposition 5.3], it can
be shown that these syzygies already generate the syzygy module. We

sum up this discussion in the following proposition.
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Proposition 1.6. Let M = P¥/N be a finite-dimensional K—vector
space, < a module term ordering on P* and E := {t, - ei(n)s A €
A} a monomial basis for M. Delete the subset {v € E : z;-v €
E for some j} to obtain E' = {vy, A\ € '}, I C A. Let N' C P" denote
the submodule generated by

b; .
JULAUA,j =0,...,n,A€eT

where vy = tye;\) and bj\ = deng (tx) + 1 and
£ t,
gcd(tk,ty)vA-_ gcd_(t,\,t,y)v7
where i(\) = i(y), N\, € T'. Then there is a presentation
Homg (M, K) = P"/N'.

The implementation in CoCoA of this is somewhat lengthy. We
include it here because the procedures NormalBasis and SocleProj
which compute a K —vector space basis and the minimal generators
come in handy in other instances too.

Define NormalBasis(M,Coord)
G:=Gens (LT(M));
N:=Len(G[1]);
G:=[Vector(Q) | Q In G];
NBasis:=[];
L:=[Comp(List(G[J]),Coord) | J In 1..Len(G)];
IList:=QuotientBasis(Ideal(L));
NBasis:=Concat (NBasis, [Q*E_(Coord,N) | Q In IList]);
Return NBasis;
EndDefine;

Define NormalBasisM(M)

G:=Gens (M) ;

Nbr:=Len(G[1]);
Return ConcatLists([NormalBasis(M,I) | I In 1..Nbrl);
EndDefine;

Define SocleProj(M,Coord)
NB:=NormalBasis (M, Coord) ;
For I:=0 To NumIndets()-1 Do
NB:=[Q In NB | Not(IsIn(x[I]*Q,NB))];
EndFor;
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Return NB;
EndDefine;

Define SocleProjM(M)

G:=Gens (M) ;

Nbr:=Len(G[1]);
Return ConcatLists([SocleProj(M,I) | I In 1..Nbr]);
EndDefine;

Define KDual (M)
T:=SocleProjM(M) ;
Nbr:=Len(T) ;
N:=NumIndets()-1;
Syz1:=[1;
For I:=1 To Nbr Do
Syz1:=Concat (Syz1, [x[A]~ (Deg(T[I],
x[A])+1)*E_(I,Nbr) | A In O..N]);
EndFor;
Syz2:=[1;
For I:=1 To Nbr-1 Do
Pos:=FirstNonZeroPos(T[I]);
For J:=I+1 To Nbr Do
If FirstNonZeroPos(T[J])=Pos Then
El:=FirstNonZero(T[I]); E2:=FirstNonZero(T[J]);
G:=GCD(E1,E2); RIJ:=E1/G; RJI:=E2/G;
Syz2:=Concat (Syz2, [RIJ*E_(I,Nbr)-RJI*E_(J,Nbr)]);
EndIf;
EndFor;
EndFor;
Syz:=Concat (Syz1,Syz2) ;
Return(Module (Syz)) ;
EndDefine;

In a special case, the following proposition allows an alternative way
to obtain the deficiency module.

Proposition 1.7. Let C' C P* be a curve which s the disjoint union
of two components Cy and Co which are both arithmetically Cohen-
Macaulay with vanishing ideals Ic, and Ic, respectively. Then M(C) =
P/(Ic, + Ic,) as a graded P-module.
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Proof. Let X := Spec R be the cone of C, let X; = Spec P/I¢,, and
let U, U; be the corresponding punctured schemes (without the vertex),
1 =1,2. We consider the short exact sequence

0 —I'(X,0x) —I'(U,0Ox) — H:Y(R) — 0

which combines sheaf cohomology and local cohomology (cf. [4, Exer-
cise 2.3(e)]). Since I¢, N Ic, = Ic we have the short exact sequence

0— R=P/lc — P/Ic, ® P/Ic, — P/(I¢, + Ic,) — 0.
Since I'(X,Ox) = R = P/I¢ and by assumption
I'(U,0x) =T (U1,0x,) ®T'(Uz,0x,) = P/Ic, ® P/l
holds, we get M (C) = P/(Ic, + Ic,)- O

2. EXAMPLES FOR DEFICIENCY MODULES OF CURVES

In the following we provide some examples of computations of de-
ficiency modules via CoCoA. For this purpose we provide the useful
function GenLinForm(N). This function approximates a general linear
form, i.e. it produces a linear form with randomized integer coefficients
in the interval [— NN, N]. This is sometimes computationally more con-
venient than Randomized (DensePoly(1)):

Define GenLinForm(N);
Return Sum([Rand(-N,N)*L | L In Indets()]);
EndDefine;

Example 2.1. Firstly, we consider the curve C given as the union of
two skew lines in P3.
We realize the situation in CoCoA via the commands

Use P::=Q[x[0..3]1];
IL_1:=Ideal([GenLinForm(10),GenLinForm(10)]1);
IL_2:=Ideal([GenLinForm(10) ,GenLinForm(10)]);

Now we apply Proposition 1.7 and set
I:=IL_1+IL_2;
and compute the deficiency module of C via
MC_1:=P/I;
By using the command
Hilbert (MC_1);
we obtain the Hilbert function of M(C}) and get the CoCoA answer:
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H(0) =
H(t) = 0 for t >=
ie. M(Ch)o = K and M(Cy); = 0 for ¢t > 0. In particular C is not
arithmetically Cohen-Macaulay.

[
=

Example 2.2. Let Cy := V, (voxo — 22, 2123 — 23, w073 — T122) C P3
be the twisted cubic curve. So we use the commands

Use P::=Q[x[0..3]];
IC_2:=Ideal(x[0]x[2]-x[1]1"2,x[1]1x[3]-x[2]"2,
x[01x[3]-x[1]1x[2]);
and compute the resolution of P/Ix, by
Res(P/IC_2);
CoCoA yields:
0 --> P72(-3) --> P"3(-2) -—> P

We see that pd(P/I¢,) = 2 = codim I, where codim I = min{ht(p) :
I C p minimal}. Hence R = P/I¢, is Cohen-Macaulay and therefore
by Corollary 1.4 we get M (C2) = 0.

Example 2.3. Here we consider the smooth rational quartic curve
C3 C P? defined as the vanishing of the 2 x 2 minors of the matrix

i) CL’% Tr1x3 T2
T1 ToTo x% r3 )
We realize the vanishing ideal of the curve C's by the commands

Use P::=Q[x[0..3]];

M:=Mat ([[x[0],x[1]"2,x[1]1x[3],x[2]],
[x[1],x[0]1x[2],x[2]1"2,x[3]111);

IC_3:=Ideal(Minors(2,M));

Now we look at the K-dual of the deficiency module M (Cs3) by
MC_3:=DeficiencyDual(IC_3);

If we compute the Hilbert function of M (C3) via
Hilbert (MC_3);

we get

H(0) =
H(t) = 0 for t >=

|
-



8 GUNTRAM HAINKE AND ALMAR KAID

Hence M(C3) is one-dimensional.

Example 2.4. In this example we want to study the deficiency module
of a curve Cy C P3 given as the disjoint union of a line and a plane
curve of degree d for some d € N.
So we realize the situation (for d = 3) with CoCoA in the following

way:

Use P::=Q[x[0..3]];

IL:=Ideal ([GenLinForm(10),GenLinForm(10)]);

Use S::=Q[x[0..2]1];

D:=3;
F:=Randomized (DensePoly (D)) ;
Use P;

IPC:=Ideal (BringIn(F),x[3]);
Now we apply again Proposition 1.7 and compute the deficiency module
M(C4) via
I:=IL+IPC;
MC_4:=P/1;
Now we compute the Hilbert function of M (Cy) by
Hilbert (MC_4);
and get

H(0) 1
H(1) =1
H(2) =1
H(t) =0 for t >= 3

i.e. in the case d = 3 we have dimg (M (Cy)) = 3. If we do this for
various values d we get dimg (M (Cy)) = d as it should be.

Example 2.5. We want to compute the deficiency module for a curve
Cs C P? given as the union of a line and a plane curve of degree d,
d € N, which meet in (at least) one point.

To do this we fix the (intersection) point y := Vi (z1,x2,z3). So we
compute the vanishing ideal of C5 (for d = 3) in the following way:

Use P::=Q[x[0..3]];
G_1:=Sum([Rand(-10,10)*x[T]|IT In 1..3]);
G_2:=Sum([Rand(-10,10)*x[T]|IT In 1..3]);
IL:=Ideal(G_1,G_2);
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So Iy, is the ideal corresponding to a line in P? passing through y. Now
we construct an appropriate plane curve meeting the line L in the point

Y.
Use S::=Q[x[0..2]1];

D:=3;
F:=Randomized (DensePoly(D)-x[0]"D);
Use P;

IPC:=Ideal (BringIn(F),x[3]);

Hence we get the vanishing ideal of C5 by
IC_5:=Intersection(IL,IPC);

and obtain the K-dual of the deficiency module as usual by
DeficiencyDual (IC_5);

CoCoA yields:
Module ([0])

As in the previous example we get the same result for various values of
d. So it is arithmetically Cohen-Macaulay.

Example 2.6. We consider the coordinate cross in P? defined by the
intersection I.oss of the ideals (z1,x2), (z1,23) and (x2,z3) in P =
K[z, z1, 22, x3]. We realize I in CoCoA via

Use P::=Q[x[0..3]1];
L:=[Ideal(x[1],x[2]),Ideal(x[1],x[3]),Ideal(x[2],x[3]1)]1;
ICross:=IntersectionList(L);

Now we compute a regular sequence of type (3, 3) in I;;oss which defines
a complete intersection curve containing the coordinate cross. To do
this we use the function GenRegSeq(I,L) defined in [3]:

ICi:=Ideal(GenRegSeq(ICross, [3,3]));

Now we look at the vanishing ideal Ix of the residual curve X by
IX:=ICi:ICross;

If we compute the Hilbert polynomial of X via
Hilbert (P/IX);

we get HPx (t) = HPp/;, (t) = 6t —2 for t > 1, i.e. X is a curve of
degree 6 and genus 3. Furthermore, by using

DeficiencyDual (IX);
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we notice that M (X) = 0, i.e. by Corollary 1.4 the curve X is arith-
metically Cohen-Macaulay. We check with CoCoA that X is a smooth
curve by computing the singular locus:
Define IsSmooth(I)
J:=Jacobian(Gens(I));
L:=List (Minors(1,J));
Singloc:=Radical(Ideal(L)+I);
Return Singloc=Ideal(Indets());
EndDefine;

IsSmooth(IX);
Next, we construct another smooth curve in P of degree 6 and genus

3 which is not arithmetically Cohen-Macaulay. For this we go back to
Example 2.1 and consider the curve C; given as the union of two skew
lines in P2. We obtain the vanishing ideal of C; by

IC_1:=Intersection(IL_1,IL_2);
We have already shown that C is not arithmetically Cohen-Macaulay
and it is known that this is invariant under linkage. In the first step
we link the curve C} via a complete intersection curve of type (3,4) to
a curve X7. To do this we use the commands:

ICi_1:=Ideal(GenRegSeq(IC_1,[3,4]));

IX_1:=ICi_1:IC_1;
Now we link the curve X further via a complete intersection curve of
type (4,4) to a curve Xo:

ICi_2:=Ideal(GenRegSeq(IX_1,[4,4]));

IX_2:=ICi_2:IX_1;
Now we check the Hilbert polynomial with

Hilbert(P/IX_2);
and get HPx, () = HPpr, (t) =6t — 2 for t > 1. And indeed, we use

DeficiencyDual (IX_2);
to check that M (X3) # 0, i.e. X3 is not arithmetically Cohen-Macaulay.
Finally, the smoothness of X5 is established via
IsSmooth(IX_2);

3. A DEGREE BOUND FOR CURVES IN P3

In this section we want to study a degree bound for curves in P3
given in [5] and compute some examples. In the sequel C' denotes a
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curve in P3. Firstly, we define a submodule of the deficiency module
M(C) of C.

Definition 3.1. Let ¢,/ € P; be two general linear forms and let
A := (£,0) denote the ideal they generate. Then we define the P-
submodule K4 C M(C) as the submodule annihilated by A, i.e

’CA =0 :M(C) A.

We want to compute with CoCoA a presentation of the module 4.
To do this, we need a presentation for the annihilator Ky := 0 :jzcy (£)
first, where ¢ € P; is a general linear form. So we write a function
K_L(I), which computes a presentation of K, for a curve defined by
the ideal 1.

Define K_L(I)
MCdual:=DeficiencyDual(I);
MC:=KDual (MCdual) ;
GensMC:=Gens (MC) ;
N:=Len(GensMC[1]) ;
F:=GenLinForm(10) ;
L:=Concat([F*E_(I,N) | I In 1..N],GensMC);
S:=Syz(L);
GensCol:=[Vector(First(List(T),N)) | T In Gens(S)];
Return Module(GensCol);
EndDefine;
With the help of the function K_L(I) above we can easily write a
function K_A(I), which computes a presentation of the submodule
K4 C M(C) for a curve defined by the ideal I:
Define K_A(I)
KL_1:=K_L(I);
KL_2:=K_L(I);
Return(Intersection(KL_1,KL_2));
EndDefine;

Definition 3.2. Let M be a finitely generated graded P-module with
graded minimal free resolution

bs bo
0 — @P(_ds,]) s e — @P(—d()’j) — M — 0.
j=1 J=1
We define
rni(Al):::Injn{d@1,-~-7dib¢}~
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The following theorem (cf. [5, Corollary 2.3]), which provides a
lower bound for the degree of a curve in P3, builds the fundament for
our further studies.

Theorem 3.3. Let C C P3 be a curve. If ma(P/Ic) < mi(Ka) + 2
then

deg(C) > % (P Ie) - ma(P)Te) — dimg (K a).

Example 3.4. We come back to Example 2.1 and consider the curve
C given by the union of two skew lines in P3.

Since we have already shown that M (C;) = K # 0, we know that
(' is not arithmetically Cohen-Macaulay (cf. Corollary 1.4). Next we
compute the vanishing ideal of C] by

IC_1:=Intersection(IL_1,IL_2);
where IL_1 and IL_2 were defined in Example 2.1. Now we compute
the Hilbert polynomial of the curve C] utilising the command
Hilbert(P/IC_1);
and get
H(0)
H(t)

non
N =
ct
+
N
Hh
@]
Pt
ct
A\
I

i.e the Hilbert polynomial of Cy equals HP¢, () = 2t + 2. Hence
degCy = 2. Now we obtain the numbers m;(P/I¢, ) and ma(P/I¢,)
by computing the resolution of P/I¢;:

Res(P/IC_1);
The answer of CoCoA is

0 -=> P(-4) --> P74(-3) --> P74(-2) -—> P

Thus we get m1(P/Ic,) = 2 and ma(P/Ic,) = 3. This example illus-
trates that the stronger degree bound

des(C) > 5 -ma(P/Ic) - ma(P/Tc)

does not hold in general for curves which are not arithmetically Cohen-
Macaulay, since for the curve C; the right hand side equals 3.

Example 3.5. We consider a curve C' C P? given as the disjoint union
of two complete intersections of type (16, 16) (cf. also [5, Example 2.7]).

To simplify matters we consider the complete intersections [ :=
(248, 21%) and I := (23% 21%). We realise the vanishing ideal of C' via
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Use P::=Q[x[0..3]1];
I_1:=Ideal(x[0]"16,x[1]1"16);
I_2:=Ideal(x[2]"16,x[3]"16);
IC:=Intersection(I_1,I_2);
We use Proposition 1.7 to compute the deficiency module M (C):
I:=I_1+I_2;
MC:=P/I;
Since I + I is an m-primary ideal, the Hilbert function of M(C) =
P/(I;+12) has only finitely many non-zero values. Therefore, we obtain
the dimension of M (C) by
Sum:=0;
T:=0;
While Hilbert (MC,T)<>0 Do
Sum:=Hilbert (MC,T)+Sum;
T:=T+1;
EndWhile;
Now the command Sum; yields dimg (M (C)) = 65536. We compute
the Hilbert polynomial of our curve C' as usual by

Hilbert (P/IC);
and verify that the degree of C' is 512 = 2 - 162 as expected. Next we
compute the minimal graded free resolutions of P/Ic with
Res(P/IC);
and get
0 --> P(-64) --> P~4(-48) --> P"4(-32) --> P
Hence m1(P/1¢) = 32 and ma(P/Ic) = 48. Now we compute a rep-
resentation for the annihilator Ky for a general linear form ¢. Since
we have given the deficiency module M(C) = P/I as a quotient of
the polynomial ring with I = I; 4 I in this special example, we can
compute it without using the Ext-package in the following way: We
have Ky = {(g+ 1) € P/I : {-(g+ 1) = 0+ I}. Therefore we have
to compute the preimage of K, in the polynomial ring P which equals
the ideal quotient J; := I :p (¢). To do this we use the commands
L_1:=Ideal(GenLinForm(10));
J_1:=I:L_1;
To get the dimension of K,y as a K-vector space we compute at first via
Len(QuotientBasis(J_1));
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the lenght of a K-basis of P/J; which equals 62800. Hence we have
dimg (K¢) = 65536 — 62800 = 2736. In the same way we compute a
representation of the submodule K4 C M (C):

L_2:=Ideal(GenLinForm(10),GenLinForm(10));
J_2:=1:L_2;

The command
Len(QuotientBasis(J_2));
yields dimg (P/J2) = 65365 and therefore we have

dimg (K4) = 65536 — 65365 = 171.

Next we want to compute the value m;(K4), i.e. the minimal degree
of a generator of 4. To do this we compute the graded minimal free
resolution of P/I and P/.Js respectively by

Res(P/I);
Res(P/J_2);

and get
0 —-> P(-64) --> P°4(-48) --> P"6(-32) --> P"4(-16) --> P

0 -=> P72(-63) -—> P(-42) (+)P~2(-43) (+)P~8(-47) (+)P(-62)
-=> P76(-32) (+)P"2(-41) (+)P~4(-42) (+)P~4(-46) -—>
P~4(-16) (+)P(-40) (+)P~2(-41) --> P

Since K4 = Jy/I we see that my(K4) = 40. Altogether we have
mQ(P/IC) =48 > 42 =40+ 2 = ml(ICA) + 2
and

1
degC' =512 <597 = 3248171

= % -my(P/I¢c) - mo(P/Ic) — dimg (K 4).

Hence this example illustrates that the assumption
ma(P/Ic) <mi(Ka) + 2
in Theorem 3.3 is necessary and can not be dropped.
Example 3.6. We take a (non-reduced) curve C C P3 defined by the
ideal Ic = (z0,71)'%? + (f), where f € (wo,21) is a generic form of

degree 15 (cf. also [5, Example 2.8]). This can be realized in CoCoA
via the following instructions:
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Use P::=Q[x[0..3]1];

J:=Ideal(x[0],x[1])"12;

F:=x[0] *GenForm(14,50)+x[1]*GenForm(14,50) ;
IC:=J+Ideal(F);
Here the procedure GenForm(D,N) returns a general form of degree D
with randomized coefficients in the interval [-N, N]:
Define GenForm(D,N)

V:=Gens (Ideal (Indets())"D);

Return Sum([Rand(-N,N)*V[I] | I In 1..Len(V)]);
EndDefine;
If we compute the Hilbert polynomial of C' with
Hilbert (P/IC);

we get
HPq(t) = HPp)p (t) = 12t + 870

for t > 24, i.e. deg(C) = 12. Furthermore, the computation of the
minimal graded free resolution of P/I¢ via

Res(P/IC);
yields

0 -—> P~11(-27) --> P~12(-13) (+)P"12(-26)

-=> P713(-12) (+)P(-15) -—> P
Hence my(P/Ic) = 12 and ma(P/I¢) = 13. We obtain the deficiency
module M (C) and its submodule K4 via

MC:=KDual (DeficiencyDual(IC));

KA:=K_A(MC) ;
The dimension of the deficiency module can be calculated, for example,
as the length of a normal basis defined in Section 1. The command

Len(NormalBasisM(MC)) ;
then gives dimyx M (C') = 56056. Likewise,

Len(NormalBasisM(KA));
gives the codimension of K4 in M(C), which yields dimg K4 = 66.
The problem of determining m;(K4), i.e. the degree of a minimal gen-
erator of IC 4, is more delicate, since degree shifts are not supported in
the current version of CoCoA. We work around this as follows: Look-

ing at the resolution of Ic, we find that Ext3(P/I¢, P) = P'*(27)/N.
Calculating the Hilbert function via
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Hilbert(DeficiencyDual (IC));

we get nontrivial terms in degrees 0 to 166, i.e. Ext®>(P/I¢, P) is con-
centrated in degrees —27 to 139. The K-dual then is concentrated in
degrees —139 to 27, and taking the degree shift into account as given
in Theorem 1.5, we see that the last non-trivial component of the de-
ficiency module is in degree 23. Calculating the Hilbert function of
K4 with the help of HilbertSeriesShifts we find that the Hilbert
function of KA is of the shape

HFi, : 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.

Taking the various shifts and twists into account, this has to be inter-
preted as

HFi,(t) =t —12
for 13 < ¢t < 23 and HF,(t) = 0 otherwise. In particular, we get
mi (lC A) =13.
Hence the assumption

of Theorem 3.3 holds and the degree bound given there is sharp since
we have

1 1
deg(C) = 12 = 3121366 = o -m1(P/Ic) - ma(P/Ic) — dim (Ka)-
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