Contents

I Preamble
I-1 Version
I-1.1 Preface
I-1.2 System Distribution
I-1.3 System Requirements
I-1.4 Copyright and Trademarks
I-1.5 Acknowledgments

II Introduction to CoCoA
II-1 The CoCoA System
II-1.1 An Overview of the System
II-1.2 System Structure
II-1.3 Contributions
II-1.4 CoCoA and Macaulay
II-1.5 Pointers to the Literature

II-2 Tutorial
II-2.1 A Tutorial Introduction to CoCoA
II-2.2 Setting Up CoCoA for the Tutorial
II-2.3 Entering Commands
II-2.4 Examples of Entering Commands
II-2.5 More on Entering Commands
II-2.6 After the Tutorial
II-2.7 Arithmetic
II-2.8 Variables
II-2.9 The Variable “It”
II-2.10 Making Lists
II-2.11 Setting Up a Ring
II-2.12 A Groebner Basis Example
II-2.13 Eliminating Variables
II-2.14 Using More Than One Ring
II-2.15 Substitutions
II-2.16 First Functions
II-2.17 More First Functions
II-2.18 Rings Inside User-Defined Functions
II-2.19 Rational Normal Curve
II-2.20 Generic Minors
II-2.21 Leading Term (Initial) Ideals, Generic Polynomials
II-2.22 Ring Mapping Example
II-2.23 Output to a File
II-2.24 Finite Point Sets: Buchberger-Moeller
II-2.25 Syzygies and Resolution Example

17
19
19
19
19
20
20
20
17
19
23
23
23
24
24
24
21
23
23
24
24
3
27
27
27
28
28
28
28
29
29
29
30
31
31
31
32
33
33
34
34
35
35
37
38
39
39
39
40
40
III The CoCoA Programming Language

III-1 Introduction to CoCoA Programming

III-2 Language Elements

III-3 Operators

III-4 Evaluation and Assignment

III-5 User-Defined Functions

III-6 Flow Control: Conditional Statements and Loops

III-7 Input/Output

III-8 Memory Management

II-2.26 Factoring Polynomials
III-9 CoCoA Packages

- III-9.1 Introduction to Packages .. 71
- III-9.2 First Example of a Package 71
- III-9.3 Package Essentials .. 72
- III-9.4 Package Sourcing and Autoloading 72
- III-9.5 Global Aliases .. 73
- III-9.6 Local Aliases .. 74
- III-9.7 More Examples of Packages 74
- III-9.8 Package Initialization .. 75
- III-9.9 Sharing Your Package ... 76
- III-9.10 Commands and Functions for Packages 76
- III-9.11 Supported Packages .. 76
- III-9.12 K-Algebra Homomorphisms 77
- III-9.13 Galois Package .. 77
- III-9.14 Integer Programming .. 77
- III-9.15 Algebra of Invariants ... 78
- III-9.16 Primary Ideals ... 78
- III-9.17 Special Varieties .. 78
- III-9.18 Statistics ... 79
- III-9.19 Geometrical Theorem-Proving 79
- III-9.20 Typevectors ... 79
- III-9.21 Conductor ... 80
- III-9.22 Matrix Normal Form ... 80
- III-9.23 CantStop ... 80
- III-9.24 Control ... 80

IV Doing Mathematics with CoCoA

- IV-1 Booleans ... 85
 - IV-1.1 Introduction to Booleans .. 85
 - IV-1.2 Commands and Functions for Booleans 85
- IV-2 Numbers .. 88
 - IV-2.1 Introduction to Numbers .. 87
 - IV-2.2 Rationals ... 87
 - IV-2.3 Numerators and Denominators for Rational Numbers 87
 - IV-2.4 Modular Integers .. 88
 - IV-2.5 Commands and Functions for Numbers 88
- IV-3 Strings ... 91
 - IV-3.1 Introduction to Strings ... 91
 - IV-3.2 Concatenation .. 91
 - IV-3.3 Substrings .. 91
 - IV-3.4 Quotes Within Strings .. 92
 - IV-3.5 Commands and Functions for Strings 92
- IV-4 Lists ... 93
 - IV-4.1 Introduction to Lists ... 93
 - IV-4.2 Commands and Functions for Lists 93
- IV-5 Records ... 97
 - IV-5.1 Introduction to Records ... 97
 - IV-5.2 Commands and Functions for Records 98
- IV-6 Vectors ... 99
 - IV-6.1 Introduction to Vectors ... 99
 - IV-6.2 Commands and Functions for Vectors 99
<table>
<thead>
<tr>
<th>IV-7 Matrices</th>
<th>101</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-7.1 Introduction to Matrices</td>
<td>101</td>
</tr>
<tr>
<td>IV-7.2 Commands and Functions for Matrices</td>
<td>102</td>
</tr>
<tr>
<td>IV-8 Rings</td>
<td>103</td>
</tr>
<tr>
<td>IV-8.1 Introduction to Rings</td>
<td>103</td>
</tr>
<tr>
<td>IV-8.2 New Rings</td>
<td>103</td>
</tr>
<tr>
<td>IV-8.3 Coefficient Rings</td>
<td>104</td>
</tr>
<tr>
<td>IV-8.4 Indeterminates</td>
<td>104</td>
</tr>
<tr>
<td>IV-8.5 Weights Modifier</td>
<td>105</td>
</tr>
<tr>
<td>IV-8.6 Orderings</td>
<td>106</td>
</tr>
<tr>
<td>IV-8.7 Predefined Term-Orderings</td>
<td>106</td>
</tr>
<tr>
<td>IV-8.8 Temporary Term-Orderings</td>
<td>107</td>
</tr>
<tr>
<td>IV-8.9 Custom Term-Orderings</td>
<td>107</td>
</tr>
<tr>
<td>IV-8.10 Module Orderings</td>
<td>108</td>
</tr>
<tr>
<td>IV-8.11 Accessing Other Rings</td>
<td>108</td>
</tr>
<tr>
<td>IV-8.12 Ring Mappings: the Image Function</td>
<td>109</td>
</tr>
<tr>
<td>IV-8.13 Quotient Rings</td>
<td>110</td>
</tr>
<tr>
<td>IV-8.14 Commands and Functions for Rings</td>
<td>110</td>
</tr>
<tr>
<td>IV-9 Polynomials</td>
<td>113</td>
</tr>
<tr>
<td>IV-9.1 Introduction to Polynomials</td>
<td>113</td>
</tr>
<tr>
<td>IV-9.2 Evaluation of Polynomials</td>
<td>114</td>
</tr>
<tr>
<td>IV-9.3 Commands and Functions for Polynomials</td>
<td>114</td>
</tr>
<tr>
<td>IV-10 Rational Functions</td>
<td>117</td>
</tr>
<tr>
<td>IV-10.1 Introduction to Rational Functions</td>
<td>117</td>
</tr>
<tr>
<td>IV-10.2 Numerators and Denominators for Rational Functions</td>
<td>117</td>
</tr>
<tr>
<td>IV-10.3 Commands and Functions for Rational Functions</td>
<td>118</td>
</tr>
<tr>
<td>IV-11 Ideals</td>
<td>119</td>
</tr>
<tr>
<td>IV-11.1 Introduction to Ideals</td>
<td>119</td>
</tr>
<tr>
<td>IV-11.2 Commands and Functions for Ideals</td>
<td>119</td>
</tr>
<tr>
<td>IV-12 Modules</td>
<td>123</td>
</tr>
<tr>
<td>IV-12.1 Introduction to Modules</td>
<td>123</td>
</tr>
<tr>
<td>IV-12.2 Quotient Modules</td>
<td>123</td>
</tr>
<tr>
<td>IV-12.3 Shifts</td>
<td>124</td>
</tr>
<tr>
<td>IV-12.4 Commands and Functions for Modules</td>
<td>124</td>
</tr>
<tr>
<td>IV-13 Groebner Bases and Related Computations</td>
<td>127</td>
</tr>
<tr>
<td>IV-13.1 Introduction to Groebner Bases in CoCoA</td>
<td>127</td>
</tr>
<tr>
<td>IV-13.2 Commands and Functions for Groebner-Type Computations</td>
<td>127</td>
</tr>
<tr>
<td>IV-13.3 The Interactive Groebner Framework</td>
<td>129</td>
</tr>
<tr>
<td>IV-13.4 Example: Interactive Groebner Basis Computation</td>
<td>129</td>
</tr>
<tr>
<td>IV-13.5 Example: Verbose Mode</td>
<td>130</td>
</tr>
<tr>
<td>IV-13.6 Example: Interactive Resolution Computation</td>
<td>130</td>
</tr>
<tr>
<td>IV-13.7 Example: Truncations</td>
<td>131</td>
</tr>
<tr>
<td>IV-13.8 Hilbert-Driven Computations</td>
<td>132</td>
</tr>
<tr>
<td>IV-14 CoCoAServer</td>
<td>135</td>
</tr>
<tr>
<td>IV-14.1 Introduction to CoCoAServer</td>
<td>135</td>
</tr>
<tr>
<td>IV-14.2 Functions using CoCoAServer</td>
<td>135</td>
</tr>
</tbody>
</table>
Contents

VI-2 B

VI-2.1 BBasis5 ... 163
VI-2.2 BettiDiagram ... 163
VI-2.3 BettiMatrix .. 164
VI-2.4 Bin .. 164
VI-2.5 BinExp ... 165
VI-2.6 Block ... 165
VI-2.7 BlockMatrix .. 166
VI-2.8 Break ... 167
VI-2.9 BringIn ... 167

VI-3 C

VI-3.1 Call ... 169
VI-3.2 CartesianProduct, CartesianProductList 170
VI-3.3 Cast ... 170
VI-3.4 Catch ... 171
VI-3.5 CFApprox .. 172
VI-3.6 CFApproximants .. 172
VI-3.7 Characteristic .. 172
VI-3.8 Ciao ... 173
VI-3.9 Clear ... 173
VI-3.10 ClearDenom .. 174
VI-3.11 Close ... 174
VI-3.12 CloseLog ... 174
VI-3.13 CocoaLimits ... 174
VI-3.14 CocoaPackagePath .. 175
VI-3.15 Coefficients ... 175
VI-3.16 CoeffOfTerm ... 176
VI-3.17 Colon ... 176
VI-3.18 ColumnVectors .. 177
VI-3.19 Comp ... 177
VI-3.20 Comp ... 178
VI-3.21 Concat ... 178
VI-3.22 ConcatLists ... 178
VI-3.23 Cond ... 179
VI-3.24 ContFrac ... 179
VI-3.25 Count .. 180
VI-3.26 CurrentRing ... 180

VI-4 D

VI-4.1 Dashes ... 181
VI-4.2 Date ... 181
VI-4.3 DecimalStr .. 181
VI-4.4 Define .. 182
VI-4.5 Deg ... 184
VI-4.6 DegLexMat .. 184
VI-4.7 DegRevLexMat ... 185
VI-4.8 Delete .. 185
VI-4.9 Den ... 186
VI-4.10 DensePoly .. 186
VI-4.11 Depth .. 186
VI-4.12 Der ... 188
VI-4.13 Describe ... 188
VI-4.14 Destroy ... 189
VI-4.15 Det ... 190
VI-4.16 DiagonalMat .. 190
VI-4.17 Diff ... 191
VI-4.18 Dim ... 191
VI-4.19 Discriminant .. 191
VI-4.20 Distrib ... 192
VI-4.21 Div .. 192
VI-4.22 DivAlg ... 192

VI-5 E
VI-5.1 E_2 .. 195
VI-5.2 Elim .. 195
VI-5.3 EqSet ... 196
VI-5.4 Equals ... 196
VI-5.5 EquiIsoDec ... 196
VI-5.6 Error ... 197
VI-5.7 Eval .. 197
VI-5.8 EvalBinExp ... 198
VI-5.9 EvalHilbertFn .. 199
VI-5.10 Ext ... 199

VI-6 F
VI-6.1 Fact .. 201
VI-6.2 Factor .. 201
VI-6.3 FactorMultiplicity 202
VI-6.4 FGLM5 ... 202
VI-6.5 Fields ... 203
VI-6.6 First .. 203
VI-6.7 FirstNonZero ... 203
VI-6.8 FirstNonZeroPos 204
VI-6.9 Flatten ... 204
VI-6.10 FloatApprox .. 205
VI-6.11 FloatStr .. 205
VI-6.12 For .. 206
VI-6.13 Foreach ... 207
VI-6.14 Format ... 207
VI-6.15 Fraction .. 208
VI-6.16 Function .. 208
VI-6.17 Functions .. 209

VI-7 G
VI-7.1 GB.Complete .. 211
VI-7.2 GB.GetBettiMatrix 211
VI-7.3 GB.GetNthSyz ... 212
VI-7.4 GB.GetNthSyzShifts 212
VI-7.5 GB.GetRes ... 213
VI-7.6 GB.GetResLen ... 214
VI-7.7 GB.ResReport ... 215
VI-7.8 GB.Start_GBasis 215
VI-7.9 GB.Start_MinGens 215
VI-7.10 GB.Start_MinSyzMinGens 215
VI-7.11 GB.Start_Res ... 215
VI-7.12 GB.Start_Syz ... 216
VI-7.13 GB.Start_SyzMinGens 216
VI-7.14 GB.Stats .. 216
VI-7.15 GB.Step ... 216
VI-7.16 GB.Steps .. 216
VI-7.17 GBasis .. 217
VI-7.18 GBasis5, and more 217
VI-7.19 GBasisTimeout 219
Contents

VI-9 J
- VI-9.16 Insert .. 246
- VI-9.17 Interpolate .. 247
- VI-9.18 Interreduce, Interreduced 247
- VI-9.19 Intersection ... 248
- VI-9.20 IntersectionList ... 249
- VI-9.21 Inverse .. 249
- VI-9.22 IO.SprintTrunc ... 249
- VI-9.23 Iroot .. 250
- VI-9.24 IsAntiSymmetric ... 250
- VI-9.25 IsDefined .. 251
- VI-9.26 IsDiagonal ... 251
- VI-9.27 IsEven, IsOdd ... 251
- VI-9.28 IsHomog .. 252
- VI-9.29 IsIn .. 252
- VI-9.30 IsLexSegment .. 253
- VI-9.31 IsNumber .. 253
- VI-9.32 IsPositiveGrading 253
- VI-9.33 IsPPrime .. 254
- VI-9.34 IsPrime .. 254
- VI-9.35 Isqrt ... 254
- VI-9.36 IsServerReady ... 255
- VI-9.37 IsStable .. 255
- VI-9.38 IsStronglyStable ... 255
- VI-9.39 IsSubset .. 256
- VI-9.40 IsSymmetric ... 256
- VI-9.41 IsTerm ... 256
- VI-9.42 IsTermOrdering .. 257
- VI-9.43 IsTree5 ... 257
- VI-9.44 IsZero .. 258

VI-10 J
- VI-10.1 Jacobian .. 259

VI-11 K

VI-12 L
- VI-12.1 Last ... 263
- VI-12.2 Latex .. 263
- VI-12.3 LC ... 264
- VI-12.4 LCM ... 264
- VI-12.5 Len ... 265
- VI-12.6 LexMat ... 266
- VI-12.7 LinearSimplify .. 266
- VI-12.8 LinKer ... 266
- VI-12.9 LinSol ... 267
- VI-12.10 List ... 268
- VI-12.11 LM ... 268
- VI-12.12 Log ... 269
- VI-12.13 LogToTerm .. 269
- VI-12.14 LPos .. 269
- VI-12.15 LPP ... 270
- VI-12.16 LT ... 270
VI-13 M

VI-13.1 MakeCheck	273
VI-13.2 MakeSet	273
VI-13.3 Man	273
VI-13.4 MantissaAndExponent	275
VI-13.5 MapDown	275
VI-13.6 Mat	276
VI-13.7 MatConcatHor	276
VI-13.8 MatConcatVer	277
VI-13.9 Max, Min	277
VI-13.10 MDeg	278
VI-13.11 Memory	279
VI-13.12 MinGens	279
VI-13.13 Minimalize	280
VI-13.14 Minimalized	280
VI-13.15 Minors	281
VI-13.16 MinSyzMinGens	281
VI-13.17 Mod	281
VI-13.18 Mod2Rat	282
VI-13.19 Module	282
VI-13.20 Monic	283
VI-13.21 Monomials	283
VI-13.22 MonsInIdeal	284
VI-13.23 More	284
VI-13.24 Multiplicity	285

VI-14 N

VI-14.1 NewId	287
VI-14.2 NewList	288
VI-14.3 NewMat	288
VI-14.4 NewVector	289
VI-14.5 NextPPrime	289
VI-14.6 NextPrime	289
VI-14.7 NF	290
VI-14.8 NFsAreZero	290
VI-14.9 NonZero	291
VI-14.10 Not, And, Or	291
VI-14.11 NR	291
VI-14.12 Num	292
VI-14.13 NumComps	292
VI-14.14 Numerical.BBasisOfPoints5	292
VI-14.15 Numerical.BBasisOfPointsInIdeal5	293
VI-14.16 Numerical.FirstVanishingRelations5	294
VI-14.17 Numerical.FirstVanishingRelationsInIdeal5	294
VI-14.18 Numerical.GBasisOfPoints5	295
VI-14.19 Numerical.GBasisOfPointsInIdeal5	295
VI-14.20 Numerical.HBasisOfPoints5	296
VI-14.21 Numerical.HBasisOfPointsInIdeal5	296
VI-14.22 Numerical.QR5	297
VI-14.23 Numerical.SVD5	297
VI-14.24 NumIndets	298
Contents

VI-15 O

<table>
<thead>
<tr>
<th>VI-15.1</th>
<th>OpenIFile</th>
<th>299</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI-15.2</td>
<td>OpenString</td>
<td>299</td>
</tr>
<tr>
<td>VI-15.3</td>
<td>OpenLog</td>
<td>300</td>
</tr>
<tr>
<td>VI-15.4</td>
<td>OpenOFile</td>
<td>301</td>
</tr>
<tr>
<td>VI-15.5</td>
<td>OpenOString</td>
<td>301</td>
</tr>
<tr>
<td>VI-15.6</td>
<td>OpenSocket</td>
<td>302</td>
</tr>
<tr>
<td>VI-15.7</td>
<td>Option</td>
<td>302</td>
</tr>
<tr>
<td>VI-15.8</td>
<td>Ord</td>
<td>302</td>
</tr>
</tbody>
</table>

VI-16 P

<table>
<thead>
<tr>
<th>VI-16.1</th>
<th>Packages</th>
<th>305</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI-16.2</td>
<td>Panel</td>
<td>305</td>
</tr>
<tr>
<td>VI-16.3</td>
<td>Panels</td>
<td>306</td>
</tr>
<tr>
<td>VI-16.4</td>
<td>Partitions</td>
<td>306</td>
</tr>
<tr>
<td>VI-16.5</td>
<td>Permutations</td>
<td>306</td>
</tr>
<tr>
<td>VI-16.6</td>
<td>Pfaffian</td>
<td>307</td>
</tr>
<tr>
<td>VI-16.7</td>
<td>PkgName</td>
<td>307</td>
</tr>
<tr>
<td>VI-16.8</td>
<td>Poincare</td>
<td>307</td>
</tr>
<tr>
<td>VI-16.9</td>
<td>PoincareMultiDeg</td>
<td>308</td>
</tr>
<tr>
<td>VI-16.10</td>
<td>PoincareShifts</td>
<td>308</td>
</tr>
<tr>
<td>VI-16.11</td>
<td>Poly</td>
<td>308</td>
</tr>
<tr>
<td>VI-16.12</td>
<td>PositiveGradingI</td>
<td>309</td>
</tr>
<tr>
<td>VI-16.13</td>
<td>PowerMod</td>
<td>309</td>
</tr>
<tr>
<td>VI-16.14</td>
<td>PreprocessPts5</td>
<td>309</td>
</tr>
<tr>
<td>VI-16.15</td>
<td>PrimaryDecomposition</td>
<td>310</td>
</tr>
<tr>
<td>VI-16.16</td>
<td>Print</td>
<td>310</td>
</tr>
<tr>
<td>VI-16.17</td>
<td>Print On</td>
<td>311</td>
</tr>
<tr>
<td>VI-16.18</td>
<td>PrintLn</td>
<td>311</td>
</tr>
<tr>
<td>VI-16.19</td>
<td>Product</td>
<td>312</td>
</tr>
</tbody>
</table>

VI-17 Q

<table>
<thead>
<tr>
<th>VI-17.1</th>
<th>Quit</th>
<th>313</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI-17.2</td>
<td>QuotientBasis</td>
<td>313</td>
</tr>
<tr>
<td>VI-17.3</td>
<td>QZP</td>
<td>314</td>
</tr>
</tbody>
</table>

VI-18 R

<table>
<thead>
<tr>
<th>VI-18.1</th>
<th>Radical</th>
<th>315</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI-18.2</td>
<td>RadicalOfUnmixed</td>
<td>315</td>
</tr>
<tr>
<td>VI-18.3</td>
<td>Rand</td>
<td>316</td>
</tr>
<tr>
<td>VI-18.4</td>
<td>Randomize</td>
<td>316</td>
</tr>
<tr>
<td>VI-18.5</td>
<td>Randomized</td>
<td>317</td>
</tr>
<tr>
<td>VI-18.6</td>
<td>Rank</td>
<td>317</td>
</tr>
<tr>
<td>VI-18.7</td>
<td>RealRootRefine</td>
<td>318</td>
</tr>
<tr>
<td>VI-18.8</td>
<td>RealRoots</td>
<td>318</td>
</tr>
<tr>
<td>VI-18.9</td>
<td>Record</td>
<td>319</td>
</tr>
<tr>
<td>VI-18.10</td>
<td>ReducedGBasis</td>
<td>319</td>
</tr>
<tr>
<td>VI-18.11</td>
<td>RefineGCDFreeBasis</td>
<td>320</td>
</tr>
<tr>
<td>VI-18.12</td>
<td>RegularityIndex</td>
<td>320</td>
</tr>
<tr>
<td>VI-18.13</td>
<td>Remove</td>
<td>321</td>
</tr>
<tr>
<td>VI-18.14</td>
<td>Repeat</td>
<td>321</td>
</tr>
<tr>
<td>VI-18.15</td>
<td>Res</td>
<td>322</td>
</tr>
<tr>
<td>VI-18.16</td>
<td>Reset</td>
<td>322</td>
</tr>
<tr>
<td>VI-18.17</td>
<td>ResetPanels</td>
<td>323</td>
</tr>
<tr>
<td>VI-18.18</td>
<td>Resultant</td>
<td>324</td>
</tr>
<tr>
<td>VI-18.19</td>
<td>Return</td>
<td>324</td>
</tr>
<tr>
<td>VI-18.20</td>
<td>Reverse, Reversed</td>
<td>325</td>
</tr>
</tbody>
</table>
VI-20.11 Types
VI-20.10 TypeOfCoeffs
VI-20.9 Type
VI-20.8 Tuples
VI-20.7 Transposed
VI-20.6 Toric.CheckInput
VI-20.5 Toric
VI-20.4 TensorMat
VI-20.3 Tail
VI-20.2 Tagged
VI-20.1 Tag

VI-20.11 Types
VI-20.10 TypeOfCoeffs
VI-20.9 Type
VI-20.8 Tuples
VI-20.7 Transposed
VI-20.6 Toric.CheckInput
VI-20.5 Toric
VI-20.4 TensorMat
VI-20.3 Tail
VI-20.2 Tagged
VI-20.1 Tag
Part I
Chapter I-1

Preamble

I-1.1 Version

--
-- ___/ ___/ \\ --
-- / _ \\ / _ \ , \\ --
-- \ | | \ | | ___ \ --
--- ____, __/ ____, __/ _/ _\ --
--
-- Online Help : CoCoA 4.7 --
-- date : 2007/Mar/28 --
--

I-1.2 Preface

CoCoA is a system for doing “Computations in Commutative Algebra.” It is one of the projects of an active research team in Computer Algebra at the University of Genova, Italy, and whose current members are: Lorenzo Robbiano (team manager), John Abbott, Anna Bigatti, Massimo Caboara, Martin Kreuzer, David Perkinson, Michael Abshoff, Karsten Hiddeman, and occasionally other researchers and students. Notable contributions from outside the team have been received from Volker Augustin and Arndt Wills. Much of the original code for CoCoA was written by Gianfranco Niesi and Antonio Capani.

I-1.3 System Distribution

CoCoA is public domain software, available at “http://cocoa.dima.unige.it” where there is also a great deal of information about the system. From there you can access to the CoCoAForum and the CoCoAWiki, or directly at “http://cocoa.mathematik.uni-dortmund.de/forum/index.php” “http://cocoa.mathematik.uni-dortmund.de/wiki/Main_Page”

Besides the main site in Genoa, Italy, there is a mirror of the official distribution: USA, West Coast “http://www.reed.edu/cocoa”

CoCoA is distributed freely under the following condition: any research activity which uses CoCoA should cite the system in the following form:

CoCoATeam
CoCoA, a system for doing Computations in Commutative Algebra,
Available at http://cocoa.dima.unige.it

(see also “http://cocoa.dima.unige.it/citing.html”)

The system can be freely redistributed to other users. New users should notify the CoCoA team at the email address below so they can be included in a users list. All members of this list will be kept up to date about the progress of the system.
The system is distributed “as is”. The authors make no guarantee about the fitness of the system for any particular application. They will not be liable for any direct, indirect, special, incidental or consequential damages in connection with the use of the system or of the manual.

Bug reports, questions, and suggestions should be sent to the following email address:
cocoa (at) dima.unige.it
Comments on the online help system would be greatly appreciated. They may be sent to the above address or to davidp (at) reed.edu.

I-1.4 System Requirements

CoCoA 4.7 runs on most common platforms. Please visit the CoCoA web site to see whether it is available for the platform you wish to use. If the version you seek is absent let us know, and we will try to rectify the situation.

I-1.5 Copyright and Trademarks

The product names mentioned in this manual are trademarks or registered trademarks of their manufacturers.

I-1.6 Acknowledgments

The CoCoA project is partly supported by:

* Department of Mathematics, University of Genova
* Department of Computer Science, University of Genova
* Consiglio Nazionale delle Ricerche
* Ministero dell’Universita’ e della Ricerca Scientifica e Tecnologica

The author of the online help package would like to thank Tony Geramita, Lorenzo Robbiano and the CoCoA team. Thanks to Antonio Capani and Gianfranco Niesi for patiently answering my questions and for allowing me to use their “CoCoA User’s Manual, version 3.0b Draft,” from which the online help package borrows, sometimes verbatim.
Part II

Introduction to CoCoA
Chapter II-1

The CoCoA System

II-1.1 An Overview of the System

CoCoA is a computer algebra system for doing “Computations in Commutative Algebra”. Since its first version CoCoA has been designed to offer maximum ease of use and flexibility to the mathematician with little or no knowledge of computers. It is able to perform simple and sophisticated operations on multivariate polynomial rings and on various data connected with them (ideals, modules, matrices, rational functions).

The system is capable of performing basic operations such as:

- sums, products, powers, derivatives, gcd, lcm of polynomials;
- sums, products, powers, derivatives of rational functions;
- sums, products, powers of ideals;
- sums of modules;
- sums, products, powers, determinants, adjoints of matrices;
- operations between heterogeneous values, like the product between an ideal and a polynomial, etc.

Besides these, more advanced operations are available. For example:

- Groebner bases of ideals and modules;
- syzygies of ideals and modules;
- minimal free resolutions of ideals and modules;
- intersection and division of ideals and modules;
- inclusion and equality test for ideals and modules;
- elimination of indeterminates;
- homogenization of ideals;
- Poincare series and Hilbert functions;
- factorization of polynomials;
- saturation of toric ideals.

Every computation is performed within a “current” or “active” ring, but the user can easily define and switch between many rings in a single CoCoA session.

CoCoA includes an extensive Pascal-like programming language, CoCoAL, that allows the user to customize the system and extend the embedded library.

II-1.2 System Structure

CoCoA is written in C language and is available on several platforms. The core of the system is an implementation of Buchberger’s algorithm for computing Groebner bases of ideals and modules over a polynomial ring whose coefficient ring is a field, and a variation of it for computing syzygies. The algorithm has been optimized in several directions and is used as a building block for many operations. Most users can, however, completely ignore the theory of Groebner bases and even their existence: CoCoA will do all the necessary “Groebner stuff” in the background. However, for optimum use of the system some knowledge of the theory is helpful.
Chapter II-1. The CoCoA System

The system interacts with the external world using a Low Level Protocol (LLP) that is independent of any machine architecture. High level inputs from the user are translated into LLP-requests to the CoCoA kernel. The LLP-answers are then translated back into high level, user-readable outputs.

II-1.3 Contributions

Important parts of the system have been developed by:

- John Abbott: factorization, linear algebra, points, mainteiner
- Anna Bigatti: Hilbert-Poincare series, toric ideals, help system
- David Perkinson: help system
- Karsten Hiddeman: help system
- Volker Augustin: GUI (QT graphical user interface)
- Alessandro Polverini: GUI
- Fabian Theis: GUI
- Michael Abshoff: GUI
- Massimo Caboara: operations on ideals

II-1.4 CoCoA and Macaulay

Most of the standard scripts from the computer algebra system Macaulay (Classic) have been translated into CoCoAL. For information, see

“http://www.matha.mathematik.uni-dortmund.de/~kreuzer/projects.html”

II-1.5 Pointers to the Literature

The following are articles which may be of interest to CoCoA users. Many of the algorithms discussed in these articles have been implemented in CoCoA.

Chapter II-2

Tutorial

II-2.1 A Tutorial Introduction to CoCoA

This is an introduction to CoCoA, mainly through examples. It is just a small part of the online CoCoA manual.

If you are using an HTML version of the manual just click on “next”! The following few sections are for those who call the manual from a CoCoA shell.

To learn more about finding information in the manual, enter “?”. Entering “H.Browse();” or “H.Browse(1);” will display the next section of the manual. “H.Browse(0);” will redisplay the current section, and “H.Browse(-1);” will display the previous section. Start browsing the tutorial now by entering “H.Browse();”.

II-2.2 Setting Up CoCoA for the Tutorial

If you are using an HTML version of the manual skip this section.

Some of the information from the online manual (and results of CoCoA calculations, in general) may scroll off of the screen. It is best to run CoCoA from a system that has scrollable windows with enough room to hold the output from each CoCoA command.

Under X-windows, you might try running CoCoA from an xterm started with the command “xterm -sb -sl 512” (scroll bar enabled, saving 512 lines). In addition, you may want to increase the vertical size of your window, e.g., “xterm -sb -sl 512 -geometry 80x40” under X-windows. Better yet: run CoCoA from a shell within Emacs.

IF YOU DO NOT HAVE SCROLLABLE WINDOWS: enter the command “H.SetMore();” to receive output 20 lines at a time. As long as there is output waiting to be printed, you will be prompted to enter “More();” to get the next 20 lines. You may type “H.SetMore(N)” in order to get N lines at a time instead of 20.

Enter “H.Browse();” to continue. (The “Browse” command will be assumed from now on.)

II-2.3 Entering Commands

While reading the tutorial it is highly recommended that you have a copy of CoCoA running in a separate window in order to play with the examples presented.

If you are using the CoCoA GUI (Graphical User Interface) then you should follow the dedicated link “Graphical User Interface” for entering commands.

To execute a CoCoA command, type it into the window, ending it with a semicolon, then press the “return” key or “enter” key (depending on your system). A command can run over several lines; CoCoA will wait for a semicolon before processing the command. Also, several commands may be written on a single line (each ending with a semicolon).

See the next section for examples.

IMPORTANT NOTES for Macintosh OS 9 (up to version 4.0):

1. Only the “enter” key (on the far right of the keyboard is the one to use) will function to enter CoCoA commands. Experiment.
2. To enter multiple lines, one needs to highlight the lines using the mouse before hitting the “enter” key. Otherwise, the enter key just feeds the line containing the cursor to CoCoA.

II-2.4 Examples of Entering Commands

Here are some examples of entering simple commands in CoCoA. (Macintosh OS9 and GUI users please remember the special instructions made in the previous section.)

```
example
1+1; -- a simple command
2
1 + -- the same command spread over several lines
1;
2
1+1; 2+2; 3+3; -- several commands on a single line
2
4
6
```

NOTE: The output above appears just as it does in my CoCoA window. The examples in the online manual will often be annotated. When CoCoA encounters *double dashes*, as above, it regards the rest of the line as a comment.

II-2.5 More on Entering Commands

One may save a sequence of commands in a file and read them into a CoCoA session with the “Source” (VI-19.16 pg.337) command. For instance, if a sequence of CoCoA commands is saved in the file “MySession”, one may enter

```
<< MySession;
```

to run the commands (give the full pathname, or store your file in the cocoa directory). User-defined functions are often stored in files and sourced in this way.

II-2.6 After the Tutorial

Browsing through the examples in this tutorial may enable you to solve your particular problems. If not, or to learn more about CoCoA in general, enter “?” to learn more about CoCoA’s online help. For example, you will see that “H.Command(““)” gives a long annotated list of CoCoA commands, and “?keyword” will look for information about “keyword” in the manual.

The GUI Help System (html) and the printable/browsable version (pdf) contain exactly the same information as the online help. You may choose your preferred format or exploit the different searching methods suiting best your need.

With the following section, the tutorial proper begins. To see a table of contents for the tutorial, enter “H.Toc(1,2)”. The command “H.Browse()” will then continue with the tutorial, or you may give the title of a tutorial section to “?” to skip to that section.
II-2.7 Arithmetic

Here are some first examples; they illustrate CoCoA evaluating arithmetic expressions.

```
example
(2+3)(1+1); -- multiplication, as usual
10
-------------------------------
2^10;
1024
-------------------------------
2+2/3;
8/3
-------------------------------
1.5+2.3; -- decimals are converted to fractions
19/5
-------------------------------
Mod(27,5);
2
-------------------------------
2*3;
6
-------------------------------
Fact(4);
24
-------------------------------
```

For multiplication, one may use "*", parentheses, or just a space.

II-2.8 Variables

Results from CoCoA calculations can be stored in variables. Variables, like CoCoA functions, must begin with a capital letter or an error will result.

```
example
A := 3;
2A;
6
-------------------------------
b := 7;
ERROR: parse error in line 12 of device stdin
-------------------------------
7
-------------------------------
B := 7;
A^2 + B;
16
-------------------------------
```

II-2.9 The Variable "It"

When CoCoA evaluates an expression, the result is usually assigned to the special CoCoA variable named "It".

```
example
1+1;
2
-------------------------------
It;
```
II-2.10 Making Lists

The following example illustrates the use of lists in CoCoA.

```
example
L := [2,3,"a string",[5,7],3,3]; -- L is now a list
L[3]; -- here is the 3rd component of L
a string
-------------------------------
L[4]; -- the 4th component of L is a list, itself
[5, 7]
-------------------------------
L[4][2]; -- the 2nd component of the 4th component of L
7
-------------------------------
L[4,2]; -- same as above
7
-------------------------------
Append(L,"new");
L;
[2, 3, "a string", [5, 7], 3, 3, "new"]
-------------------------------
-- insert 8 as the 4th component of L, shifting the other
-- entries to the right:
Insert(L,4,8);
L;
[2, 3, "a string", 8, [5, 7], 3, 3, "new"]
-------------------------------
Remove(L,4); -- remove it again
L;
[2, 3, "a string", [5, 7], 3, 3, "new"]
-------------------------------
Len(L); -- the number of components of L
7
-------------------------------
MakeSet(L); -- same as L but with repeats removed
[2, 3, "a string", [5, 7], "new"]
-------------------------------
1..5; -- a range of values
[1, 2, 3, 4, 5]
-------------------------------
```
II-2.11 Setting Up a Ring

A CoCoA session automatically starts with the default ring, $R = \mathbb{Q}[x,y,z]$. The command “Use” (VI-21.4 pg. 352) is used to change rings. The following example shows how to create the ring $\mathbb{Z}/(5)[a,b,c]$ (the coefficient ring is the integers mod 5). Once the ring has been declared, one may start to play with polynomials, ideals, modules, and other constructions in that ring. In the ring declaration, the indeterminates are optionally separated by commas, and note the use of two colons.

Some details on handling several rings is provided below in the section of the Tutorial entitled “Using More Than One Ring” (II-2.14 pg. 33) and “Ring Mapping Example” (II-2.22 pg. 39).

\begin{verbatim}
Use S ::= Z/(5)[a,b,c];
F := a-b;
I := Ideal(F^2,c);
I;
Ideal(a^2 - 2ab + b^2, c)

J := Ideal(a-b);
I + J;
Ideal(a^2 - 2ab + b^2, c, a - b)

Minimalized(It); -- find a minimal set of generators for I+J
Ideal(a - b, c)

\end{verbatim}

II-2.12 A Groebner Basis Example

A Groebner basis of an ideal I is calculated with the command “\texttt{GBasis(I)}”, as illustrated in the following example.

Let r be a root of the equation $x^7 - x - 1$ over the rationals. The minimal polynomial of $(4r - 1)/r^3$ can be found by computing the reduced Groebner basis of the ideal $(x^7 - x - 1, x^3y - 4x + 1)$ with respect to the lexicographic term-ordering with $x > y$.

\begin{verbatim}
Use R ::= Q[x,y], Lex;
Set Indentation; -- to improve the appearance of the output
G := GBasis(Ideal(x^7-x-1,x^3y-4x+1));
G;
[160281875715209079440/34524608236181199361x - 4457540/5875764481y^7
- 47746460716124220/34524608236181199361y^6 +
890175715271333840/34524608236181199361y^5 -
3541992534667352220/34524608236181199361y^4 -
5594389451319464160/34524608236181199361y^3 -
56473654361333280980/34524608236181199361y^2 -
27971979712025453040/34524608236181199361y -
40070468928022689860/34524608236181199361, 1/16384y^7 - 5/16384y^6
+ 147/16384y^4 + 5/128y^3 - 31/16384y^2 + 17/128y - 20479/16384]
\end{verbatim}
\begin{verbatim}
Len(G);
2
F := 16384*G[2]; -- clear denominators
F;
y^7 - 5y^6 + 147y^4 + 640y^3 - 31y^2 + 2176y - 20479
\end{verbatim}

The Groebner basis is reported as a list with two elements. The second gives a univariate polynomial which is the minimal polynomial for \(r \).

Note that the statement declaring the ring includes the modifier, “\texttt{Lex}”. Without this modifier, the default term-ordering, \texttt{DegRevLex}, is used. The command “\texttt{Set Indentation}” forces each polynomial of the Groebner basis to be printed on a new line.

\section*{II-2.13 Eliminating Variables}

The Cartesian equations of the space curve parametrized by
\(\begin{pmatrix} t^31 + t^6 - x, t^8 - y, t^{10} - z \end{pmatrix} \)
can be found by eliminating the indeterminate \(t \) in the ideal \((t^{31} + t^6 - x, t^8 - y, t^{10} - z)\).

\begin{verbatim}
Use R ::= Q[t,x,y,z];
Set Indentation;
Elim(t,Ideal(t^31+t^6-x, t^8-y, t^10-z));
Ideal(
 y^5 - z^4,
 -y^4z^5 + y^4 - 2xy^2z + x^2z^2,
 -z^8 - 2xy^3 + x^2yz + z^3,
 2xy^4z^4 + yz^7 + 3x^2y^2 - 2x^3z - yz^2,
 -y^2z^6 - 1/2x2yz^3 + 1/2x^3y + y^2z^2 - 3/2xz^2,
 -1/3x^2y^3z - y^3z^5 - 2/3xyz^6 + 1/3x^4 + y^3 - 4/3xyz)
\end{verbatim}

With the command “\texttt{Elim}” (VI-5.2 pg.195), CoCoA automatically switches to a term-ordering suitable for eliminating the variable \(t \), then changes back to the declared term-ordering (in this case the default term-ordering, \texttt{DegRevLex}).

One may see the entire Groebner basis for our ideal with respect to the elimination term-ordering for \(t \) as follows:

\begin{verbatim}
Use R ::= Q[t,x,y,z], Elim(t);
Set Indentation;
GBasis(Ideal(t^31+t^6-x, t^8-y, t^10-z));
[-t^2y + z,
 y^5 - z^4,
 -t^6 - tz^3 + x,
 -tz^4 - y^2 + xz,
 -ty^2 + txz - y^4z,
 -y^4z^5 + y^4 - 2xy^2z + x^2z^2,
 -z^8 - 2xy^3 + x^2yz + z^3,
 2xy^4z^4 + yz^7 + 3x^2y^2 - 2x^3z - yz^2,
 tx^2y - tz^2 - y^2z^3 - zx^4,
 2txyz^3 - z^7 - x^2y + z^2,
 -y^2z^6 - 1/2x2yz^3 + 1/2x^3y + y^2z - 3/2xz^2,
 t^2x - tx^2z + xy^4z^2 + yz^5 - y,
 t^2z + 2txz^3 - y^4z^3 - x^-2,
\end{verbatim}
II-2.14 Using More Than One Ring

In CoCoA, every calculation takes place in a “current” or “active” ring. Ring-dependent objects defined by the user such as polynomials, ideals, and modules are automatically labeled by the current ring. Objects that do not depend essentially on the ring, e.g., lists or matrices of integers, do not get labeled.

CoCoA automatically starts with the ring $R = \mathbb{Q}[x,y,z]$. The following example illustrates setting up a ring with the construction “:=” and changing rings with the command “Use” (VI-21.4 pg.352). One may temporarily change rings with the command “Using” (VI-21.5 pg.353). The example assumes that you do not already have a ring with identifier “S”.

```plaintext
Use R ::= Q[x,y]; -- declare and use a ring R
F := (x+y)^3;
F;
x^3 + 3x^2y + 3xy^2 + y^3
-------------------------------
M := [1,"test",2];
S ::= Q[x,y,z,a,b]; -- declare a ring S with indeterminates x,y,z,a,b
Use S; -- switch to the ring S
F; -- F is labeled by ring R
R :: x^3 + 3x^2y + 3xy^2 + y^3
-------------------------------
M; -- this list is not labeled R since its elements are not
    -- ring dependent (e.g., "1" is considered a separate integer, not
    -- part of the ring R)
[1, "test", 2]
-------------------------------
F := Ideal(a^2+b^2); -- change the definition of F
Use R; -- switch back to R
F; -- the old F no longer exists
S :: Ideal(a^2 + b^2)
-------------------------------
GBasis(F); -- built in functions automatically recognize the ring
[S :: a^2 + b^2]
-------------------------------
```

II-2.15 Substitutions

To substitute a list of numbers or polynomials for the indeterminates (in the order specified by the definition of the ring), one may use the function “Eval” (VI-5.7 pg.197). To substitute out of order, use the function “Subst” (VI-19.23 pg.340).

```plaintext
Use R ::= Q[x,y,z];
F := x^2+y^2+z^2;
Eval(F,[1]); -- substitute x=1
y^2 + z^2 + 1
-------------------------------
Eval(F,[1,2,3]); -- substitute x=1, y=2, z=3
14
-------------------------------
Subst(F,y,2); -- substitute y=2
```
II-2.16 First Functions

CoCoA's gamut of functions can be easily extended with user-defined functions. Longer functions are usually cut-and-pasted from a text editor into a CoCoA session. If the functions are to be used repeatedly, they can be saved in a separate text file and read into a CoCoA session with the "Source" (VI-19.16 pg. 337) command (or "<<"). The usual way to define a function is with the syntax:

\[
\text{Define < FunctionName >(< argument list >) < Commands > EndDefine;}
\]

NOTE: Variables defined within a function are usually local to that function and disappear after the function returns. Normally, the only variables accessible within a function are the function's arguments and local variables. (For the exceptions, see the section of the manual entitled "Global Memory" (III-8.3 pg. 68).)

\[
\text{Define Square(X) -- a simple function}
\]
\[
\text{Return X^2;}
\]
\[
\text{EndDefine;}
\]
\[
\text{Square(3);}
\]
\[
9
\]

\[
\text{Define IsPrime(X) -- a more complicated function}
\]
\[
\text{If Type(X) <> INT Then Return Error("Expected INT") EndIf;}
\]
\[
I := 2;
\]
\[
\text{While I^2 <= X Do}
\]
\[
\text{If Mod(X,I) = 0 Then Return False EndIf;}
\]
\[
I := I+1;
\]
\[
\text{EndWhile;}
\]
\[
\text{Return TRUE;}
\]
\[
\text{EndDefine; -- end of function definition}
\]
\[
\text{IsPrime(4);}
\]
\[
FALSE
\]

\[
\text{Define Test(A,B) -- a function with two arguments}
\]
\[
\text{Sum := A+B;}
\]
\[
\text{Prod := A*B;}
\]
\[
\text{PrintLn("The sum of ",A," and ",B," is ",Sum,".");}
\]
\[
\text{Print("The product of ",A," and ",B," is ",Prod,".");}
\]
\[
\text{EndDefine;}
\]
\[
\text{Test(3,5);}
\]
\[
The sum of 3 and 5 is 8.
The product of 3 and 5 is 15.
\]
II-2.17 More First Functions

A user-defined function can have any number of parameters of any type, even a variable number of parameters. Note that even a function with no parameters must be called with parentheses.

```plaintext
Define Test1()
PrintLn("This is a function with no parameters.");
For I := 1 To 10 Do
    Print(I^2, " ");
EndFor;
EndDefine;
Test1();
This is a function with no parameters.
1 4 9 16 25 36 49 64 81 100

Define Test2(...) -- a variable number of parameters
If Len(ARGV) = 0 Then -- parameters are stored in the list ARGV
    Return "Wrong number of parameters";
Elsif Len(ARGV) = 1 Then
    Print("There is 1 parameter: ",ARGV[1]);
Else
    Print("There are ", Len(ARGV), " parameters: ");
    Foreach P In ARGV Do
        Print(P, " ");
    EndForeach;
EndIf;
EndDefine;
Test2(1, 2, "string",3);
There are 4 parameters: 1 2 string 3
```

II-2.18 Rings Inside User-Defined Functions

As mentioned earlier, user-defined functions cannot reference (non-global) variables except those defined within the function or passed as arguments. However, functions can refer to rings via their identifiers and use them as one would outside of a function.

When a function is called, it assumes the current ring and performs operations in that ring. One may define new rings which will exist after the function returns, but one may not change the current ring with the command “Use” (VI-21.4 pg.352). However, one may *temporarily* use a ring with the command “Using” (VI-21.5 pg.353).

To make functions more portable, it may be useful to refer to the current ring not by its name but by using the command “CurrentRing” (VI-3.26 pg.180).

Example I.
Test uses the existing rings, R, S, and creates a new ring T. While a (non-global) *variable* defined in a function will automatically disappear, a ring (and its name) will not.

```plaintext
Use R := Q[x,y,z];
S := Q[a,b];
Define Test()
    PrintLn (x+y)^2;
    PrintLn S :: (a+b)^3;
    T ::= Z/(5)[t];
    I := T :: Ideal(t^2);
    Print I;
EndDefine;
Test();
```
\[x^2 + 2xy + y^2 \]
\[S :: a^3 + 3a^2b + 3ab^2 + b^3 \]
\[T :: \text{Ideal}(t^2) \]

I; -- the variable I was local to the function
ERROR: Undefined variable I
CONTEXT: I

T; -- The function created the ring T. (Note: T is not a variable.)
Z/(5)[t]

Example II
The use of “\texttt{CurrentRing}” (VI-3.26 pg.180) within a function.

\begin{verbatim}
Define Poincare2(I)
 Return Poincare(CurrentRing()) / I;
EndDefine;
Use R ::= Q[x,y];
Poincare2(Ideal(x^2,y^2));
(1 + 2x + x^2)
\end{verbatim}

Example III
Creating a ring with a user-supplied name. For more information, see “\texttt{Var}” (VI-22.1 pg.355).

\begin{verbatim}
Define Create(Var(R));
 Var(R) ::= Q[a,b];
EndDefine;
Create("K");
K;
Q[a,b]
Create("myring");
Var("myring");
Q[a,b]
Use Var("myring"); -- make myring current
\end{verbatim}

Example IV
A more complicated example, creating rings whose names are automatically generated. See “\texttt{NewId}” (VI-14.1 pg.287) and “\texttt{Var}” (VI-22.1 pg.355) for more information.

\begin{verbatim}
Define CreateRing(I)
 NewRingName := NewId();
 Var(NewRingName) ::= Q[x[1..I]],Lex;
 Return NewRingName;
EndDefine;
Use R ::= Q[x,y],DegRevLex;
Use S ::= Q[x,y,z],Lex;
N ::= 5;
For I ::= 1 To N Do
 RingName := CreateRing(I); -- RingName is a string
 Using Var(RingName) Do
 PrintLn Indets();
\end{verbatim}
II-2.19 Rational Normal Curve

In this example, we compute the ideal of the rational normal curve of degree N in P^N then compute its Poincare series for a range of values of N.

Define Minor2(M, I, J)
EndDefine;

Define Rational_Normal_Curve_Ideal(N)
-- first define the 2xN matrix whose 2x2 minors generate the ideal
M := NewMat(2,N);
For C := 0 To N-1 Do
M[1,C+1] := x[C];
M[2,C+1] := x[C+1];
EndFor;
-- then construct the generators of the ideal
L := [];
For C1 := 1 To N-1 Do
For C2 := C1+1 To N Do
-- determinant for columns C1,C2
Append(L,P)
EndFor;
EndFor;
Return Ideal(L);
EndDefine;

For N := 3 To 5 Do
S ::= Q[x[0..N]],Lex;
PrintLn NewLine, "degree ", N;
Using S Do -- switch, temporarily, to ring S
I := Rational_Normal_Curve_Ideal(N);
Print("Poincare series: "), Poincare(S/I);
EndUsing;
EndFor; -- for statement

degree 3
II-2.20 Generic Minors

The following example computes the relations among the 2x2 minors of a generic 2xN matrix for a range of values of N. Note the use of indeterminates with multiple indices.

\begin{example}
\begin{verbatim}
Define Minor2(M, I, J)
EndDefine;

Define Det_SubAlgebra(N)
 M := Mat([x[I,J] | J In 1..N | I In 1..2]);
 Cols := (1..N) >< (1..N);
 Return Ideal(L);
EndDefine;

Define Det_SubAlgebra_Print(N) -- calculate and print relations
 J := Det_SubAlgebra(N);
 PrintLn NewLine, "N = ", N;
 PrintLn "Sub-algebra equations:";
 PrintLn Gens(Elim(x,J))
EndDefine;

Set Indentation;
For N := 3 To 5 Do
 S ::= Z/(32003)[y[1..(N-1),2..N],x[1..2,1..N]];
 Using S Do
 Det_SubAlgebra_Print(N);
 EndUsing
EndFor;

N = 3
Sub-algebra equations:
[0]

N = 4
Sub-algebra equations:

N = 5
Sub-algebra equations:
 2y[1,4]y[2,3] - 2y[1,3]y[2,4] + 2y[1,2]y[3,4],
\end{verbatim}
\end{example}
II-2.21 Leading Term (Initial) Ideals, Generic Polynomials

The following example produces the leading term (initial) ideal of the ideal generated by three “generic” polynomials of degree 2 with respect to the lexicographic term-ordering.

```
Use R := Z/(32003)[x[1..4]],Lex;
F := DensePoly(2); -- sum of all power-products of degree 2
L := [ Randomized(F) | I In 1..3 ]; -- randomize coefficients
LT(Ideal(L));
```

II-2.22 Ring Mapping Example

If R is the current ring and E is an object in another ring, then the function “Image” (VI-9.9 pg.242) may be used to map E into R by substituting polynomials from R for the indeterminates in E. (Also: see the command “BringIn” (VI-2.9 pg.167) for a shortcut in certain cases.)

```
Use S ::= Q[a,b,c];
I := Ideal(a^2+b^2,ab-c^2);
Use R ::= Q[x,y]; -- the current ring is R
F := RMap(x+y,x-y,y^2); -- define a map F:S --> R sending a to x+y,
F := RMap(x+y,x-y,y^2); -- define a map F:S --> R sending a to x+y,
    -- b to x-y, and c to y^2
Image(I,F); -- the image of I under F
Ideal(2x^2 + 2y^2, -y^4 + x^2 - y^2)
```

II-2.23 Output to a File

The following example illustrates one way of saving CoCoA output to a file.

```
Use R ::= Q[t,x,y,z];
I := Ideal(t^2-x,t^5-y,t^7-z);
G := GBasis(I);
G;
G;
```

Text can be read from files using “OpenIFile” (VI-15.1 pg.299) and “Get” (VI-7.26 pg.222), and commands can be executed from files using “Source” (VI-19.16 pg.337). One may also keep a log of a CoCoA session (see “OpenLog” (VI-15.3 pg.300))
II-2.24 Finite Point Sets: Buchberger-Moeller

CoCoA includes an implementation of the Buchberger-Moeller algorithm for efficient computations dealing with finite sets of points. These functions include:

* GBM, HGBM – intersection of ideals for zero-dimensional schemes
* IdealAndSeparatorsOfPoints – ideal and separators for affine points
* IdealAndSeparatorsOfProjectivePoints – ideal and separators for points
* IdealOfPoints – ideal of a set of affine points
* IdealOfProjectivePoints – ideal of a set of projective points
* Interpolate – interpolating polynomial
* SeparatorsOfPoints – separators for affine points
* SeparatorsOfProjectivePoints – separators for projective points

Details about these functions may be found individually in the online manual. Briefly, the functions above may be used to find the ideal of a set of points in affine or projective space along with a reduced Groebner basis and separators. Separators are polynomials that take the value 1 on one of the points and 0 on the remainder. The Buchberger-Moeller algorithm works *much* faster than the straightforward technique involving intersecting ideals for the individual points.

```plaintext
example

Use R ::= Q[t,x,y,z];
Pts := GenericPoints(20); -- 20 random points in projective 3-space
X := IdealAndSeparatorsOfProjectivePoints(Pts);
Len(Gens(X.Ideal)); -- number of generators in the ideal
17
-------------------------------
Hilbert(R/X.Ideal);
H(0) = 1
H(1) = 4
H(2) = 10
H(t) = 20 for t >= 3
-------------------------------
F := X.Separators[3];
[Eval(F,P)| P In Pts];
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
-------------------------------
Res(R/X.Ideal); -- the resolution of the ideal
0 --> R^-10(-6) --> R^-24(-5) --> R^-15(-4) --> R

II-2.25 Syzygies and Resolution Example

The following example, among other things, computes the resolution of ideals of sets of points.

```plaintext
example

Use R ::= Q[x,y,z];
X1 := [[0,0,1],[1,0,1],[2,0,1],[2,1,1]]; -- 4 points in the projective plane
X2 := [[0,0,1],[1,0,1],[0,1,1],[1,1,1]]; -- 4 more points
I1 := IdealOfProjectivePoints(X1);
I2 := IdealOfProjectivePoints(X2);
Hilbert(R/I1); -- the Hilbert function of X1
H(0) = 1
H(1) = 3
H(t) = 4 for t >= 2

Hilbert(R/I2) = Hilbert(R/I1); -- The Hilbert functions for X1 and X2 are the same
TRUE
```
II-2.26 Factoring Polynomials

CoCoA can factor a polynomial over its coefficient ring.

```plaintext
Use R ::= Q[x,y];
F := x^12 - 37x^11 + 608x^10 - 5852x^9 + 36642x^8 - 156786x^7 + 468752x^6
 - 984128x^5 + 1437157x^4 - 1422337x^3 + 905880x^2 - 333900x + 54000;
Factor(F);
[[x - 2, 1], [x - 4, 1], [x - 6, 1], [x - 3, 2], [x - 5, 3], [x - 1, 4]]
```

```plaintext
F := (x+y)^2*(x^2y+y^2x+3);
F;
x^4y + 3x^3y^2 + 3x^2y^3 + xy^4 + 3x^2 + 6xy + 3y^2
Factor(F); -- multivariate factorization
[[x^2y + xy^2 + 3, 1], [x + y, 2]]
```

```plaintext
Use Z/(37)[x];
Factor(x^6-1);
[[x - 1, 1], [x + 1, 1], [x + 10, 1], [x + 11, 1], [x - 11, 1], [x - 10, 1]]
```
Part III

The CoCoA Programming Language
Chapter III-1

Introduction to CoCoA Programming

III-1.1 An Overview of CoCoA Programming

The CoCoA system includes a full-fledged high level programming language, CoCoAL, complete with loops, branching, scoping of variables, and input/output control. The language is used whenever one issues commands during a CoCoA session. A sequence of commands may be stored in a text file and then read into a CoCoA session using the “Source” (VI-19.16 pg.337) command.

The most important construct in CoCoA programming is the user-defined function, created with “Define” (VI-4.4 pg.182). A user-defined function can take any number of arguments, of any types, perform CoCoA commands, and return values. Collections of these functions can be stored in text files, as mentioned in the preceding paragraph, or formed into CoCoA “packages,” to be made available for general use.
Chapter III-2

Language Elements

III-2.1 Character Set and Special Symbols

The CoCoA character set consists of the 26 lower case letters, the 26 upper case letters, the 10 digits and the special characters listed in the table below. Note that the special character “|” looks a bit different on some keyboards (its ascii code is 124).

blank	underscore	( left parenthesis	
+	plus	= equal	right parenthesis
-	minus	< less than	[ left bracket
*	asterisk	< greater than	[ right bracket
/	slash	\ vertical bar	' single quote
:	colon	. period	" double quote
"	caret	; semicolon	
%	comma	\ percent	

Special Characters

The character-groups listed in the table below are special symbols in CoCoA

:=	assign	..	range
<<	input from	//	start line comment
<>	not equal	--	start line comment
<=	less than or equal to	/*	start comment
=>	greater than or equal to	*/	end comment
><	Cartesian product	::	ring casting
::=	ring definition	...	dots

Special Character-groups

III-2.2 Identifiers

There are two types of identifiers or names.
* Identifiers of ring indeterminates. They must begin with lower case letters.
* Predefined or user-defined names (functions and CoCoAL variables). They must begin with upper case letters.

III-2.3 Names of Indeterminates

Each indeterminate of a polynomial ring may have one of the following forms:
III-2.4  Reserved Names

The names in the following tables are reserved and cannot be used otherwise. The names in the first table are case insensitive (e.g. CLEAR, Clear and ClEaR are all reserved). The names in the second table are case sensitive.

```
| Alias | And | Block | Catch | Ciao |
| Clear | Cond | Define | Delete | Describe |
| Destroy | Do | Elif | Else | End |
| EndBlock | EndCatch | EndCond | EndDefine| EndFor |
| EndForeach| EndIf | EndPackage| EndRepeat| EndUsing |
| EndWhile | Eof | False | For | Foreach |
| Global | Help | If | In | IsIn |
| NewLine | Not | On | Or | Package |
| Print | PrintLn | Quit | Repeat | Record |
| Return | Set | Skip | Source | Step |
| Then | Time | To | True | Unset |
| Until | Use | Using | Var | While |
| | | | | |
| BOOL | DegLex | DegRevLex| DEVICE | ERROR |
| FUNCTION | IDEAL | INT | LIST | Lex |
| MAT | MODULE | NULL | Null | PANEL |
| POLY | PosTo | RAT | RATFUN | RING |
| STRING | TAGGED | ToPos | TYPE | VECTOR |
| Xel | ZMOD | | | |
```

Case insensitive reserved names

```
| BOOL | DegLex | DegRevLex| DEVICE | ERROR |
| FUNCTION | IDEAL | INT | LIST | Lex |
| MAT | MODULE | NULL | Null | PANEL |
| POLY | PosTo | RAT | RATFUN | RING |
| STRING | TAGGED | ToPos | TYPE | VECTOR |
| Xel | ZMOD | | | |
```

Case sensitive reserved names

III-2.5  Comments

A comment begins with the symbol “/*” and ends with the symbol “*/”. Comments may contain any number of characters and are always treated as white space. Comments may be nested and may span several lines.

In addition, text starting with “//” or “--” up to the end of a line is also considered comment.

```
// This is a line comment
Print 1+1; -- a command followed by a comment
2

/* example of /* nested */ comment */
```

III-2.6  Data Types

Each CoCoA object has a type. The possible types are:

BOOL: A boolean. The boolean constants are TRUE and FALSE.
DEVICE: For input/output.
ERROR: Objects of this type are used in error-handling.
FUNCTION: A CoCoA-defined function.
IDEAL : An ideal.
INT : An arbitrary precision integer.
LIST : A list.
MAT : A matrix.
MODULE : A submodule of a free module.
NULL : The null constant is Null.
POLY : A polynomial.
RAT : An arbitrary precision rational number.
RATFUN : A rational function.
RECORD : A record is a set of bindings, name --> object.
RING : A base ring, a polynomial ring, or a quotient ring.
STRING : A string.
TAGGED : Used to help in printing complicated objects.
TYPE : Returned by the function ‘‘\verb&Type&’’, for example.
VECTOR : A vector.
ZMOD : An integer modulo another integer, e.g. 3 % 5.

The types are partially ordered by inclusion of the sets that they represent, as follows:

MAT < LIST
VECTOR < LIST
INT < RAT < POLY < RATFUN
ZMOD < POLY < RATFUN (if compatible).

In the manual, OBJECT is used to refer to an arbitrary CoCoA type. It is not a type itself.

**III-2.7 Commands and Functions for Data Types**

The following are commands and functions for data types:

- **Cast** : type conversion
- **Max, Min** : a maximum or minimum element of a sequence or list
- **Shape** : extended list of types involved in an expression
- **Type** : the data type of an expression
- **TypeOfCoeffs** : type of the coefficients of the current ring
- **Types** : lists all data types

For details look up each item by name. Online, try “?ItemName” or “H.Syntax(“ItemName”)”.
Chapter III-3

Operators

III-3.1 CoCoA Operators

In CoCoA there are 5 main types of operators: algebraic operators, relational operators, boolean operators, selection operators, and the range operator. There is also an n-ary operator “><” for forming Cartesian products of lists and an operator “::” used in defining rings.

The meaning of an operator depends on the types of its operands; the “+” in the expression “A + B” represents the sum of polynomials, or of ideals, or of matrices, etc. according to the type of A and B.

The multiplication symbol “*” can always be omitted. The expression “F(E)” is intrinsically ambiguous; it can be the variable F multiplied by the parenthesized expression E, or the application of the function F to the argument E. CoCoA always interprets this expression in the latter way. In the former case the user must separate F from the left parenthesis with a blank or an “*”.

The CoCoA operators are, from the highest to the lowest priority:

- [] (selection operators)
- %
- + - (as unary operators)
- * : / (as binary operators)
- = <> < <= > >=
- IsIn
- Not
- And
- OR

Operations with equal priority are performed from left to right. When in doubt, parentheses may be used to enforce a particular order of evaluation.

Furthermore there is the n-ary operator “><” (made by using a greater than sign “>” and a less than sign “<”) for making Cartesian products of lists (see “CartesianProduct, CartesianProductList” (VI-3.2 pg.170)) and the operator “::” for defining rings (see “New Rings” (IV-8.2 pg.103) and “Use” (VI-21.4 pg.352)).

III-3.2 Algebraic Operators

The algebraic operators are:

- + - * / : ~

The following table shows which operations the system can perform between two objects of the same or of different types; the first column lists the type of the first operand and the first row lists the type of the second operand. So, for example, the symbol “::” in the box on the seventh row and fourth column means that it is possible to divide an ideal by a polynomial.
Chapter III-3. Operators

### Algebraic operators

Remarks:

* Let \(F\) and \(G\) be two polynomials. If \(F\) is a multiple of \(G\), then \(F/G\) is the polynomial obtained from the division of \(F\) by \(G\), otherwise \(F/G\) is a rational function (common factors are simplified). The functions “\(\text{Div}\)” (VI-4.21 pg.192) and “\(\text{Mod}\)” (VI-13.17 pg.281) can be used to get the quotient and the remainder of a polynomial division.

* Let \(L_1\) and \(L_2\) be two lists of the same length. Then \(L_1 + L_2\) is the list obtained by adding \(L_1\) to \(L_2\) componentwise.

* If \(I\) and \(J\) are both ideals or both modules, then \(I : J\) is the ideal consisting of all polynomials \(f\) such that \(fg\) is in \(I\) for all \(g\) in \(J\).

### III-3.3 Relational Operators

The relational operators are:

\[
= \quad <> \quad < \quad > \quad <= \quad >= \quad \text{IsIn}
\]

The operator “\(\text{IsIn}\)” (VI-9.29 pg.252) is quite flexible: see its manual for an explanation. The other relational operators can be applied to two objects of the same type. The admissible types for “\(=\)” and “\(<>\)” are:

- \(\text{NULL}, \text{BOOL}, \text{STRING}, \text{TYPE}, \text{INT}, \text{RAT}, \text{ZMOD}, \text{POLY}, \text{RATFUN}, \text{VECTOR}, \text{IDEAL}, \text{MODULE}, \text{MAT}, \text{LIST}\).

The admissible types for the other relational operators are:

- \(\text{STRING}, \text{TYPE}, \text{INT}, \text{RAT}, \text{IDEAL}, \text{MODULE}\).

The meaning of “\(<\)” for string is the lexicographic comparison. For ideals and modules “\(A < B\)” and “\(A <= B\)” both mean that \(A\) is (not necessarily strictly) contained in \(B\).

**NOTE:** It is sometimes hard to judge the type of an expression from the appearance of CoCoA output, leading to confusing results from the relational operators. Here is an simple example:

```coconut
example
L := "3";
L;
3

L=3;
FALSE

Type(L);
STRING

Type(3);
INT

```

Tagged expressions are especially prone to causing confusion of this sort.
III-3.4 Boolean Operators

The boolean operators are:

\[ \neg \text{ And } \text{ Or} \]

see “Introduction to Booleans” (IV-1.1 pg.85).

III-3.5 Selection Operators

The selection operators are

\[ [] \]

Let \( N \) be of type INT and let \( L \) be of type STRING, VECTOR, LIST, or MAT. Then the meaning of \( L[N] \) depends on the type of \( L \) as explained in the following table:

<table>
<thead>
<tr>
<th>Type of ( L )</th>
<th>Meaning of ( L[N] )</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRING</td>
<td>string consisting of the ( N )-th character of ( L ).</td>
</tr>
<tr>
<td>VECTOR</td>
<td>( N )-th component of ( L )</td>
</tr>
<tr>
<td>LIST</td>
<td>( N )-th element of ( L )</td>
</tr>
<tr>
<td>MAT</td>
<td>( N )-th element of ( L )</td>
</tr>
</tbody>
</table>

Selection Operator

If \( N \) is an identifier and \( L \) is of type RECORD, then “\( L.N \)” indicates the object contained in the field \( N \) of the record \( L \) (see “Introduction to Records” (IV-5.1 pg.97) and “Records” (IV-5 pg.97)).

III-3.6 Range Operator

If \( M \) and \( N \) are of type INT, then the expression: “\( M . . N \)” returns

* the list “\([M, M+1, \ldots ,N]\)” if \( M \leq N \);
* the empty list, “\([]\)”, otherwise.

Note: Large values for \( M \) and \( N \) are not permitted; typically they should lie in the range about \(-10^9\) to \(+10^9\).

If \( x \) and \( y \) are indeterminates in a ring, then “\( x . . y \)” gives the indeterminates between \( x \) and \( y \) in the order they appear in the definition of the ring.

```plaintext
1..10;
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

------------------------

Use \( R := Q[x,y,z,a,b,c,d] \);
\( z..c; \)
\([z, a, b, c] \)
------------------------

---

example
Chapter III-4

Evaluation and Assignment

III-4.1 Evaluation

An expression is by itself a valid command. The effect of this command is that the expression is evaluated in
the current ring and its value is displayed.

The evaluation of an expression in CoCoA is normally performed in a full recursive evaluation mode. Usually
the result is the fully evaluated expression.

The result of the evaluation is automatically stored in the variable "It".

\[
\begin{align*}
2 + 2; & \quad 4 \\
\text{It} + 3; & \quad 7 \\
\text{It}; & \quad 7 \\
X := 5; & \quad 7 \\
\text{It}; & \quad 7
\end{align*}
\]

The command "\(X := 5\)" is an assignment, not an evaluation; so it does not change the value of the variable
"\(\text{It}\)".

If an error occurs during the evaluation of an expression, then the evaluation is interrupted and the user is
notified about the error.

III-4.2 Assignment

An assignment command has the form

\[
L := E
\]

where \(L\) is a variable and \(E\) is an expression. The assignment command binds the result of the evaluation of the
expression \(E\) to \(L\) in the working memory (see the chapter entitled “Memory Management” (III-8 pg.67)). If \(E\)
is dependent upon a ring, then \(L\) is labeled with that ring. The label is listed when \(L\) is evaluated in another
ring. Then command “\(\text{RingEnv}(L)\)” will return the label for \(L\).

\[
\begin{align*}
\text{Use } R & ::= \mathbb{Q}[t,x,y,z]; \\
I & ::= \text{Ideal}(x,y); \\
M & ::= 5; \\
N & ::= 8;
\end{align*}
\]
Chapter III-4. Evaluation and Assignment

\[
T := M + N; \\
T; \\
13
\]

\[
T := T + 1; \quad \text{-- note that } T \text{ occurs on the right, also} \\
T; \\
14
\]

\[
L := [1, 2, 3]; \\
L[2] := L[3]; \\
L; \\
[1, 3, 3]
\]

\[
P := \text{Record}[F = xz]; \\
P.\text{Degree} := \text{Deg}(P.F); \\
P; \\
\text{Record}[\text{Degree} = 2, F = xz]
\]

\[
\text{Use } S ::= Q[a, b]; \\
I; \quad \text{-- } I \text{ is labeled by } R \text{ since it depends on } R \\
R :: \text{Ideal}(x, y)
\]

\[
T; \quad \text{-- } T \text{ is not labeled by } R \\
14
\]

\[
J := R:: \text{Ideal}(x^2 - y); \quad \text{-- } J \text{ contains an object dependent on } R \\
J; \quad \text{-- since the ring } S \text{ is active, } J \text{ is labeled by } R \\
R :: \text{Ideal}(x^2 - y)
\]

\[
\text{Use } R; \\
J; \\
\text{Ideal}(x^2 - y)
\]

For information about interacting with rings outside of the current ring, see “Accessing Other Rings” (IV-8.11 pg.108) in the chapter entitled “Rings” (IV-8 pg.103).

To assign values to global variables, see “Introduction to Memory” (III-8.1 pg.67) or “Global Memory” (III-8.3 pg.68).
Chapter III-5

User-Defined Functions

III-5.1 Introduction to User-Defined Functions

The most important construct in CoCoA programming is the user-defined function. These functions take parameters, perform CoCoA commands, and return values. Collections of functions can be stored in text files and read into CoCoA sessions using “Source” (VI-19.16 pg.337). To prevent name conflicts of the type that are likely to arise if functions are to be made available for use by others, the functions can be collected in “packages,” as described in a later chapter.

To learn about user functions, look up “Define” (VI-4.4 pg.182) (online, enter “?define”) for the complete syntax and for examples. The “Tutorial” (II-2 pg.27) also contains several examples of functions.

III-5.2 Commands and Functions for User-Defined Functions

User-defined functions can contain just about any CoCoA command and may refer to other user-defined functions. The following are some commands that pertain particularly to functions:

- **Call** apply a function to given arguments
- **Define** define a function
- **Function** return a function
- **Functions** list the functions of a package
- **NewId** create a new identifier
- **Return** exit from a structured command
- **Var** function calls by reference, other complex referencing

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

57
Chapter III-6

Flow Control: Conditional Statements and Loops

III-6.1 Commands and Functions for Branching

The following are the CoCoA commands for constructing conditional statements:

\[
\begin{align*}
\text{Cond} & \quad \text{conditional expression} \\
\text{If} & \quad \text{conditional statement}
\end{align*}
\]

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

III-6.2 Commands and Functions for Loops

The following are the commands and functions for loops:

\[
\begin{align*}
\text{Break} & \quad \text{break out of a loop} \\
\text{For} & \quad \text{loop command} \\
\text{Foreach} & \quad \text{loop command} \\
\text{Repeat} & \quad \text{loop command} \\
\text{Return} & \quad \text{exit from a structured command} \\
\text{While} & \quad \text{loop command}
\end{align*}
\]

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

59
Chapter III-7

Input/Output

III-7.1 Introduction to IO

Input and output is implemented in CoCoA through the use of “devices”. At present, the official devices are: (1) standard IO (the CoCoA window), (2) text files, and (3) strings. What this means is that it is possible to read from or write to any of these places. The cases are discussed separately, below. Text files may be read verbatim or—with the “Source” (VI-19.16 pg.337) command—be executed as CoCoA commands.

III-7.2 Standard IO

Standard IO is what takes places normally when one interacts with CoCoA via the CoCoA window. CoCoA accepts and interprets strings typed in by the user and prints out expressions. If E is a CoCoA object, then the command

\[ \text{E;} \]

causes the value of E to be printed to the CoCoA window. One may also use the functions “Print” (VI-16.16 pg.310) and “PrintLn” (VI-16.18 pg.311) for more control over the format of the output.

The official devices that are being used here are “DEV.STDIN” and “DEV.OUT”. So for instance, the commands “Get” (VI-7.26 pg.222) and “Print On” (VI-16.17 pg.311) can be used with the standard devices although they are really meant to be used with the other devices. “\text{Print E On DEV.OUT}” is synonymous with “\text{Print E}”.

Also, one may use “\text{Get(DEV.STDIN,10)}”, for example, to get the next 10 characters typed in the CoCoA window. Thus, clever use of “\text{Get}” (VI-7.26 pg.222) will allow your user-defined functions to prompt the user for input, but normal practice is to pass variables to a function as arguments to that function.

III-7.3 File IO

To print CoCoA output to a file, one first opens the file with “OpenOFile” (VI-15.4 pg.301) then prints to the file using “Print On” (VI-16.17 pg.311).

To receive verbatim input from a file, one first opens the file with “OpenIFile” (VI-15.1 pg.299), then gets characters from the file with “Get” (VI-7.26 pg.222). Actually, “Get” (VI-7.26 pg.222) gets a list of ascii codes for the characters in the file. These can be converted to real characters using the function “Ascii” (VI-1.11 pg.162).

\begin{verbatim}
example
D := OpenOFile("my-file"); -- open text file with name "my-file",
    -- creating it if necessary
Print "hello world" On D; -- append "hello world" to my-file
Close(D); -- close the file
D := OpenIFile("my-file"); -- open "my-file"
Get(D,10); -- get the first ten characters, in ascii code
\end{verbatim}
III-7. Input/Output

Ascii(It); -- convert the ascii code
hello world
-------------------------------
Close(D);

To read and execute a sequence of CoCoA commands from a text file, one uses the “Source” (VI-19.16 pg.337) command. For instance, if the file “MyFile.coc” contains a list of CoCoA commands, then

Source(MyFile.coc);

reads and executes the commands.

III-7.4 String IO

To print CoCoA output to a string, one may use “OpenOString” (VI-15.5 pg.301) to “open” the string, then “Print On” (VI-16.17 pg.311) to write to it. To read from a string, one may open the string for input with “OpenIString” (VI-15.2 pg.299) then get characters from it with “Get” (VI-7.26 pg.222).

--- example ---

S := "hello world";
D := OpenIString("",S); -- open the string S for input to CoCoA
-- the first argument is just a name for the device
L := Get(D,7); -- read 7 characters from the string
L; -- ascii code
-------------------------------
Ascii(L); -- convert ascii code to characters
hello w
-------------------------------
Close(D); -- close device D
D := OpenOString(""); -- open a string for output from CoCoA
L := [1,2,3]; -- a list
Print L On D; -- print to D
D;
Record[Name = ", Type = "OString", Protocol = "CoCoAL"]
-------------------------------
S := Cast(D,STRING); -- S is the string output printed on D
S; -- a string
[1, 2, 3]
Print " more characters" On D; -- append to the existing output string
Cast(D,STRING);
[1, 2, 3] more characters 
-------------------------------

There are usually more direct ways to collect results in strings. For instance, if the output of a CoCoA command is not already of type STRING, one may convert it to a string using “Sprint” (VI-19.18 pg.338).

III-7.5 Commands and Functions for IO

The following are commands and functions for input/output:
III-7.6 Tagged Printing

Some CoCoA objects are intrinsically complicated, so printing them verbatim might be confusing. For this reason a mechanism has been implemented which enables automatic pretty printing through the use of "tags". A user may "tag" any object with a string and then define how objects tagged with that string should be printed or described. Commands that do not have to do with printing ignore the tag.

III-7.7 Tagging an Object

If E is any CoCoA object and S a string, then the function "Tagged(E,S)" returns the object E tagged with the string S. The type of the returned object is "TAGGED(S)" (but the type of E is unchanged). The function "Tag" (VI-20.1 pg.345) returns the tag string of an object, and the function "Untagged" (VI-21.3 pg.352) (or "@") returns the object, stripped of its tag.

--- example ---

L := ["Dave","March 14, 1959",372];
M := Tagged(L, "MiscData"); -- L has been tagged with the string "MiscData"
Type(L); -- L is a list
LIST

Type(M); -- M is a tagged object
TAGGED("MiscData")

Tag(M); -- the tag string of M (it would be the empty string if M
-- where not a tagged object).

MiscData

M; -- Until a special print function is defined, the printing of L
-- and M is identical.
["Dave", "March 14, 1959", 372]

Untagged(M) = L; -- "Untagged" removes the tag from M, recovering L.
The next section explains how to define functions for pretty printing of tagged objects.

### III-7.8 Printing a Tagged Object

Suppose the object $E$ is tagged with the string $S$. When one tries to print $E$—say with “Print $E$” or just “$E$”—CoCoA looks for a user-defined function with name “Print$_S$”. If no such function is available, CoCoA prints $E$ as if it were not tagged, otherwise, it executes “Print$_S$”.

```plaintext
example
L := ["Dave","March 14, 1959",372]; -- continuing with the previous example
M := Tagged(L,"MiscData");
M; -- M is printed as normal in the absence of a function "Print_MiscData"
["Dave", "March 14, 1959", 372]

Define Print_MiscData(X) -- Exactly one parameter is required.
M := Untagged(X);
Print(M[1]);
EndDefine;
Print M; -- Now, any object tagged with the string "MiscData" will be
-- printed using Print_MiscData
Dave

M; -- Whenever printing of M is called for, "Print_MiscData" is executed.
Dave

```

The line “$M := \text{Untagged}(X)$” is actually not necessary here, but in general one may get into an infinite loop trying to print $X$, a tagged object, from within the function that is being defined in order to print $X$, if that makes sense. Untagging $X$ prevents this problem.

### III-7.9 Describing a Tagged Object

If the object $E$ is tagged with the string $S$, then when the user enters the command “Describe $E$”, CoCoA first looks for a user-defined function with name “Describe$_S$” and executes it; if not found, the output depends on the type of Untagged($E$).

```plaintext
example
Use R ::= Q[x,y,z];
I := Ideal(x-y^2,x-z^3);
I := Tagged(I,"MyIdeals"); -- I is now tagged with "MyIdeals"
Describe I; -- the default description of an ideal
Record[Type = IDEAL, Value = Record[Gens = [-y^2 + x, -z^3 + x]]]

Define Describe_MyIdeals(X)
 Y := Untagged(X);
 PrintLn("The generators are:");
 Foreach G In Y.Gens Do
 PrintLn(" ", G);
 EndForeach;
EndDefine;
Describe I; -- Any object tagged with "MyIdeals" is now described
-- using "Describe_MyIdeals".
The generators are:
- y^2 + x
```
III-7.10  Another Example Using Tags

Here is one more example using tags. Note that CoCoA commands that do not have to do with printing ignore tags.

\[ -z^3 + x \]

---

III-7.11  Commands and Functions for Tags

The following are commands and functions involving tags:

- **Tag**: returns the tag string of an object
- **Tagged**: tag an object for pretty printing
- **Untagged**: untag an object

For details look up each item by name. Online, try "?itemName" or "H.Syntax("itemName")".
Chapter III-8

Memory Management

III-8.1 Introduction to Memory

CoCoA has three types of memory: “working”, “global”, and “ring-bound” memory. Unlike previous versions of CoCoA, starting with CoCoA 3.5, variables defined during a session are by default assigned to a *working memory*, accessible from all rings (but not from user-defined functions). There are no longer variables that are local to a particular ring. However, as in previous versions of CoCoA, one may define variables in the “global memory” by using the prefix “MEMORY”. The word “global” now refers to the fact that these variables are accessible not only to all rings but also to user-defined functions. A special class of global variables can be stored in what is called the “ring-bound memory”. These variables are formed with the prefix “MEMORY.ENV.R” where “R” is a ring identifier; they are “bound” to the ring, which means that they are automatically destroyed when their corresponding rings cease to exist. Otherwise, variables in the ring-bound memory behave exactly as all other global variables. Most users will never need the ring-bound memory.

These three types of memory are discussed separately, below.

III-8.2 Working Memory

The *working memory* consists of all variables except those defined with the prefix “MEMORY”, e.g. “MEMORY.X”. All variables in the working memory are accessible from all rings, but they are not accessible from within a user-define function (see examples in the next section). The function “Memory” displays the contents of the working memory. More information is provided by “Describe Memory()”.

Ring-dependent variables such as those containing polynomials, ideals, or modules, are labeled by their corresponding rings. If the ring of a ring-dependent variable in the working memory is destroyed, the variable will continue to exist, but labeled by a ring automatically generated by CoCoA. Once all variables dependent on this new ring cease to exist, so does the ring.

```coconut
Use R ::= Q[x,y,z];
Memory(); -- the working memory is empty
[]
--
I := Ideal(xy-z^3,x^2-yz);
X := 3;
M := Mat([[1,2],[3,4]]);
Memory();
["I", "It", "M", "X"]
--
Describe Memory();
----------[Memory]----------
I = Ideal(-z^3 + xy, x^2 - yz)
It = ["I", "It", "M", "X"]
M = Mat([1, 2],
```
III-8.3 Global Memory

Starting with CoCoA 3.5, a “global” variable is one that is accessible from within a user-defined function. A global variable is formed by using the prefix “MEMORY”. The special prefixes “DEV”, “ENV”, “ERR”, and “PKG” are shorthand for “MEMORY.DEV”, “MEMORY.ENV”, etc. Any global variable prefixed by “MEMORY.ENV.R” where “R” is the identifier of a ring, becomes part of the ring-bound memory discussed in the next section. A list of the global variables which are not ring-bound is provided by the function “GlobalMemory” (VI-7.30 pg.224).

Use R ::= Q[x,y,z];
X := 5; -- a variable called "X" in the working memory
MEMORY.X := 7; -- a global variable
A variable prefixed by “MEMORY.ENV.R” where “R” is the identifier of a ring, becomes bound to the ring R. This means that when R ceases to exist, so does the variable (unlike variables that are part of the working memory, labeled by R: see “Working Memory” (III-8.2 pg.67), above). The collection of these variables comprises the “ring-bound memory.” The variables bound to a ring R can be listed with the command “Memory(R)”. Note that since ring-bound variables are, in particular, prefixed by “MEMORY”, they are also part of the global memory discussed in the previous section.

Most users will never need ring-bound variables. Their main use is within functions which need to define and use rings temporarily, destroying them (along with their variables) before returning.

The prefix “ENV” is shorthand for “MEMORY.ENV”.

### Example

```plaintext
Use R ::= Q[x,y,z];
X := Ideal(x,y); -- a variable in the current memory
ENV.R.Y := "bound to R"; -- a variable in the memory bound to R
Use S ::= Q[a,b];
Z := 6;
Memory(); -- the working memory
["X", "Z"]

Memory(R); -- the memory bound to R
```
III-8.5  Commands and Functions for Memory

The following are commands and functions for memory:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>clear the working memory or a ring-bound memory</td>
</tr>
<tr>
<td>Delete</td>
<td>delete variables from the working memory</td>
</tr>
<tr>
<td>Destroy</td>
<td>delete rings</td>
</tr>
<tr>
<td>GlobalMemory</td>
<td>contents of global memory</td>
</tr>
<tr>
<td>IsDefined</td>
<td>check if an expression has been defined</td>
</tr>
<tr>
<td>Memory</td>
<td>contents of local memory or ring-bound memory</td>
</tr>
<tr>
<td>RingEnvs</td>
<td>names of all defined rings</td>
</tr>
<tr>
<td>Size</td>
<td>the amount of memory used by an object</td>
</tr>
</tbody>
</table>

For details look up each item by name. Online, try “?itemName” or “H.Syntax("itemName")”.
Chapter III-9

CoCoA Packages

III-9.1 Introduction to Packages

User-defined functions may be saved in separate files and read into a CoCoA session using the “Source” (VI-19.16 pg.337) command. If one sources several such files or, especially, if a file is to be made available for general use, a possible problem arises from conflicting function names. If two functions with the same name are read into a CoCoA session, only the one last read survives. To avoid this, functions may be collected in “packages”.

A CoCoA package is essentially a list of functions (made using the “Define” (VI-4.4 pg.182) command), labeled with a long prefix. A function from a package is referred to by the package prefix plus the function name. The user may type the full prefix, but the usual method is to create a short alias for the prefix. Details are provided below, starting with a short example.

III-9.2 First Example of a Package

The following is an example of a package. It could be typed into a window as-is during a CoCoA session, but we will assume that it is stored in a file in the CoCoA directory under the name “one.cpkg”.

```
--- example ---

Package $contrib/toypackage

Define IsOne(N)
 If N = 1 Then Return TRUE Else Return FALSE EndIf;
EndDefine;

Define Test(N)
 If $.IsOne(N) Then
 Print "The number 1."
 Else
 Print "Not the number 1."
 EndIf;
EndDefine;

EndPackage; -- of toypackage

--- example ---

```

Below is output from a CoCoA session in which this package was used:

```
--- example ---

-- read in the package:
Source("one.cpkg");
Test(1); -- error here because the function "Test" is not defined

ERROR: Unknown operator Test
CONTEXT: Test(1)
```

71
IV-9.3 Package Essentials

A package begins with

    Package $PackageName

and ends with

    EndPackage;

PackageName is a string that will be used to identify the package. The dollar sign is required. There are no restrictions on the string PackageName, but keep in mind that it serves to distinguish functions in the package from those in all other CoCoA packages. A name of the form “contrib/subject” is typical.

In between the “Package” declaration and its “EndPackage” one may: (1) declare Aliases (see below), (2) define functions, and (3) make comments (please).

If a function F in the package appears in the definition of another function within the package, it must be referred to as “$.F” (or “$PackageName.F”, or using a local alias, see below).

Typically, the user will read in the package using the “Source” (VI-19.16 pg.337) command. After that, to save on typing, the user will choose a global alias with which to refer to the package using the syntax:

    Alias ShortName := $PackageName;

where ShortName is any convenient string, hopefully not conflicting with other global aliases. (A list of the global aliases is returned by the function “Aliases” (VI-1.9 pg.160).)

A package function, F, is then called using the name “ShortName.F”.

IV-9.4 Package Sourcing and Autoloading

As mentioned above, packages are usually saved in files and then read into a CoCoA session using the command “Source” (VI-19.16 pg.337).

(I) Full path name, ordinary file sourcing.

    package name: $mypackage
    file name: this/is/my/stuff.cpkg

Suppose the name of your package is “$mypackage” and is kept in the file with full pathname “this/is/my/stuff.cpkg”. Then the package can be loaded into the session as usual with the command:

    Source("this/is/my/stuff.cpkg");
Functions can then be called from the package using the package name, “$mypackage”, as a prefix (or using aliases).


**package name: $mypackage**

file name: packages/mypackages/stuff.cpkg (relative to cocoa directory)

A package is in the “standard package path” if its file is kept in the “packages” directory inside the cocoa directory. Suppose your package has name “$mypackage” and is kept in the file with path name (relative to the cocoa directory) “packages/mypackages/stuff.cpkg”. Then the package can be read by passing this path name to “Source” (VI-19.16 pg.337), as above, but there are the following shortcuts:

`Source("$mypackages/stuff");`

`<<<$mypackages/stuff;`  

Quotes are optional in this case.

In other words, the prefix “$” is taking the place of “packages/” and the suffix “.cpkg” is (and must be) left off. Functions can then be called as in the previous case.

(III) Autoloading.

**package name: $mypackages/stuff**

file name: packages/mypackages/stuff.cpkg (relative to cocoa directory)

Now suppose that the package is in the standard package path, as above, in the file with path name (relative to the cocoa directory) “packages/mypackages/stuff.cpkg”. However, now assume that the name of the package is “$mypackages/stuff”, i.e., that it matches the name of its file (without “packages/” and “.cpkg”). Then, if any function from the package is called, say “$mypackages/stuff.MyFunction”, the package will automatically be loaded. Of course, one may also source the package using either method I or II, from above.

* Initialize * NOTE: As explained in the section entitled “Package Initialization” (III-9.8 pg.75), below, no matter which method is used to source a package, any function in the package named “Initialize” will automatically be executed when the package is loaded.

### III-9.5 Global Aliases

A global alias for a package is formed by using the command “Alias” (VI-1.7 pg.159) during a CoCoA session. (Local aliases are formed with the same command, but are declared inside a package. They are for use only within the package.) The syntax for “Alias” (VI-1.7 pg.159) is

```
Identifier := $PackageName
```

where a “binding” has the form

```
identifier := $PackageName
```

The function “Aliases” (VI-1.9 pg.160) prints a list of the global aliases.

```plaintext
Aliases();
```

<table>
<thead>
<tr>
<th>H</th>
<th>$help</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO</td>
<td>$io</td>
</tr>
<tr>
<td>GB</td>
<td>$gb</td>
</tr>
<tr>
<td>HP</td>
<td>$hp</td>
</tr>
<tr>
<td>HL</td>
<td>$hilop</td>
</tr>
<tr>
<td>List</td>
<td>$list</td>
</tr>
<tr>
<td>Mat</td>
<td>$mat</td>
</tr>
<tr>
<td>Latex</td>
<td>$latex</td>
</tr>
<tr>
<td>LaTeX</td>
<td>$latex</td>
</tr>
<tr>
<td>Toric</td>
<td>$toric</td>
</tr>
<tr>
<td>Coclib</td>
<td>$coclib</td>
</tr>
<tr>
<td>TT</td>
<td>$abc</td>
</tr>
</tbody>
</table>
```

III-9. CoCoA Packages

Chapter III-9. CoCoA Packages

Note: global aliases cannot be used in function definitions. This is to force independence of context. Inside a function, one must use the complete package name. For example, “$gb.Step(M)” is a valid statement inside a function, but not “GB.Step(M)”.

III-9.6 Local Aliases

A local alias is an alias declared inside a package, for use only within the package. A local alias can have the same identifier as a global alias. Only local aliases are recognized within packages.

There are two uses for local aliases. First, recall that if the definition of function in a package uses another function, F, also defined in the package, then F must be referred to using the package name as a prefix or, for short, “$.F”. In this way, “$” is an automatically a local alias for the package itself. One may choose another alias, say “DD”, and write “DD.F”, instead. A second use for a local alias is to refer to a separate package. In that way, one may refer to functions from that package inside the current package without typing out the full package name.

Keep in mind that these aliases are used only to save typing. Examples appear below.

III-9.7 More Examples of Packages

Here is a simple package for printing lists.

```
Package $contrib/list

Define About()
    Return 
        Author: Antonio
        Version: 1.0
        Date: 18 July 1997
    
EndDefine;

Define PrintList(L)
    Foreach X In L Do
        PrintLn X
    EndForeach
EndDefine;
EndPackage;
```

Here is another package that takes a pair of objects and turns the pair into a list. Note the local alias used to reference the previous package.

```
Package $contrib/pair
```

```
Alias My := $my_package,
    Old := $my_package/old_version;
Aliases();

HP = $hp
BinRepr = $binrepr
SpPoly = $sppoly
HL = $hilop
H = $help
My = $my_package
Old = $my_package/old_version
-----------------------------

Note: global aliases cannot be used in function definitions. This is to force independence of context. Inside a function, one must use the complete package name. For example, “$gb.Step(M)” is a valid statement inside a function, but not “GB.Step(M)”.

```
III-9.8 Package Initialization

Packages are often stored in files and read into a CoCoA session using the “Source” (VI-19.16 pg.337) command. When a package is loaded, any function whose name is “Initialize” will automatically be executed. For example, this feature may be used to print a message or initialized global variables when the package is read into a session.

(Note: following this rule, if the first time you access package PKG is to make an explicit call to the function PKG.Initialize() then the function will be called twice!)

```
Package $example
Define Initialize()
   Print "CALLED INITIALIZE";
   MEMORY.MyVar := 17;
```

Note: suppose a package with identifier “$contrib/newlist” prints lists in another format. To switch to this format in “$contrib/pair”, one need only change the alias for L from “$contrib/list” to “$contrib/newlist”.

```
Aliasing

III-9.8 Package Initialization

Packages are often stored in files and read into a CoCoA session using the “Source” (VI-19.16 pg.337) command. When a package is loaded, any function whose name is “Initialize” will automatically be executed. For example, this feature may be used to print a message or initialized global variables when the package is read into a session.

(Note: following this rule, if the first time you access package PKG is to make an explicit call to the function PKG.Initialize() then the function will be called twice!)

```
Package $example
Define Initialize()
 Print "CALLED INITIALIZE";
 MEMORY.MyVar := 17;
```

Note: suppose a package with identifier “$contrib/newlist” prints lists in another format. To switch to this format in “$contrib/pair”, one need only change the alias for L from “$contrib/list” to “$contrib/newlist”.

```
Aliasing
```

Example

```
Chapter III-9. CoCoA Packages

III-9.9 Sharing Your Package

If you create a package that others might find useful, please contact the CoCoA team by email at “cocoa at dima.unige.it”.

Include comments in the package that:
* explain the use of the package
* list functions that are meant to be seen by the user
* give the syntax for these functions. (What are the arguments? What values are returned?)
* describe what each function does
* provide examples of the use of each function.

III-9.10 Commands and Functions for Packages

The following are commands and functions for packages:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>define aliases for package names</td>
</tr>
<tr>
<td>Alias In</td>
<td>temporarily override global aliases</td>
</tr>
<tr>
<td>Aliases</td>
<td>list of global aliases</td>
</tr>
<tr>
<td>Functions</td>
<td>list the functions of a package</td>
</tr>
<tr>
<td>Packages</td>
<td>list of loaded packages</td>
</tr>
<tr>
<td>PkgName</td>
<td>returns the name of a package</td>
</tr>
</tbody>
</table>

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

III-9.11 Supported Packages

Several packages are supported by the CoCoA team. These packages contain functions that are not built into CoCoA because they are of a more specialized or experimental nature.

The supported packages are:

- algmorph.cpkg -- K-algebra homomorphisms
- CantStop -- the first game in CoCoA ;-)
- conductor.cpkg -- conductor sequence of points
- control.cpkg -- tools for geometric Control Theory
- galois.cpkg -- computing in a cyclic extension
- intprog.cpkg -- integer programming
- invariants.cpkg -- generators of an algebra of invariants
- matrixnormalform.cpkg -- Smith normal form of a matrix
- primary.cpkg -- primary ideals
- specvar.cpkg -- special varieties
- stat.cpkg -- statistics, design of experiment
- thmproving.cpkg -- geometrical theorem proving
- typevectors.cpkg -- typevectors for ideals of points

All of these packages are included in /packages/contrib of the distribution of CoCoA. The packages are likely to be updated more often than CoCoA, itself, and new packages may appear; so it may be worth checking at the CoCoA distribution sites, e.g., “http://cocoa.dima.unige.it/”.

```plaintext
EndDefine;
EndPackage;
CALLED INITIALIZE
-----------------------------
MEMORY.MyVar;
17
-----------------------------
```
HOW TO USE A SUPPORTED PACKAGE (1) save the package in /packages/contrib/, if necessary; (2) to get the syntax, description, and examples of the main functions and a suggested alias for the package, type "$contrib/"package_name".Man();" (3) to know the author and version number, type "$contrib/"package_name".About();"

or just XX.Man(); XX.About() where XX is a defined alias (type "Aliases();" to get the list)

NOTE: The packages will load automatically when one of their functions is called (see “Package Sourcing and Autoloading” (III-9.4 pg.72)) for more information.

See below for more details about specific supported packages.

III-9.12 K-Algebra Homomorphisms

Supported CoCoA Package

TITLE : algmorph.cpkg
DESCRIPTION : CoCoA package for computing K-algebra homomorphisms and subalgebras
AUTHOR : A. Bigatti

LOADING INSTRUCTIONS
-- Enter
$contrib/algmorph.Man();
to get a complete description of the package including a suggested alias.
-- Enter
$contrib/algmorph.About();
to find the version number. You may want to check the CoCoA homepage for the latest version.

III-9.13 Galois Package

Supported CoCoA Package

TITLE : galois.cpkg
DESCRIPTION : CoCoA package for computing in a cyclic algebraic extension
AUTHOR : A. Bigatti, D. La Macchia, F. Rossi

LOADING INSTRUCTIONS
-- Enter
$contrib/galois.Man();
to get a complete description of the package including a suggested alias.
-- Enter
$contrib/galois.About();
to find the version number. You may want to check the CoCoA homepage for the latest version.

III-9.14 Integer Programming

Supported CoCoA Package

TITLE : intprog.cpkg
DESCRIPTION : CoCoA package for applying toric ideals to integer programming
AUTHOR : A. Bigatti

LOADING INSTRUCTIONS
-- Enter
$\text{contrib/intprog.Man}();$
to get a complete description of the package including a suggested alias.
-- Enter
$\text{contrib/intprog.About}();$
to find the version number. You may want to check the CoCoA homepage for the latest version.

III-9.15 Algebra of Invariants

Supported CoCoA Package

<table>
<thead>
<tr>
<th>TITLE</th>
<th>invariants.cpkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>CoCoA package for computing homogeneous generators of an algebra of invariants, and for testing invariance of a polynomial</td>
</tr>
<tr>
<td>AUTHOR</td>
<td>A. Del Padrone</td>
</tr>
</tbody>
</table>

LOADING INSTRUCTIONS

-- Enter
$\text{contrib/invariants.Man}();$
to get a complete description of the package including a suggested alias.
-- Enter
$\text{contrib/invariants.About}();$
to find the version number. You may want to check the CoCoA homepage for the latest version.

III-9.16 Primary Ideals

Supported CoCoA Package

<table>
<thead>
<tr>
<th>TITLE</th>
<th>primary.cpkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>CoCoA package for applying toric ideals to integer programming</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>A. Bigatti, L. Robbiano</td>
</tr>
</tbody>
</table>

LOADING INSTRUCTIONS

-- Enter
$\text{contrib/primary.Man}();$
to get a complete description of the package including a suggested alias.
-- Enter
$\text{contrib/primary.About}();$
to find the version number. You may want to check the CoCoA homepage for the latest version.

III-9.17 Special Varieties

Supported CoCoA Package

<table>
<thead>
<tr>
<th>TITLE</th>
<th>specvar.cpkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>CoCoA package for computing the Hilbert-Poincare series of special varieties (Segre, Veronese, Rees).</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>A. Bigatti, L. Robbiano</td>
</tr>
</tbody>
</table>

LOADING INSTRUCTIONS

-- Enter
$\text{contrib/specvar.Man}();$
to get a complete description of the package including a suggested alias.
III-9.18 Statistics

Supported CoCoA Package

TITLE: stat.cpkg
DESCRIPTION: package for design of experiments in statistics
AUTHOR: M. Caboara

LOADING INSTRUCTIONS

-- Enter

 $contrib/stat.About();

to find the version number. You may want to check the CoCoA homepage for the latest version.

III-9.19 Geometrical Theorem-Proving

Supported CoCoA Package

TITLE: thmproving.cpkg
DESCRIPTION: CoCoA package for geometrical theorem-proving in euclidean space
AUTHOR: L. Bazzotti, G. Dalzotto

LOADING INSTRUCTIONS

-- Enter

 $contrib/thmproving.Man();

to get a complete description of the package including a suggested alias.

-- Enter

 $contrib/thmproving.About();

to find the version number. You may want to check the CoCoA homepage for the latest version.

III-9.20 Typevectors

Supported CoCoA Package

TITLE: typevectors.cpkg
DESCRIPTION: CoCoA package for computing type-vectors associated to Hilbert functions of ideals of points
AUTHOR: E.Carlini, M.Stewart

LOADING INSTRUCTIONS

-- Enter

 $contrib/typevectors.Man();

to get a complete description of the package including a suggested alias.

-- Enter

 $contrib/typevectors.About();

to find the version number. You may want to check the CoCoA homepage for the latest version.
Chapter III-9. CoCoA Packages

III-9.21 Conductor

Supported CoCoA Package

TITLE : conductor.cpkg
DESCRIPTION : CoCoA package for computing conductor sequence of points
AUTHOR : L.Bazzotti

LOADING INSTRUCTIONS
-- Enter
 $contrib/conductor.Man();
 to get a complete description of the package including a suggested alias.
-- Enter
 $contrib/conductor.About();
 to find the version number. You may want to check the CoCoA homepage for the latest version.

III-9.22 Matrix Normal Form

Supported CoCoA Package

TITLE : matrixnormalform.cpkg
DESCRIPTION : CoCoA package for computing normal forms of a matrix,
 Smith Normal Form (PID)
AUTHOR : A.Bigatti, S.DeFrancisci

LOADING INSTRUCTIONS
-- Enter
 $contrib/matrixnormalform.Man();
 to get a complete description of the package including a suggested alias.
-- Enter
 $contrib/matrixnormalform.About();
 to find the version number. You may want to check the CoCoA homepage for the latest version.

III-9.23 CantStop

Supported CoCoA Package

TITLE : CantStop.cpkg
DESCRIPTION : CoCoA package for playing Can't Stop and studying strategies
AUTHOR : A.Bigatti

LOADING INSTRUCTIONS
-- Enter
 $contrib/CantStop.Man();
 to get a complete description of the package including a suggested alias.
-- Enter
 $contrib/CantStop.About();
 to find the version number. You may want to check the CoCoA homepage for the latest version.

III-9.24 Control

Supported CoCoA Package
TITLE : control.cpkg
DESCRIPTION : CoCoA package for Geometric Control Theory
AUTHOR : M. Anderlucci and M. Caboara

LOADING INSTRUCTIONS
-- Enter
 $contrib/control.Man();
 to get a complete description of the package including a suggested alias.
-- Enter
 $contrib/control.About();
 to find the version number. You may want to check the CoCoA
 homepage for the latest version.
Part IV

Doing Mathematics with CoCoA
Chapter IV-1

Booleans

IV-1.1 Introduction to Booleans

The two boolean constants are “TRUE” and “FALSE”. They are mainly used with the commands “If” (VI-9.7 pg.241) and “while” (VI-23.3 pg.358), etc., inside CoCoA programs. The relational operators

\[= \ < \ <= \ > \ >= \]

return boolean constants (see “Relational Operators” (III-3.3 pg.52)). The boolean operators are

\texttt{Not} \texttt{And} \texttt{Or} \texttt{IsIn}

and return boolean constants and are described below.

IV-1.2 Commands and Functions for Booleans

The following are commands and functions for booleans:

\begin{itemize}
 \item \texttt{EqSet} checks if the set of elements in two lists are equal
 \item \texttt{IsAntiSymmetric} checks if a matrix is anti-symmetric
 \item \texttt{IsDefined} check if an expression has been defined
 \item \texttt{IsDiagonal} checks if a matrix is diagonal
 \item \texttt{IsEven, IsOdd} test whether an integer is even or odd
 \item \texttt{IsHomog} test whether given polynomials are homogeneous
 \item \texttt{IsIn} check if one object is contained in another
 \item \texttt{IsLexSegment} checks if an ideal is lex-segment
 \item \texttt{IsNumber} checks if the argument is a number
 \item \texttt{IsPositiveGrading} check if a matrix defines a positive grading
 \item \texttt{IsPPrime} checks if an integer is a probable prime
 \item \texttt{IsPrime} prime integer test
 \item \texttt{Isqrt} (truncated) square root of an integer
 \item \texttt{IsServerReady} checks if CoCoA Server is running
 \item \texttt{IsStable} checks if an ideal is stable
 \item \texttt{IsStronglyStable} checks if an ideal is strongly stable
 \item \texttt{IsSubset} checks if the elements of one list are a subset of another
 \item \texttt{IsSymmetric} checks if a matrix is symmetric
 \item \texttt{IsTerm} checks if the argument is a term
 \item \texttt{IsTermOrdering} check if a matrix defines a term-ordering
 \item \texttt{IsZero} test whether an object is zero
 \item \texttt{Not, And, Or} boolean operators
\end{itemize}

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")".

85
Chapter IV-2

Numbers

IV-2.1 Introduction to Numbers

There are three types of numbers recognized by CoCoA: integers (type “INT”), rationals (type “RAT”), and modular integers (type “ZMOD”). Numbers in CoCoA are handled with arbitrary precision. This means that the sizes of numbers are only limited by the amount of available memory. The basic numeric operations—addition (“+”), subtraction (”-”), multiplication (“*”), division (“/”), exponentiation (“^”), and negation (“-”)—behave as one would expect. Be careful, two adjacent minus signs, “--”, start a comment in CoCoA.

\[N := 3; \]
\[-N; \]
\[-3 \]
\[\text{-------------------} \]
\[--N; \]

The last line in the above example does not return 3; it is interpreted as a comment.

IV-2.2 Rationals

Rational numbers can be entered as fractions or as terminating decimals. CoCoA always converts a rational number into a fraction in lowest terms.

\[\frac{3}{5}; \]
\[\frac{3}{5} \]
\[\text{-------------------} \]
\[3.8; \]
\[\frac{19}{5} \]
\[\text{-------------------} \]
\[N := \frac{4}{8}; \]
\[N; \]
\[\frac{1}{2} \]
\[\text{-------------------} \]

IV-2.3 Numerators and Denominators for Rational Numbers

If \(F \) is a variable holding a fraction, then \(\text{"F.Num"} \) and \(\text{"F.Den"} \) are the numerator and denominator, respectively. The functions “Num” and “Den”, respectively, return the same.

\[F := \frac{3}{5}; \]
\[F.\text{Num}; \]
\[3 \]
IV-2.4 Modular Integers

Let A and B be integers. The expression “A % B” has type “ZMOD” and represents the class of A modulo B. The integer B should be greater than 0 and less than $32767 = 2^{15} - 1$.

When a modular integer is evaluated by CoCoA, it is reduced to a canonical form “A % B” with $-B/2 < A \leq B/2$.

Two modular integers of the form “A % C” and “B % C” are said to be “compatible”, and the usual arithmetical operations are applicable.

```
IV-2.5 Commands and Functions for Numbers
```

The following are commands and functions for numbers:

```
INTEGERS
```

Use the functions “Div” (VI-4.21 pg.192) and “Mod” (VI-13.17 pg.281) for quotients and remainders.
IV-2.5. Commands and Functions for Numbers

Abs absolute value of a number
Bin binomial coefficient
BinExp binomial expansion
Den denominator
Div quotient for integers
EvalBinExp binomial expansion functions
EvalHilbertFn evaluate the Hilbert function
Fact factorial function
Fraction returns the quotient of its arguments
GCD greatest common divisor
GCDFreeBasis determine (minimal) GCD free basis of a set of integers
GenericPoints random projective points
ILogBase integer part of the logarithm
Inverse multiplicative inverse
Iroot integer part of r-th root of an integer
IsEven, IsOdd test whether an integer is even or odd
IsNumber checks if the argument is a number
IsPPrime checks if an integer is a probable prime
IsPrime prime integer test
Isqrt (truncated) square root of an integer
IsZero test whether an object is zero
LCM least common multiple
Len the length of an object
Max, Min a maximum or minimum element of a sequence or list
Mod remainder for integers
Mod2Rat reconstructing rationals from modular integers
NextPPrime find the next largest probable prime number
NextPrime find the next largest prime number
Num numerator
Partitions partitions of an integer
Product the product of the elements of a list
Rand random integer
Seed seed for "Rand"
Size the amount of memory used by an object
Sum the sum of the elements of a list

RATIONALS

Abs absolute value of a number
CFApprox continued fractions
CFApproximants continued fractions
ContFrac continued fractions denominators
DecimalStr convert rational number to decimal string
Den denominator
FloatApprox approx. of rational number of the form $M \times 10^E$
FloatStr convert rational number to a float string
Fraction returns the quotient of its arguments
ILogBase integer part of the logarithm
Inverse multiplicative inverse
IsNumber checks if the argument is a number
IsZero test whether an object is zero
MantissaAndExponent convert rational number to a float
Max, Min a maximum or minimum element of a sequence or list
Num numerator
Product the product of the elements of a list
Sum the sum of the elements of a list

MODULAR INTEGERS
Fraction returns the quotient of its arguments
Inverse multiplicative inverse
IsNumber checks if the argument is a number
IsZero test whether an object is zero
Mod2Rat reconstructing rationals from modular integers
Product the product of the elements of a list
Sum the sum of the elements of a list

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.
Chapter IV-3

Strings

IV-3.1 Introduction to Strings
A string constant consists of a sequence of characters between double quotes (" "). For backward compatibility also single quotes (’’) are allowed, but this syntax is now deprecated.

```plaintext
Print "This is a string.";
This is a string.
So is this. -- deprecated
So is this.
-------------------------------
```

One may not, however, start a string with a single quote and end with a double quote, or vice versa.

IV-3.2 Concatenation
Strings may be concatenated using “+” or using the list function “Concat” (VI-3.21 pg.178).

```plaintext
L := "hello ";
M := "world";
L + M;
hello world
-------------------------------
Concat(L,M);
hello world
-------------------------------
```

IV-3.3 Substrings
If L is a string and N is an integer, then L[N] is the N-th character of L.

```plaintext
L := "hello world";
L[2];
e
-------------------------------
```

The operator “IsIn” (VI-9.29 pg.252) can be used to test if one string is a substring of another.
IV-3.4 Quotes Within Strings

Strings are delimited using single quotes or double quotes (but not mixed). One may directly use quotes inside a string if they are not of the same type as the delimiters. To get quotes inside a string which *are* of the same type as the delimiters, the quotes must be doubled.

```
example
L := "hello world";
"hello" IsIn L; -- one may also write IsIn("hello",L)
TRUE
```

```
IV-3.5 Commands and Functions for Strings

The following are commands and functions for strings:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascii</td>
<td>convert between characters and ascii code</td>
</tr>
<tr>
<td>Comp</td>
<td>the N-th component of a list</td>
</tr>
<tr>
<td>DecimalStr</td>
<td>convert rational number to decimal string</td>
</tr>
<tr>
<td>FloatStr</td>
<td>convert rational number to a float string</td>
</tr>
<tr>
<td>Format</td>
<td>convert object to formatted string</td>
</tr>
<tr>
<td>GetEnv</td>
<td>access shell variables</td>
</tr>
<tr>
<td>IO.SprintTrunc</td>
<td>convert to a string and truncate</td>
</tr>
<tr>
<td>IsIn</td>
<td>check if one object is contained in another</td>
</tr>
<tr>
<td>Latex</td>
<td>LaTeX formatting</td>
</tr>
<tr>
<td>MantissaAndExponent</td>
<td>convert rational number to a float</td>
</tr>
<tr>
<td>Max, Min</td>
<td>a maximum or minimum element of a sequence or list</td>
</tr>
<tr>
<td>More</td>
<td>print a string, N lines at a time</td>
</tr>
<tr>
<td>NewId</td>
<td>create a new identifier</td>
</tr>
<tr>
<td>OpenIString</td>
<td>open input string</td>
</tr>
<tr>
<td>OpenOString</td>
<td>open output string</td>
</tr>
<tr>
<td>Spaces</td>
<td>return a string of spaces</td>
</tr>
<tr>
<td>Sprint</td>
<td>convert to a string</td>
</tr>
<tr>
<td>Var</td>
<td>function calls by reference, other complex referencing</td>
</tr>
</tbody>
</table>

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

Imagine the difficulties in writing this section of the online manual within a CoCoA package. ;>
Chapter IV-4

Lists

IV-4.1 Introduction to Lists

A CoCoA list is a sequence of CoCoA objects between brackets. In particular, a list may contain other lists.
The empty list is “[]”. If L is a list and N is an integer, then L[N] is the N-th component of L. If L contains
sublists, then “L[N_1,N_2,...,N_s]” is shorthand for “L[N_1][N_2]...[N_s]” (see the example below). Lists
are often used to build structured objects of type “MAT”, “VECTOR”, “IDEAL”, and “MODULE”.

Use R ::= Q[t,x,y,z];
L := [34x+y^2,"a string",[],[TRUE,FALSE]]; -- a list
L[1]; -- the list’s 1st component
y^2 + 34x
----------------------
L[2];
a string
----------------------
L[3];
[ ]
----------------------
L[4]; -- The 4th component is a list, itself;
[TRUE, FALSE]
----------------------
L[4][1]; -- its 1st component;
TRUE
----------------------
L[4,1]; -- the same.
TRUE
----------------------
[1,"a"]+[2,"b"]; -- Note: one may add lists if their components are
[3, "ab"] -- compatible (see "Algebraic Operators").
----------------------
L := [x^2-y,ty^2-z^3];
I := Ideal(L);
I;
Ideal(x^2 - y, ty^2 - z^3)
----------------------

IV-4.2 Commands and Functions for Lists

CoCoA provides a variety of commands for manipulating lists. Note in particular the command “In” (VI-9.10 pg.244) which is useful for building lists.

The following are commands and functions for lists:
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Append</td>
<td>append an object to an existing list</td>
</tr>
<tr>
<td>BBasis5</td>
<td>Border Basis of zero dimensional ideal</td>
</tr>
<tr>
<td>BlockMatrix</td>
<td>create a block matrix</td>
</tr>
<tr>
<td>BringIn</td>
<td>bring in objects from another ring</td>
</tr>
<tr>
<td>CartesianProduct</td>
<td>Cartesian product of lists</td>
</tr>
<tr>
<td>Comp</td>
<td>the N-th component of a list</td>
</tr>
<tr>
<td>Concat</td>
<td>concatenate lists</td>
</tr>
<tr>
<td>ConcatLists</td>
<td>concatenate a list of lists</td>
</tr>
<tr>
<td>Count</td>
<td>count the objects in a list</td>
</tr>
<tr>
<td>Diff</td>
<td>returns the difference between two lists</td>
</tr>
<tr>
<td>Distrib</td>
<td>the distribution of objects in a list</td>
</tr>
<tr>
<td>EqSet</td>
<td>checks if the set of elements in two lists are equal</td>
</tr>
<tr>
<td>FGLM5</td>
<td>perform a FGLM Groebner Basis conversion</td>
</tr>
<tr>
<td>First</td>
<td>the first N elements of a list</td>
</tr>
<tr>
<td>Flatten</td>
<td>flatten a list</td>
</tr>
<tr>
<td>GBM</td>
<td>intersection of ideals for zero-dimensional schemes</td>
</tr>
<tr>
<td>GenericPoints</td>
<td>random projective points</td>
</tr>
<tr>
<td>Head</td>
<td>the first element of a list</td>
</tr>
<tr>
<td>HGBM</td>
<td>intersection of ideals for zero-dimensional schemes</td>
</tr>
<tr>
<td>HIntersection</td>
<td>intersection of ideals</td>
</tr>
<tr>
<td>HIntersectionList</td>
<td>intersection of ideals</td>
</tr>
<tr>
<td>IdealAndSeparatorsOfPoints</td>
<td>ideal and separators for affine points</td>
</tr>
<tr>
<td>IdealAndSeparatorsOfProjectivePoints</td>
<td>ideal and separators for projective points</td>
</tr>
<tr>
<td>IdealOfPoints</td>
<td>ideal of a set of affine points</td>
</tr>
<tr>
<td>IdealOfProjectivePoints</td>
<td>ideal of a set of projective points</td>
</tr>
<tr>
<td>In</td>
<td>create a list satisfying given conditions</td>
</tr>
<tr>
<td>Insert</td>
<td>insert an object in a list</td>
</tr>
<tr>
<td>InterpolatingPolynomial</td>
<td>interpolating polynomial</td>
</tr>
<tr>
<td>Interreduce, Interreduced</td>
<td>interreduce a list of polynomials or vectors</td>
</tr>
<tr>
<td>Intersection</td>
<td>intersect lists, ideals, or modules</td>
</tr>
<tr>
<td>IntersectionList</td>
<td>intersect lists, ideals, or modules</td>
</tr>
<tr>
<td>IsIn</td>
<td>check if one object is contained in another</td>
</tr>
<tr>
<td>IsSubset</td>
<td>checks if the elements of one list are a subset of another</td>
</tr>
<tr>
<td>Last</td>
<td>the last N elements of a list</td>
</tr>
<tr>
<td>Len</td>
<td>the length of an object</td>
</tr>
<tr>
<td>List</td>
<td>convert an expression into a list</td>
</tr>
<tr>
<td>MakeSet</td>
<td>remove duplicates from a list</td>
</tr>
<tr>
<td>Mat</td>
<td>convert an expression into a matrix</td>
</tr>
<tr>
<td>MatConcatHor</td>
<td>create a simple block matrix</td>
</tr>
<tr>
<td>MatConcatVer</td>
<td>create a simple block matrix</td>
</tr>
<tr>
<td>Max, Min</td>
<td>a maximum or minimum element of a sequence or list</td>
</tr>
<tr>
<td>Monic</td>
<td>divide polynomials by their leading coefficients</td>
</tr>
<tr>
<td>NewList</td>
<td>create a new list</td>
</tr>
<tr>
<td>NonZero</td>
<td>remove zeroes from a list</td>
</tr>
<tr>
<td>Permutations</td>
<td>returns all permutations of the entries of a list</td>
</tr>
<tr>
<td>PreprocessPts5</td>
<td>A representative subset of points</td>
</tr>
<tr>
<td>Product</td>
<td>the product of the elements of a list</td>
</tr>
<tr>
<td>Remove</td>
<td>remove an object in a list</td>
</tr>
<tr>
<td>Reverse, Reversed</td>
<td>reverse a list</td>
</tr>
<tr>
<td>ScalarProduct</td>
<td>scalar product</td>
</tr>
<tr>
<td>SeparatorsOfPoints</td>
<td>separators for affine points</td>
</tr>
<tr>
<td>SeparatorsOfProjectivePoints</td>
<td>separators for projective points</td>
</tr>
<tr>
<td>Size</td>
<td>the amount of memory used by an object</td>
</tr>
<tr>
<td>SmoothFactor</td>
<td>find small prime factors of an integer</td>
</tr>
<tr>
<td>Sort</td>
<td>sort a list</td>
</tr>
<tr>
<td>SortBy</td>
<td>sort a list</td>
</tr>
<tr>
<td>Sorted</td>
<td>sort a list</td>
</tr>
<tr>
<td>SortedBy</td>
<td>sort a list</td>
</tr>
<tr>
<td>Submat</td>
<td>submatrix</td>
</tr>
<tr>
<td>Subsets</td>
<td>returns all sublists of a list</td>
</tr>
<tr>
<td>Sum</td>
<td>the sum of the elements of a list</td>
</tr>
<tr>
<td>Syz</td>
<td>syzygy modules</td>
</tr>
<tr>
<td>Tail</td>
<td>remove the first element of a list</td>
</tr>
<tr>
<td>Toric</td>
<td>saturate toric ideals</td>
</tr>
<tr>
<td>Toric.CheckInput</td>
<td>check input to “Toric”</td>
</tr>
<tr>
<td>Tuples</td>
<td>N-tuples</td>
</tr>
</tbody>
</table>
For details look up each item by name. Online, try "?ItemName" or "H.Syntax("ItemName")".
Chapter IV-5

Records

IV-5.1 Introduction to Records

A record is a data type in CoCoA representing a list of bindings of the form “name -> object”.

```
Use R ::= Q[x,y,z];
P := Record[I = Ideal(x,y^2-z), F = x^2 + y, Misc = [1,3,4]];
P.I;
Ideal(x, y^2 - z)

P.F;
x^2 + y

P.Misc;
[1, 3, 4]

P.Misc[2];
3

P.Date := "1/1/98";
P;
Record[Date = "1/1/98", F = x^2 + y, I = Ideal(x, y^2 - z), Misc = [1, 3, 4]]

P["I"] ; -- equivalent to P.I
Ideal(x, y^2 - z)

P["Misc",3]; -- equivalent to P.Misc[3]
4

```

Each entry in a record is called a “field”. Note that records are “open” in the sense that their fields can be extended, as shown in the previous example. At present, there is no function for deleting fields from a record, one must rewrite the record, selecting the fields to retain:

```
example

P := Record[A = 2, B = 3, C = 5, D = 7];
Q := Record[];
Foreach F In Fields(P) Do
 If F <> "C" Then Q.Var(F) := P.Var(F) EndIf; -- "Q.F" would not work here
EndForeach;
P := Q;
Delete Q; -- get rid of the variable Q
```
IV-5.2 Commands and Functions for Records

The following are commands and functions for records:

- **Comp**: the N-th component of a list
- **DivAlg**: division algorithm
- **Fields**: list the fields of a record
- **IdealAndSeparatorsOfPoints**: ideal and separators for affine points
- **IdealAndSeparatorsOfProjectivePoints**: ideal and separators for points
- **Record**: create a record

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

Chapter IV-6

Vectors

IV-6.1 Introduction to Vectors

An object of type VECTOR in CoCoA represents a vector of polynomials. If \( V \) is a vector and \( F \) is a polynomial, then the following are also vectors:

\[ +V, -V, F*V, V*F. \]

If \( V \) and \( W \) are vectors with the same number of components, then one may add and subtract \( V \) and \( W \) componentwise:

\[ V+W, V-W. \]

```
Use R ::= Q[x,y];
V := Vector(x+1,y,xy^2);
V;
Vector(x + 1, y, xy^2)

-V;
Vector(-x - 1, -y, -xy^2)

x*V;
Vector(x^2 + x, xy, x^2y^2)

W := Vector(x,y,x^2y^2-y);
x*V-W;
Vector(x^2, xy - y, y)

```

IV-6.2 Commands and Functions for Vectors

The following are commands and functions for vectors:
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BringIn</td>
<td>bring in objects from another ring</td>
</tr>
<tr>
<td>CoeffOfTerm</td>
<td>coefficient of a term of a polynomial or vector</td>
</tr>
<tr>
<td>Colon</td>
<td>ideal or module quotient</td>
</tr>
<tr>
<td>ColumnVectors</td>
<td>the list of column-vectors of a matrix</td>
</tr>
<tr>
<td>Comp</td>
<td>the N-th component of a list</td>
</tr>
<tr>
<td>Comps</td>
<td>list of components of a vector</td>
</tr>
<tr>
<td>Deg</td>
<td>the degree of a polynomial or vector</td>
</tr>
<tr>
<td>DivAlg</td>
<td>division algorithm</td>
</tr>
<tr>
<td>E</td>
<td>canonical vector</td>
</tr>
<tr>
<td>FirstNonZero</td>
<td>the first non-zero entry in a vector</td>
</tr>
<tr>
<td>FirstNonZeroPos</td>
<td>the first non-zero entry in a vector</td>
</tr>
<tr>
<td>GenRepr</td>
<td>representation in terms of generators</td>
</tr>
<tr>
<td>HColon</td>
<td>ideal or module quotient</td>
</tr>
<tr>
<td>IsIn</td>
<td>check if one object is contained in another</td>
</tr>
<tr>
<td>IsTerm</td>
<td>checks if the argument is a term</td>
</tr>
<tr>
<td>IsZero</td>
<td>test whether an object is zero</td>
</tr>
<tr>
<td>LC</td>
<td>the leading coefficient of a polynomial or vector</td>
</tr>
<tr>
<td>Len</td>
<td>the length of an object</td>
</tr>
<tr>
<td>List</td>
<td>convert an expression into a list</td>
</tr>
<tr>
<td>LM</td>
<td>the leading monomial of a polynomial or vector</td>
</tr>
<tr>
<td>LPos</td>
<td>the position of the leading power-product in a vector</td>
</tr>
<tr>
<td>LPP</td>
<td>the leading power-product of a polynomial or vector</td>
</tr>
<tr>
<td>LT</td>
<td>the leading term of an object</td>
</tr>
<tr>
<td>Mat</td>
<td>convert an expression into a matrix</td>
</tr>
<tr>
<td>Monomials</td>
<td>the list of monomials of a polynomial or vector</td>
</tr>
<tr>
<td>NewVector</td>
<td>create a new vector</td>
</tr>
<tr>
<td>NF</td>
<td>normal form</td>
</tr>
<tr>
<td>NFsAreZero</td>
<td>test if normal forms are zero</td>
</tr>
<tr>
<td>NonZero</td>
<td>remove zeroes from a list</td>
</tr>
<tr>
<td>NR</td>
<td>normal reduction</td>
</tr>
<tr>
<td>NumComps</td>
<td>the number of components of a vector</td>
</tr>
<tr>
<td>Product</td>
<td>the product of the elements of a list</td>
</tr>
<tr>
<td>ScalarProduct</td>
<td>scalar product</td>
</tr>
<tr>
<td>Size</td>
<td>the amount of memory used by an object</td>
</tr>
<tr>
<td>Sum</td>
<td>the sum of the elements of a list</td>
</tr>
<tr>
<td>Support</td>
<td>the list of terms of a polynomial or vector</td>
</tr>
<tr>
<td>Vector</td>
<td>create a vector</td>
</tr>
</tbody>
</table>

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”. 

Chapter IV-6. Vectors
Chapter IV-7

Matrices

IV-7.1 Introduction to Matrices

An m x n matrix is represented in CoCoA by the list of its rows

\[ \text{Mat}(R_1, \ldots, R_m) \]

where each “R_i” is of type “LIST” and has length n. A matrix has type “\text{MAT}”. The (A,B)-th entry of a matrix \( M \) is given by “\( M[A][B] \)” or “\( M[A,B] \)”.

\begin{verbatim}
Use R ::= Q[x,y,z];
M := Mat([[x,y,xy^2],[y,z^2,2+x]]);
M;
Mat(["
  [x, y, xy^2],
  [y, z^2, x + 2]
])
\end{verbatim}

\begin{verbatim}
M[1][3];
xy^2
\end{verbatim}

\begin{verbatim}
M[1,3];
xy^2
\end{verbatim}

The following operations are defined as one would expect for matrices

\[ M^A, +M, -N, M+N, M-N, M*N, F*M, M*F \]

where \( M,N \) are matrices, \( A \) is a non-negative integer, and \( F \) is a polynomial or rational function, with the obvious restrictions on the dimensions of the matrices involved.

\begin{verbatim}
Use R ::= Q[x,y];
N := Mat([[1,2],[3,4]]);
N^2;
Mat(["
  [7, 10],
  [15, 22]
])
\end{verbatim}

\begin{verbatim}
x/y * N;
Mat(["
  [x/y, 2x/y],
  [3x/y, 4x/y]
])
\end{verbatim}
### IV-7.2 Commands and Functions for Matrices

The following are commands and functions for matrices:

<table>
<thead>
<tr>
<th>Command/Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjoint</td>
<td>adjoint matrix</td>
</tr>
<tr>
<td>BlockMatrix</td>
<td>create a block matrix</td>
</tr>
<tr>
<td>BringIn</td>
<td>bring in objects from another ring</td>
</tr>
<tr>
<td>ColumnVectors</td>
<td>the list of column vectors of a matrix</td>
</tr>
<tr>
<td>DegLexMat</td>
<td>matrices for std. term-orderings</td>
</tr>
<tr>
<td>DegRevLexMat</td>
<td>matrices for std. term-orderings</td>
</tr>
<tr>
<td>Det</td>
<td>the determinant of a matrix</td>
</tr>
<tr>
<td>DiagonalMat</td>
<td>matrix with given diagonal</td>
</tr>
<tr>
<td>HilbertBasis</td>
<td>Hilbert basis for a monoid</td>
</tr>
<tr>
<td>Identity</td>
<td>the identity matrix</td>
</tr>
<tr>
<td>Inverse</td>
<td>multiplicative inverse</td>
</tr>
<tr>
<td>IsAntiSymmetric</td>
<td>checks if a matrix is anti-symmetric</td>
</tr>
<tr>
<td>IsDiagonal</td>
<td>checks if a matrix is diagonal</td>
</tr>
<tr>
<td>IsPositiveGrading</td>
<td>check if a matrix defines a positive grading</td>
</tr>
<tr>
<td>IsSymmetric</td>
<td>checks if a matrix is symmetric</td>
</tr>
<tr>
<td>IsTermOrdering</td>
<td>check if a matrix defines a term-ordering</td>
</tr>
<tr>
<td>IsZero</td>
<td>test whether an object is zero</td>
</tr>
<tr>
<td>Jacobian</td>
<td>the Jacobian of a list of polynomials</td>
</tr>
<tr>
<td>Len</td>
<td>the length of an object</td>
</tr>
<tr>
<td>LexMat</td>
<td>matrices for std. term-orderings</td>
</tr>
<tr>
<td>LinKer</td>
<td>find the kernel of a matrix</td>
</tr>
<tr>
<td>LinSol</td>
<td>find a solution to a linear system</td>
</tr>
<tr>
<td>List</td>
<td>convert an expression into a list</td>
</tr>
<tr>
<td>Mat</td>
<td>convert an expression into a matrix</td>
</tr>
<tr>
<td>MatConcatHor</td>
<td>create a simple block matrix</td>
</tr>
<tr>
<td>MatConcatVer</td>
<td>create a simple block matrix</td>
</tr>
<tr>
<td>Minors</td>
<td>list of minor determinants of a matrix</td>
</tr>
<tr>
<td>NewMat</td>
<td>create a new matrix</td>
</tr>
<tr>
<td>Pfaffian</td>
<td>the Pfaffian of a skew-symmetric matrix</td>
</tr>
<tr>
<td>PositiveGrading4</td>
<td>extend a positive grading (for CoCoA-4 multigradings limitation)</td>
</tr>
<tr>
<td>Product</td>
<td>the product of the elements of a list</td>
</tr>
<tr>
<td>RevLexMat</td>
<td>matrices for std. term-orderings</td>
</tr>
<tr>
<td>Size</td>
<td>the amount of memory used by an object</td>
</tr>
<tr>
<td>Submat</td>
<td>submatrix</td>
</tr>
<tr>
<td>Sum</td>
<td>the sum of the elements of a list</td>
</tr>
<tr>
<td>TensorMat</td>
<td>returns the tensor product of two matrices</td>
</tr>
<tr>
<td>Toric</td>
<td>saturate toric ideals</td>
</tr>
<tr>
<td>Toric.CheckInput</td>
<td>check input to &quot;Toric&quot;</td>
</tr>
<tr>
<td>Transposed</td>
<td>the transposition of a matrix</td>
</tr>
<tr>
<td>XelMat</td>
<td>matrices for std. term-orderings</td>
</tr>
</tbody>
</table>

For details look up each item by name. Online, try "?ItemName" or "H.Syntax("ItemName")".
Chapter IV-8

Rings

IV-8.1 Introduction to Rings

Polynomial rings play a central role in CoCoA. Indeed, every object in CoCoA is defined over a base ring which is a polynomial ring. The user can define many rings, but at any time a "current ring" is active within the system. Most commands use the current ring as the base ring.

Once a ring has been defined, the system can handle the following mathematical objects defined over that ring:

* numbers (integers, rationals, modular integers);
* polynomials;
* vectors of polynomials;
* rational functions;
* ideals;
* modules (submodules of a free module);
* lists of objects;
* matrices of objects.

Variables containing ring-dependent objects such as polynomials, ideals, and modules are "labeled" by their ring. Variables containing objects such as integers which are not dependent on a particular ring are not labeled.

IMPORTANT NOTE: Starting with CoCoA 3.5, variables are no longer local to specific rings, i.e., all variables are accessible from all rings.

The next sections explains how to create a ring.

IV-8.2 New Rings

CoCoA starts with the default ring \( R = \mathbb{Q}[t,x,y,z] \). The command for building a new ring is:

\[
I ::= \text{C[X:INDETS]}
\]

or

\[
I ::= \text{C[X:INDETS], M_1, \ldots, M_n}
\]

where \( I \) is the identifier of a CoCoAL variable, \( C: \text{RING} \) is an expression defining a coefficient ring (\( \mathbb{Z}, \mathbb{Q} \) or \( \mathbb{Z}/(N) \)), \( X \) is an expression that defines the indeterminates, and the "\( M_i \)" are "modifiers". Each of these components is discussed in separate sections, below.

The modifiers are used to modify the default settings of the base ring. The modifiers are of three classes: term-orderings, weights, term orderings for modules. These classes are discussed in separate sections below. It is possible to have no modifiers. The default values are: DegRevLex for the term-ordering, 1 for the weight of each indeterminate, and ToPos for the module term-ordering.

After the ring is defined using the above syntax, it can be made to be the current ring with the command "Use" (VI-21.4 pg.352) or it can be accessed temporarily from within the current ring with the command "Using" (VI-21.5 pg.353). See these two commands for more information. There are also several examples of ring-building in the tutorial.
Chapter IV-8. Rings

IV-8.3 Coefficient Rings

As mentioned above, the coefficient ring for a CoCoA polynomial ring may be:

1. \( \mathbb{Z} \): (arbitrarily large) integer numbers;
2. \( \mathbb{Q} \): (arbitrarily large) rational numbers;
3. \( \mathbb{Z}/(N) \): (see "\verb&CocoaLimits&" (VI-3.13 pg. 174)) integers modulo \( N \),

The first two types of coefficients are based on the GNU-gmp library. When integers modulo \( N \) are used, the system checks whether \( N \) is a prime number and, if it is not, a warning message is given. However non-prime integers are accepted. Hence it is possible to do some work with polynomials whose coefficients are not in a field, but it is up to the user to ensure that no illegal operation will be attempted. To find the upper limit for the characteristic in the third case, see the field "MaxChar" returned by the function "CocoaLimits" (VI-3.13 pg.174); \( N \leq 32767 \) is typical. (Note: 32003 is prime)

IMPORTANT NOTE: Presently the implementation of the Buchberger algorithm for computing Groebner bases operates correctly only if polynomials have coefficients in a field. So the high level operations on ideals and modules (and the polynomial GCD) involving Groebner bases computations work only if polynomials have coefficients in a field. Otherwise it is very likely that the user will run into trouble.

"CoeffRing": When creating a new ring, the word "CoeffRing" may be used to refer to the current coefficient ring. Examples below illustrate its use.

---

IV-8.4 Indeterminates

An “indeterminate” is represented by a name consisting of either a single lower case letter or a lower case letter followed by one or more indices. For example, “\( x \)”, “\( x[1] \)”, “\( x[1,2,3] \)” are legal (and different) indeterminates,
as is “x[2I,2I+1]” if I is an integer variable.

When creating a ring the indeterminates are listed, optionally separated by commas: lack of separating commas is now deprecated and might be unacceptable in future versions. Indeterminates with indices are formed with the syntax: “x[R_1,...,R_n]”, where “x” stands for any lower case letter and each “R_i” has the form “A..B” for integers “A <= B”.

```plaintext
example
Use R ::= Q[xyz]; -- this syntax is deprecated
Use R ::= Q[x,y,z];
Indets();
[x[1,4], x[1,5], x[1,6], x[1,7], x[1,8], x[2,4], x[2,5], x[2,6],
x[2,7], x[2,8], y[1], y[2], y[3], u, v]
```

### IV-8.5 Weights Modifier

In forming a ring, one of the possible modifiers that may be added has one of the forms:

(i) “Weights(W_1,...,W_n)” where “W_i” is a positive integer specifying the weight of the i-th indeterminate (the number of weights listed must be equal to the number of indeterminates)

(ii) “Weights(M)” where M is a matrix with as many columns as there are indeterminates. In the latter case, the i-th indeterminate has the multi-degree given by the i-th column of M.

NB: Because of a choice in the early design (oriented to single gradings), the first row of the matrix M *must* have all positive entries. CoCoA-5, with a cleaner mathematical foundation, will not have this limitation.

If the weights are not specified the default value is 1 for all indeterminates.

```plaintext
example
Use S ::= Q[a,b,c], Weights(1,2,3);
Deg(b);
2
L := [1,2,3];
Use S ::= Q[a,b,c], Weights(L);
Deg(b);
2
W := Mat([[1,2,3],[4,5,6]]);
Use S ::= Q[a,b,c], Weights(W);
Deg(b);
2
MDeg(b); -- the multi-degree of b
[2, 5]
Deg(b^3+a^2c);
6
MDeg(b^3+a^2c);
[6, 15]
WeightsMatrix();
Mat[
 [1, 2, 3],
 [4, 5, 6]
]
WeightsList(); -- returns the first row of the Weights Matrix
```
IV-8.6 Orderings

Polynomials are always sorted with respect to the ordering of their base ring. All the operations involving polynomials utilize and preserve this ordering. The user can define custom orderings or choose a predefined term-ordering. Some commands temporarily change the term-ordering in order to make a computation. The various possibilities are discussed more fully, below.

The command “Ord” (VI-15.8 pg.302) can be used both as a modifier to set the ordering of the ring and as a way to view the matrix defining the current term-ordering.

```
example
Use R ::= Q[x,y,z], Lex; -- lexicographic term-ordering (predefined)
Use S ::= Q[u,v], Ord([[1,1],[2,-3]]); -- custom term-ordering
Ord(R); -- the matrix defining the term-ordering for R
Mat([[1, 0, 0],
 [0, 1, 0],
 [0, 0, 1]])

Ord(S); -- the matrix defining the term-ordering for S
Mat([[1, 1],
 [2, -3]])

```

IV-8.7 Predefined Term-Orderings

The predefined term-orderings are:

- degree reverse lexicographic: “DegRevLex” (the default ordering)
- degree lexicographic: “DegLex”
- pure lexicographic: “Lex”
- pure xel: “Xel”
- elimination term-ordering: “Elim(X:INDETS)”

The first two term-orderings use the weights of the indeterminates for computing the degree of a monomial. If the indeterminates are given in the order “x_1, ..., x_n”, then “x_1 > ... > x_n” with respect to Lex, but “x_1 < ... < x_n” with respect to Xel.

In the last ordering, X specifies the variables that are to be eliminated. It may be a single indeterminate or a range of indeterminates. However, X may not be an arbitrary list of indeterminates; for that, see the command “Elim” (VI-5.2 pg.195) (as opposed to the modifier “Elim” (VI-5.2 pg.195) being discussed here). A range of indeterminates can be specified using the syntax “< first-indet >..< last-indet >”. Another shortcut: if there are indexed variables of the form, say, “x[i,j]”, then “Elim(x)” specifies a term-ordering for eliminating all of the “x[i,j]”.

```
example
Use R ::= Q[x,y,z], Lex;
x+y+z;
x + y + z

Use R ::= Q[x,y,z], Xel;
x+y+z;
z + y + x

Use R ::= Q[t,x,y,z], Elim(t);
```
IV-8.8 Temporary Term-Orderings

For computations which temporarily require a different term-ordering (for example, to eliminate variables or to homogenize ideals), the system automatically changes the term-ordering to a more suitable one, performs the computation, and then restores the initial term-ordering and gives its output with respect to this one. In this way the user never has to deal with temporary changes.

example

```coconut
Use R ::= Q[t,x,y,z];
I := Ideal(t-x,y-z,t-z);
Elim(y,I);
Ideal(t-z, -x+z)
```

IV-8.9 Custom Term-Orderings

For special purposes, the user can enter a custom ordering. We recall that each ordering “>” on the set of the terms of a polynomial ring in n variables corresponds to a (not uniquely determined) array “(u_1, ..., u_s)” of vectors of the real vector space R^n. More precisely if \( a = (a_1, ..., a_n) \) and \( b = (b_1, ..., b_n) \) are the n-tuples of the exponents of two terms \( t \) and \( t' \), then

\[ t > t' \iff (a_1 u_1, ..., a_n u_s) \succ (b_1 u_1, ..., b_n u_s) \]

where \( \succ \) is the ordering on \( R^s \) given by: \( (c_1, ..., c_s) \succ (d_1, ..., d_s) \) if and only if the first (leftmost) non-zero coordinate of \( (c_1 - d_1, ..., c_s - d_s) \) is positive.

CoCoA accepts orderings defined by means of n x n matrices of integers. This is not a real restriction if one is interested, for instance, in finding all possible Groebner bases of a given ideal.

Moreover > is a term-ordering if and only if the matrix whose rows are the vectors \( (u_1, ..., u_s) \) has maximal rank and is such that the first non-zero element in each column is positive.

To compute a Groebner basis a term-ordering is needed.

example

```coconut
-- The following CoCoA command defines S to be a polynomial ring and
-- orders the terms of S using the term-ordering corresponding to the
-- vectors (1,1,0,0),(0,-1,0,0),(0,0,1,1),(0,0,0,-1):
Use S ::= Q[x,y,z,t], Ord< Mat([[1, 1, 0, 0],
[0, -1, 0, 0],
[0, 0, 1, 1],
[0, 0, 0, -1]]);```
Chapter IV-8. Rings

IV-8.10 Module Orderings

First we recall the definition of a module term-ordering. We assume that all our free modules have finite rank and are of the type \(M = R^n \) where \(R \) is a polynomial ring with \(n \) indeterminates. Let \(\{e_i|i = 1,\ldots,r\} \) be the canonical basis of \(M \). A "term" of \(M \) is an element of the form \(Te_i \) where \(T \) belongs to the set \(T(R) \) of the terms of \(R \). Hence the set \(T(M) \), of the terms of \(M \), is in one-to-one correspondence with the Cartesian product, \(T(R) \times [1,\ldots,r] \).

A "module term-ordering" is defined as a total ordering \(> \) on \(T(M) \) such that for all "\(T, T_1, T_2 \)" in \(T(R) \) with \(T \) not equal to 1, and for all \(i, j \) in \(1,\ldots,r \),

1. \(T \ast T_1 \ast e_i > T_1 \ast e_i \)
2. \(T_1 \ast e_i > T_2 \ast e_j \Rightarrow T \ast T_1 \ast e_i > T \ast T_2 \ast e_j \)

Each term-ordering on the current ring induces several term-orderings on a free module. CoCoA allows the user to choose between the following:

* the ordering called "ToPos" (which is the default one) defined by:

\[
T_1 \ast e_i > T_2 \ast e_j \iff T_1 > T_2 \text{ in } R \\
\text{or, if } T_1 = T_2 , i < j
\]

* the ordering called "PosTo" defined by:

\[
T_1 \ast e_i > T_2 \ast e_j \iff i < j \\
\text{or, if } i = j, T_1 > T_2 \text{ in } R
\]

The leading term of the vector \((x, y^2)\) with respect to two different module term-orderings:

example

```plaintext
Use R ::= Q[x,y], ToPos;
LT(Vector(x,y^2));
Vector(0, y^2)
-------------------------------
Use R ::= Q[x,y], PosTo;
LT(Vector(x,y^2));
Vector(x, 0)
```

IV-8.11 Accessing Other Rings

There are a variety of ways of interacting with a ring outside of the current ring. First of all, unlike CoCoA 3.4, starting with CoCoA 3.5, variables are usually assigned to a "working memory" accessible from all rings. (The only exceptions are variables prefixed by "MEMORY". See the chapter entitled "Memory Management" (III-8 pg.67) for further information.) If a variable contains an object which does not depend on a user-defined ring—for example an integer—that object can be immediately accessed and used within any ring. If a variable contains a ring-dependent object such as a polynomial, an ideal, or a module, the variable becomes labeled by the ring in which it was defined. Built-in CoCoA functions should be smart enough to take into account the rings on which their arguments depend (if you find an exception, please send a message to "cocoa at dima.unige.it").

To access rings outside of the current ring, one may of course use the command "Use" (VI-21.4 pg.352) to change the current ring. Some other ways of interacting with outside rings:

1. The "::" construction. This construction can be used to define variables or perform operations in rings outside of the current ring.

example

```plaintext
Use R ::= Q[x,y,z];
I := Ideal(x,y,z)^3;
I;
Ideal(x^3, x^2y, x^2z, xy^2, xyz, xz^2, y^3, y^2z, yz^2, z^3)
-------------------------------
Use S ::= Z/(5)[a,b];
I; -- I is labeled by its ring, R
```
R :: Ideal(x^3, x^2y, x^2z, xy^2, xyz, xz^2, y^3, y^2z, yz^2, z^3)

RingEnv(I); -- the name of the ring on which I is dependent
R

R:: Poincare(R/I); -- To be sure, one may prefix any operation
-- on I by "R:" although this should not
-- be necessary

(i + 3a + 6a^2)

R:: (x+y)^2; -- S is still the active ring, but we can perform
-- operations in R
R :: x^2 + 2xy + y^2

J := R :: Ideal(x^2-y); -- while S is active, one may define an
-- object dependent on R. This variable
-- becomes part of the working memory.

J;
R :: Ideal(x^2 - y)

Use R;
J; -- the label is not used if R is active
Ideal(x^2 - y)

(2) “Using” (VI-21.5 pg.353). From within the current ring one may temporarily perform commands in
another ring using the command “Using” (VI-21.5 pg.353). A brief example appears below. For more
information, see the online help entry for “Using” (VI-21.5 pg.353).

Use R ::= Q[x,y];
S ::= Z/(5)[a,b]; -- the current ring is still R
Using S Do
 X := (a+b)^5; -- assign a value to a variable in another ring
EndUsing;
X;
S :: a^5 + b^5

Use S;
X;
a^5 + b^5

(3) “Image” (VI-9.9 pg.242). To map objects from one ring to another, one may use the command “Image”
(VI-9.9 pg.242). An introduction to this command appears in the following section and more details can be
found in the online help entry, “Image” (VI-9.9 pg.242).

(4) “QZP”, “ZPQ”. The commands “QZP” and “ZPQ” can sometimes be used to quickly map a polynomial
or ideal from an outside ring into the current ring. See the online help entry, “QZP” (VI-17.3 pg.314), “ZPQ”
(VI-25.1 pg.363), for details.

(5) “BringIn” (VI-2.9 pg.167). This is the easiest function, but may be slow, to map objects from one ring
to another.

IV-8.12 Ring Mappings: the Image Function

The function “Image” (VI-9.9 pg.242) implements a ring homomorphism. Suppose S is the current ring and
R is another ring. If X is an object in R, the function “Image” (VI-9.9 pg.242) may be used to substitute
polynomials in S for the indeterminates in X. An example is given below and complete details are given in the online help entry for “Image” (VI-9.9 pg.242).

To make substitutions within a single ring, one would usually use “Eval” (VI-5.7 pg.197) or “Subst” (VI-19.23 pg.340) rather than “Image” (VI-9.9 pg.242). To map a polynomial or ideal from an outside ring into the current ring, the functions “QZP” and “ZPQ” are sometimes useful. To map a polynomial or rational function (or a list, matrix, or vector of these) from R to S without changing indeterminates, use the function “BringIn” (VI-2.9 pg.167). (“BringIn” is only applicable if the indeterminates of the object to be mapped are a subset of those in S.)

\[\text{example} \]

```plaintext
Use R ::= Q[a,b,c];
X := a+b-3c;
Use S ::= Q[x,y];
F := RMap(x^2,2,y^2); -- syntax for defining a map: the n-th
   -- indeterminate in the domain will be mapped to
   -- the n-th element listed in RMap.
X; -- X lives in the ring R
R :: a + b - 3c
------------------------
Image(X,F); -- the image of E under the map F
x^2 - 3y^2 + 2
------------------------
Image(R:: (a+b)^2,F);
x^4 + 4x^2 + 4
------------------------
```

IV-8.13 Quotient Rings

If “R” is a ring identifier and I is an ideal defined in “R”, then “R/I” represents the corresponding quotient ring. It has type “TAGGED("Quotient")”.

\[\text{example} \]

```plaintext
Use R ::= Q[x,y];
I := Ideal(y-x^2);
Q ::= R/I;
Hilbert(Q); -- the Hilbert function for Q
H(0) = 1
H(x) = 2 for x >= 1
------------------------
```

IV-8.14 Commands and Functions for Rings

The following are commands and functions controlling rings:
<table>
<thead>
<tr>
<th>Command/Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AffHilbert</td>
<td>the affine Hilbert function</td>
</tr>
<tr>
<td>AffHilbertFn</td>
<td>the affine Hilbert function</td>
</tr>
<tr>
<td>AffHilbertSeries</td>
<td>the affine Hilbert-Poincare series</td>
</tr>
<tr>
<td>AffPoincare</td>
<td>the affine Hilbert-Poincare series</td>
</tr>
<tr>
<td>Characteristic</td>
<td>the characteristic of a ring</td>
</tr>
<tr>
<td>Clear</td>
<td>clear the working memory or a ring-bound memory</td>
</tr>
<tr>
<td>CurrentRing</td>
<td>the current ring</td>
</tr>
<tr>
<td>Deg</td>
<td>the degree of a polynomial or vector</td>
</tr>
<tr>
<td>Delete</td>
<td>delete variables from the working memory</td>
</tr>
<tr>
<td>Destroy</td>
<td>delete rings</td>
</tr>
<tr>
<td>Dim</td>
<td>the dimension of a ring or quotient object</td>
</tr>
<tr>
<td>Hilbert</td>
<td>the Hilbert-Poincare' function</td>
</tr>
<tr>
<td>HilbertFn</td>
<td>the Hilbert function</td>
</tr>
<tr>
<td>HilbertPoly</td>
<td>the Hilbert polynomial</td>
</tr>
<tr>
<td>HilbertSeries</td>
<td>the Hilbert-Poincare series</td>
</tr>
<tr>
<td>HilbertSeriesMultiDeg</td>
<td>the Hilbert-Poincare series wrt a multigrading</td>
</tr>
<tr>
<td>HilbertSeriesShifts</td>
<td>the Hilbert-Poincare series</td>
</tr>
<tr>
<td>HVector</td>
<td>the h-vector of a module or quotient object</td>
</tr>
<tr>
<td>Image</td>
<td>apply ring homomorphism</td>
</tr>
<tr>
<td>Indet</td>
<td>individual indeterminates</td>
</tr>
<tr>
<td>IndetInd</td>
<td>the index of an indeterminate</td>
</tr>
<tr>
<td>IndetIndex</td>
<td>index of an indeterminate</td>
</tr>
<tr>
<td>IndetName</td>
<td>the name of an indeterminate</td>
</tr>
<tr>
<td>Indets</td>
<td>list of current indeterminates</td>
</tr>
<tr>
<td>MDeg</td>
<td>multi-degree of a polynomial</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>the multiplicity (degree) of a ring or quotient object</td>
</tr>
<tr>
<td>NumIndets</td>
<td>number of indeterminates</td>
</tr>
<tr>
<td>Ord</td>
<td>matrix defining a term-ordering</td>
</tr>
<tr>
<td>Poincare</td>
<td>the Hilbert-Poincare series</td>
</tr>
<tr>
<td>PoincareMultiDeg</td>
<td>the Hilbert-Poincare series wrt a multigrading</td>
</tr>
<tr>
<td>PoincareShifts</td>
<td>the Hilbert-Poincare series</td>
</tr>
<tr>
<td>QZP</td>
<td>change field for polynomials and ideals</td>
</tr>
<tr>
<td>Ring</td>
<td>returns the ring with a given name</td>
</tr>
<tr>
<td>RingEnv</td>
<td>name of the current ring</td>
</tr>
<tr>
<td>RingEnvs</td>
<td>names of all defined rings</td>
</tr>
<tr>
<td>RingEnvSet</td>
<td>set of names of the ring environments</td>
</tr>
<tr>
<td>RMap</td>
<td>define ring homomorphism</td>
</tr>
<tr>
<td>TypeOfCoeffs</td>
<td>type of the coefficients of the current ring</td>
</tr>
<tr>
<td>UnivariateIndetIndex</td>
<td>the index of the indeterminate of a univariate polynomial</td>
</tr>
<tr>
<td>Use</td>
<td>command for making a ring active</td>
</tr>
<tr>
<td>Using</td>
<td>perform commands in non-active ring</td>
</tr>
<tr>
<td>WeightsList</td>
<td>first row of the weights matrix</td>
</tr>
<tr>
<td>WeightsMatrix</td>
<td>matrix of generalized weights for indeterminates</td>
</tr>
<tr>
<td>ZPQ</td>
<td>change field for polynomials and ideals</td>
</tr>
</tbody>
</table>

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.
Chapter IV-9

Polynomials

IV-9.1 Introduction to Polynomials

An object of type POLY in CoCoA represents a polynomial. To fix terminology: a polynomial is a sum of
terms; each term is the product of a coefficient and power-product, a power-product being a product of powers
of indeterminates. (In English it is standard to use “monomial” to mean a power-product, however, in other
languages, such as Italian, monomial connotes a power product multiplied by a scalar. In the interest of world
peace, we will use the term power-product in those cases where confusion may arise.)

The following are CoCoA polynomials:

Use R ::= Q[x,y,z];
F := 3xyz + xy^2;
F;
xy^2 + 3xyz

Use R ::= Q[x[1..5]];
Sum([x[N]^2 | N In 1..5]);

CoCoA always keeps polynomials ordered with respect to the term-orderings of their corresponding rings.

The following algebraic operations on polynomials are supported:

F*N, +F, -F, F*G, F/G if G divides F, F+G, F-G,

where F, G are polynomials and N is an integer. The result may be a rational function.

Use R ::= Q[x,y,z];
F := x^2+xy;
G := x;
F/G;
x + y

F/(x+z);
(x^2 + xy)/(x + z)

F^2;
x^4 + 2x^3y + x^2y^2

F^(-1);
1/(x^2 + xy)

IV-9.2 Evaluation of Polynomials

Polynomials may be evaluated using the function “Subst” (VI-19.23 pg.340). More generally, “Subst” (VI-19.23 pg.340) allows one to substitute polynomials from the current ring for the indeterminates of a given polynomial. If substitutions are to be made for each indeterminate, in order, it is easier to use “Eval” (VI-5.7 pg.197). For more general substitutions, see “Image” (VI-9.9 pg.242).

```plaintext
Use R ::= Q[x,y,z];
F := x+y+z;
Eval(F,[2,1]); -- let x=2 and y=1 in F
  z + 3
-----------------------------
Subst(F,[x,2],[y,1]); -- the same thing using '\verb&Subst&'
  z + 3
-----------------------------
Subst(F,y,1); -- the syntax is easier when substituting for a single
              -- indeterminate
  x + z + 1
-----------------------------
Subst(F,[y-x],[z,2]); -- substitute x-y for y and 2 for z
  2x - y + 2
-----------------------------
```

IV-9.3 Commands and Functions for Polynomials

The following are commands and functions for polynomials:
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin</td>
<td>binomial coefficient</td>
</tr>
<tr>
<td>BringIn</td>
<td>bring in objects from another ring</td>
</tr>
<tr>
<td>Coefficients</td>
<td>list of coefficients of a polynomial or vector</td>
</tr>
<tr>
<td>CoeffOfTerm</td>
<td>coefficient of a term of a polynomial or vector</td>
</tr>
<tr>
<td>Colon</td>
<td>ideal or module quotient</td>
</tr>
<tr>
<td>Deg</td>
<td>the degree of a polynomial or vector</td>
</tr>
<tr>
<td>Den</td>
<td>denominator</td>
</tr>
<tr>
<td>DensePoly</td>
<td>the sum of all power-products of a given degree</td>
</tr>
<tr>
<td>Der</td>
<td>the derivative of a rational function</td>
</tr>
<tr>
<td>Discriminant</td>
<td>the discriminant of a polynomial</td>
</tr>
<tr>
<td>DivAlg</td>
<td>division algorithm</td>
</tr>
<tr>
<td>Eval</td>
<td>substitute numbers or polynomials for indeterminates</td>
</tr>
<tr>
<td>Factor</td>
<td>factor a polynomial</td>
</tr>
<tr>
<td>Fraction</td>
<td>returns the quotient of its arguments</td>
</tr>
<tr>
<td>GCD</td>
<td>greatest common divisor</td>
</tr>
<tr>
<td>GenRepr</td>
<td>representation in terms of generators</td>
</tr>
<tr>
<td>HColon</td>
<td>ideal or module quotient</td>
</tr>
<tr>
<td>Homogenized</td>
<td>homogenize with respect to an indeterminate</td>
</tr>
<tr>
<td>Interpolate</td>
<td>interpolating polynomial</td>
</tr>
<tr>
<td>Inverse</td>
<td>multiplicative inverse</td>
</tr>
<tr>
<td>IsHomog</td>
<td>test whether given polynomials are homogeneous</td>
</tr>
<tr>
<td>IsIn</td>
<td>check if one object is contained in another</td>
</tr>
<tr>
<td>IsTerm</td>
<td>checks if the argument is a term</td>
</tr>
<tr>
<td>IsZero</td>
<td>test whether an object is zero</td>
</tr>
<tr>
<td>Jacobian</td>
<td>the Jacobian of a list of polynomials</td>
</tr>
<tr>
<td>LC</td>
<td>the leading coefficient of a polynomial or vector</td>
</tr>
<tr>
<td>LCM</td>
<td>least common multiple</td>
</tr>
<tr>
<td>Len</td>
<td>the length of an object</td>
</tr>
<tr>
<td>LM</td>
<td>the leading monomial of a polynomial or vector</td>
</tr>
<tr>
<td>Log</td>
<td>the list of exponents of the leading term of a polynomial</td>
</tr>
<tr>
<td>LogToTerm</td>
<td>returns a monomial (power-product) with given exponents</td>
</tr>
<tr>
<td>LPP</td>
<td>the leading power-product of a polynomial or vector</td>
</tr>
<tr>
<td>LT</td>
<td>the leading term of an object</td>
</tr>
<tr>
<td>MapDown</td>
<td>convert a constant polynomial to a number</td>
</tr>
<tr>
<td>MDeg</td>
<td>multi-degree of an polynomial</td>
</tr>
<tr>
<td>Monic</td>
<td>divide polynomials by their leading coefficients</td>
</tr>
<tr>
<td>Monomials</td>
<td>the list of monomials of a polynomial or vector</td>
</tr>
<tr>
<td>NF</td>
<td>normal form</td>
</tr>
<tr>
<td>NFsAreZero</td>
<td>test if normal forms are zero</td>
</tr>
<tr>
<td>NR</td>
<td>normal reduction</td>
</tr>
<tr>
<td>Num</td>
<td>numerator</td>
</tr>
<tr>
<td>Poly</td>
<td>convert an expression into a polynomial</td>
</tr>
<tr>
<td>Product</td>
<td>the product of the elements of a list</td>
</tr>
<tr>
<td>Q2P</td>
<td>change field for polynomials and ideals</td>
</tr>
<tr>
<td>Randomize</td>
<td>randomize the coefficients of a given polynomial</td>
</tr>
<tr>
<td>Randomized</td>
<td>randomize the coefficients of a given polynomial</td>
</tr>
<tr>
<td>RealRootRefine</td>
<td>refine a root of a univariate polynomial over Q</td>
</tr>
<tr>
<td>RealRoots</td>
<td>computes a root of a univariate polynomial over Q</td>
</tr>
<tr>
<td>Resultant</td>
<td>the resultant of two polynomials</td>
</tr>
<tr>
<td>RootBound</td>
<td>bound on roots of a polynomial over Q</td>
</tr>
<tr>
<td>Size</td>
<td>the amount of memory used by an object</td>
</tr>
<tr>
<td>StarPrint</td>
<td>print polynomial with *'s for multiplications</td>
</tr>
<tr>
<td>Subst</td>
<td>substitute values for indeterminates</td>
</tr>
<tr>
<td>Sum</td>
<td>the sum of the elements of a list</td>
</tr>
<tr>
<td>Support</td>
<td>the list of terms of a polynomial or vector</td>
</tr>
<tr>
<td>Sylvester</td>
<td>the Sylvester matrix of two polynomials</td>
</tr>
<tr>
<td>UnivariateIndetIndex</td>
<td>the index of the indeterminate of a univariate polynomial</td>
</tr>
<tr>
<td>WLog</td>
<td>weighted list of exponents</td>
</tr>
<tr>
<td>ZPQ</td>
<td>change field for polynomials and ideals</td>
</tr>
</tbody>
</table>
For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.
Chapter IV-10

Rational Functions

IV-10.1 Introduction to Rational Functions

An object of type RATFUN in CoCoA represents a rational function, i.e., a quotient of polynomials. Each rational function is represented as P/Q where P and Q are polynomials (of type POLY) and \(\text{deg}(Q) > 0 \). Common factors of the numerator and denominator are automatically simplified. At present, rational functions in CoCoA are only available over a field.

```plaintext
Use R ::= Q[x,y];
F := x/(x+y); -- a rational function
F*(x+y);
x
---------------------
(x^2-y^2)/(x+y); -- the result here is a polynomial
x - y
---------------------
```

The following algebraic operations on rational functions are supported:

- \(F^N \), \(+F \), \(-F \), \(F*G \), \(F/G \), \(F+G \), \(F-G \),

where \(F, G \) are rational functions and \(N \) is an integer.

For details look up each item by name. Online, try "?ItemName" or "H.Syntax("ItemName")".

IV-10.2 Numerators and Denominators for Rational Functions

If \(F \) is a variable holding a rational function, then \(F\text{Num} \) and \(F\text{Den} \) are the numerator and denominator, respectively. The functions “Num” (VI-14.12 pg.292) and “Den” (VI-4.9 pg.186), respectively, return the same.

```plaintext
example
F := x/(x+y);
F.Num;
x
---------------------
F.Den;
x+y
---------------------
Den(F);
x + y
---------------------
```
IV-10.3 Commands and Functions for Rational Functions

The following are commands and functions for rational functions:

- **BringIn**: bring in objects from another ring
- **Den**: denominator
- **Der**: the derivative of a rational function
- **Fraction**: returns the quotient of its arguments
- **Inverse**: multiplicative inverse
- **IsZero**: test whether an object is zero
- **Len**: the length of an object
- **Num**: numerator
- **Product**: the product of the elements of a list
- **Size**: the amount of memory used by an object
- **Subst**: substitute values for indeterminates
- **Sum**: the sum of the elements of a list

For details look up each item by name. Online, try "?ItemName" or "H.Syntax("ItemName")".
Chapter IV-11

Ideals

IV-11.1 Introduction to Ideals

An object of type IDEAL in CoCoA represents an ideal. An ideal is formed using the command “Ideal(P_1,...,P_n)” where the “P_i” are generators for the ideal.

```
example
Use R ::= Q[x,y];
I := Ideal(x,y^2,2+xy^2);
```

The following algebraic operations yield ideals:

\[I^N, I+J, E*F, P:Q \]

where: I and J are ideals; N is a non-negative integer; E,F are either both ideals or one is an ideal and the other is a polynomial; and the pair (P,Q) has the form (IDEAL,POLY), (IDEAL,IDEAL), (MODULE,VECTOR), (MODULE,MODULE).

```
example
Use R ::= Q[x,y];
I := Ideal(x,y^2,2+xy^2);
I^2;
Ideal(x^2, xy^2, x^2y^2 + 2x, y^4, xy^4 + 2y^2, x^2y^4 + 4xy^2 + 4)
-----------------------------
J := Ideal(y);
I+J;
Ideal(x, y^2, xy^2 + 2, y)
-----------------------------
I*J;
Ideal(xy, y^3, xy^3 + 2y)
-----------------------------
```

IV-11.2 Commands and Functions for Ideals

The following are commands and functions for ideals:
BBasis5 Border Basis of zero dimensional ideal
BettiDiagram the diagram of the graded Betti numbers
BettiMatrix the matrix of the graded Betti numbers
Colon ideal or module quotient
Depth Depth of a module
Elim eliminate variables
EquiIsoDec equidimensional isoradical decomposition
Ext presentation Ext modules as quotients of free modules
FGLM perform a FGLM Groebner Basis conversion
GB.GetBettiMatrix returns the Betti matrix computed so far
GB.GetNthSyz returns the part of the Nth syzygy module computed so far
GB.GetNthSyzShifts shifts of the Nth syzygy module computed so far
GB.GetRes returns the resolution computed so far
GB.GetResLen returns the length of the resolution computed so far
GB.ResReport status of an interactive resolution calculation
GBasis calculate a Groebner basis
GBasis5, and more calculations using the CoCoAServer
GBasisTimeout compute a Groebner basis with a timeout
GBM intersection of ideals for zero-dimensional schemes
GenRepr representation in terms of generators
Gens list of generators of an ideal
Gin, Gin5 generic initial ideal
HColon ideal or module quotient
HGBM intersection of ideals for zero-dimensional schemes
HIntersection intersection of ideals
HIntersectionList intersection of ideals
Homogenized homogenize with respect to an indeterminate
HSaturation saturation of ideals
Ideal convert an expression into an ideal
IdealAndSeparatorsOfPoints ideal and separators for affine points
IdealAndSeparatorsOfProjectivePoints ideal and separators for points
IdealOfPoints ideal of a set of affine points
IdealOfProjectivePoints ideal of a set of projective points
Interreduce, Interreduced interreduce a list of polynomials or vectors
Intersection intersect lists, ideals, or modules
IntersectionList intersect lists, ideals, or modules
IsIn check if one object is contained in another
IsLexSegment checks if an ideal is lex-segment
IsStable checks if an ideal is stable
IsStronglyStable checks if an ideal is strongly stable
IsZero test whether an object is zero
Len the length of an object
LT the leading term of an object
Max, Min a maximum or minimum element of a sequence or list
MinGens list minimal generators
Minimalize remove redundant generators
Minimalized remove redundant generators
MinSyzMinGens minimal generators of syzygies of minimal generators
MonsInIdeal ideal generated by the monomials in an ideal
NF normal form
NFsAreZero test if normal forms are zero
PrimaryDecomposition primary decomposition of an ideal
Product the product of the elements of a list
QuotientBasis vector space basis for zero-dimensional quotient rings
QZP change field for polynomials and ideals
Radical radical of an ideal
RadicalOfUnmixed radical of an unmixed ideal
ReducedGBasis compute reduced Groebner basis
Res free resolution
Saturation saturation of ideals
Size the amount of memory used by an object
Sum the sum of the elements of a list
Syz syzygy modules
SyzMinGens syzygy module for a set of minimal generators
SyzOfGens syzygy module for a given set of generators
Toric saturate toric ideals
For details look up each item by name. Online, try "?ItemName" or "H.Syntax("ItemName")".
Chapter IV-12

Modules

IV-12.1 Introduction to Modules

An object of type MODULE in CoCoA represents a submodule of a free module. A module is represented by its generators as:

\texttt{Module(V_1,...,V_n)}

Each “\(V_i\)” has the form “[\(P_1,...,P_r\)]” or “\texttt{Vector(P_1,...,P_r)}”, where \(r\) is the rank of the free module containing the given module and each “\(P_j\)” is of type POLY.

As with ideals, information about a module can be accessed using the same syntax as for records. CoCoA supports quotient modules and modules, as described in the next section. Shifts have been disabled in CoCoA 4.

\begin{verbatim}
example
Use S ::= Q[x,y];
M := Module([x,y^2,2+x^2y],[x,0,y]); -- define the submodule of S^3
-- generated by (x,y^2,2+x^2y) and (x,0,y)
GBasis(M);
[Vector(x, 0, y), Vector(x, y^2, x^2y + 2)]

Describe M;
Record[Type = MODULE, Value = Record[Gens = [[x, y^2, x^2y + 2], [x, 0, y]], MRC = 1, GBasis = [[x, 0, y], [x, y^2, x^2y + 2]]]]

M.GBasis;
[Vector(x, 0, y), Vector(x, y^2, x^2y + 2)]

M.Gens[1];
Vector(x, y^2, x^2y + 2)

M.NumComps; -- M is a submodule of a free module of rank 3
3

\end{verbatim}

IV-12.2 Quotient Modules

If \(M\) is a CoCoA module which is a submodule of the free module \(R^k\) for some ring \(R\), then \(R^k/M\) represents a quotient module. It has type \texttt{TAGGED("Quotient")}.

\begin{verbatim}
example
Use R ::= Q[x,y];
M := Module([x-y,x^2-y^2,x^3+xy^2],[y,x^2,x^2y]);
Q := R^3/M;
\end{verbatim}
Chapter IV-12. Modules

IV-12.3 Shifts

This facility is disabled in CoCoA 4

(See the new function ‘‘\verb&GB.GetNthSyzShifts&’’;
read below for an explanation of shifts.)

One creates a shifted module in CoCoA using the “Shifts” (IV-12.3 pg.124) modifier:

\[\text{Module(Shifts([P_1,\ldots,P_r]),V_1,\ldots,V_n)} \]

where the “P_i”s are integers or monomials in the current ring and, as usual, the “V_i”s are lists of polynomials, each with length r. This object represents the submodule, generated by “V_1,\ldots,V_n”, of the free module of rank r which is the direct sum of “R(P_1),\ldots,R(P_r)”. Here, “R(P_i)” is the ring R with shifted degrees. To explain these shifts, recall that in a CoCoA ring, the weights of the indeterminates are given by a weights matrix, say W. The (multi)weight of the i-th indeterminate is given by the i-th column of W. By default, the weights matrix is a single row of 1s. If “P_i” is an integer, then the homogeneous part of “R(P_i)” of degree d is the homogeneous part of R of degree “d+P_i”. If “P_i” is a monomial, then the homogeneous part of “R(P_i)” in multidegree d is the homogeneous part of R in multidegree “d+\text{deg}_W(P_i)”.

example

\begin{verbatim}
Use R ::= QQ[x,y,z];
M := Module([x,y,z],[x^2,y,0]);
LT(M.Gens[1]);
Vector(x, 0, 0)

Deg(M.Gens[1]);
1

Ss := Shifts([-3,-5,-2]);
M := Module(Ss,[x,y,z],[x^2,y,0]);
M;
Module(Shifts([-3,-5,-2]),[x,y,z],[x^2,y,0])

LT(M.Gens[1]); -- the leading term changes in the shifted module
Vector(0, y, 0)

Deg(M.Gens[1]);
6

Use S ::= QQ[x,y,z],Weights(Mat([[1,2,3],[4,5,6]]));
M := Module(Shifts([xy, xx]), [x, y], [x,z]);
LT(M.Gens[1]);
Vector(0, y)

MDeg(M.Gens[1]); -- multidegree of y in R(xx), i.e. of (xz)y in R
[6, 15]

\end{verbatim}

IV-12.4 Commands and Functions for Modules

The following are commands and functions for modules:
BettiDiagram the diagram of the graded Betti numbers
BettiMatrix the matrix of the graded Betti numbers
Colon ideal or module quotient
Depth Depth of a module
E canonical vector
Elim eliminate variables
Ext presentation Ext modules as quotients of free modules
GB.GetBettiMatrix returns the Betti matrix computed so far
GB.GetNthSyz returns the part of the Nth syzygy module computed so far
GB.GetNthSyzShifts shifts of the Nth syzygy module computed so far
GB.GetRes returns the resolution computed so far
GB.GetResLen returns the length of the resolution computed so far
GB.ResReport status of an interactive resolution calculation
GBasis calculate a Groebner basis
GBasis5, and more calculations using the CoCoAServer
GBasisTimeout compute a Groebner basis with a timeout
GenRepr representation in terms of generators
Gens list of generators of an ideal
HColon ideal or module quotient
Interreduce, Interreduced interreduce a list of polynomials or vectors
Intersection intersect lists, ideals, or modules
IntersectionList intersect lists, ideals, or modules
IsIn check if one object is contained in another
IsZero test whether an object is zero
Len the length of an object
LT the leading term of an object
Max, Min a maximum or minimum element of a sequence or list
MinGens list minimal generators
Minimalize remove redundant generators
Minimalized remove redundant generators
MinSyzMinGens minimal generators of syzygies of minimal generators
Module convert an expression into a module
NF normal form
NFsAreZero test if normal forms are zero
Rank rank of a module
ReducedGBasis compute reduced Groebner basis
Res free resolution
Size the amount of memory used by an object
Syz syzygy modules
SyzMinGens syzygy module for a set of minimal generators
SyzOfGens syzygy module for a given set of generators

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.
Chapter IV-13

Groebner Bases and Related Computations

IV-13.1 Introduction to Groebner Bases in CoCoA

The heart of the CoCoA system is an implementation of Buchberger’s algorithm for computing Groebner bases for ideals and modules over polynomial rings with coefficients in a field. CoCoA’s Groebner basis engine can be used to compute Groebner bases, syzygies, free resolutions, Hilbert functions and Poincare series, and to eliminate variables and find minimal sets of generators. Considerable control over the computations is provided through CoCoA’s “The Interactive Groebner Framework” (IV-13.3 pg.129).

Groebner bases can be calculated over \mathbb{Q}, but large calculations depending on Groebner bases will take much less time over finite fields. A common tactic is to work mod large primes to get an idea of behavior expected over \mathbb{Q}.

It would eventually be nice to have descriptions within this online help system of the specific algorithms used by CoCoA. For now, see “Pointers to the Literature” (II-1.5 pg.24) for references.

IV-13.2 Commands and Functions for Groebner-Type Computations

The following are the commands and functions for computations based on Groebner bases. In addition to these, there are many commands that provide finer control over the computations (see the next section: “The Interactive Groebner Framework” (IV-13.3 pg.129)).
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AffHilbert</td>
<td>the affine Hilbert function</td>
</tr>
<tr>
<td>AffHilbertFn</td>
<td>the affine Hilbert function</td>
</tr>
<tr>
<td>AffHilbertSeries</td>
<td>the affine Hilbert-Poincare series</td>
</tr>
<tr>
<td>AffPoincare</td>
<td>the affine Hilbert-Poincare series</td>
</tr>
<tr>
<td>BettiDiagram</td>
<td>the diagram of the graded Betti numbers</td>
</tr>
<tr>
<td>BettiMatrix</td>
<td>the matrix of the graded Betti numbers</td>
</tr>
<tr>
<td>Colon</td>
<td>ideal or module quotient</td>
</tr>
<tr>
<td>Dim</td>
<td>the dimension of a ring or quotient object</td>
</tr>
<tr>
<td>Elim</td>
<td>eliminate variables</td>
</tr>
<tr>
<td>EquiIsoDec</td>
<td>equidimensional isoradical decomposition</td>
</tr>
<tr>
<td>FGLM5</td>
<td>perform a FGLM Groebner Basis conversion</td>
</tr>
<tr>
<td>GB.Complete</td>
<td>Complete an interactive Groebner-type calculation</td>
</tr>
<tr>
<td>GB.GetBettiMatrix</td>
<td>returns the Betti matrix computed so far</td>
</tr>
<tr>
<td>GB.GetNthSyz</td>
<td>returns the part of the Nth syzygy module computed so far</td>
</tr>
<tr>
<td>GB.GetNthSyzShifts</td>
<td>shifts of the Nth syzygy module computed so far</td>
</tr>
<tr>
<td>GB.GetRes</td>
<td>returns the resolution computed so far</td>
</tr>
<tr>
<td>GB.GetResLen</td>
<td>returns the length of the resolution computed so far</td>
</tr>
<tr>
<td>GB.ResReport</td>
<td>status of an interactive resolution calculation</td>
</tr>
<tr>
<td>GB.StartGBasis</td>
<td>start interactive Groebner basis computation</td>
</tr>
<tr>
<td>GB.StartMinGens</td>
<td>start interactive minimal generator calculation</td>
</tr>
<tr>
<td>GB.StartMinSyzMinGens</td>
<td>start interactive calc., min. syzs. of min. gens.</td>
</tr>
<tr>
<td>GB.StartRes</td>
<td>start interactive resolution computation</td>
</tr>
<tr>
<td>GB.StartSyz</td>
<td>start interactive syzygy computation</td>
</tr>
<tr>
<td>GB.StartSyzMinGens</td>
<td>start interactive calc. of syzygies of min. gens.</td>
</tr>
<tr>
<td>GB.Stats</td>
<td>status of an interactive Groebner-type calculation</td>
</tr>
<tr>
<td>GB.Step</td>
<td>take one step in an interactive Groebner-type calculation</td>
</tr>
<tr>
<td>GB.Steps</td>
<td>take steps in an interactive Groebner-type calculation</td>
</tr>
<tr>
<td>GBasis</td>
<td>calculate a Groebner basis</td>
</tr>
<tr>
<td>GBasis5, and more</td>
<td>calculations using the CoCoAServer</td>
</tr>
<tr>
<td>GBasisTimeout</td>
<td>compute a Groebner basis with a timeout</td>
</tr>
<tr>
<td>GBM</td>
<td>greatest common divisor</td>
</tr>
<tr>
<td>GCD</td>
<td>ideal or module quotient</td>
</tr>
<tr>
<td>HColon</td>
<td>intersection of ideals for zero-dimensional schemes</td>
</tr>
<tr>
<td>Hilbert</td>
<td>the Hilbert-Poincare' function</td>
</tr>
<tr>
<td>HilbertFn</td>
<td>the Hilbert function</td>
</tr>
<tr>
<td>HilbertPoly</td>
<td>the Hilbert polynomial</td>
</tr>
<tr>
<td>HilbertSeries</td>
<td>the Hilbert-Poincare series</td>
</tr>
<tr>
<td>HilbertSeriesMultiDeg</td>
<td>the Hilbert-Poincare series wrt a multigrading</td>
</tr>
<tr>
<td>HilbertSeriesShifts</td>
<td>the Hilbert-Poincare series</td>
</tr>
<tr>
<td>HIntersection</td>
<td>intersection of ideals</td>
</tr>
<tr>
<td>HIntersectionList</td>
<td>intersection of ideals</td>
</tr>
<tr>
<td>Homogenized</td>
<td>homogenize with respect to an indeterminate</td>
</tr>
<tr>
<td>HSaturation</td>
<td>saturation of ideals</td>
</tr>
<tr>
<td>HVector</td>
<td>the h-vector of a module or quotient object</td>
</tr>
<tr>
<td>IdealAndSeparatorsOfPoints</td>
<td>ideal and separators for affine points</td>
</tr>
<tr>
<td>IdealAndSeparatorsOfProjectivePoints</td>
<td>ideal and separators for points</td>
</tr>
<tr>
<td>IdealOfPoints</td>
<td>ideal of a set of affine points</td>
</tr>
<tr>
<td>IdealOfProjectivePoints</td>
<td>ideal of a set of projective points</td>
</tr>
<tr>
<td>Intersection</td>
<td>intersect lists, ideals, or modules</td>
</tr>
<tr>
<td>IntersectionList</td>
<td>least common multiple</td>
</tr>
<tr>
<td>LCM</td>
<td>list minimal generators</td>
</tr>
<tr>
<td>MinGens</td>
<td>minimal generators of syzygies of minimal generators</td>
</tr>
<tr>
<td>MinSyzMinGens</td>
<td>the multiplicity (degree) of a ring or quotient object</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>normal form</td>
</tr>
<tr>
<td>NF</td>
<td>test if normal forms are zero</td>
</tr>
<tr>
<td>NFsAreZero</td>
<td>the Hilbert-Poincare series</td>
</tr>
<tr>
<td>Poincare</td>
<td>the Hilbert-Poincare series</td>
</tr>
<tr>
<td>PoincareMultiDeg</td>
<td>the Hilbert-Poincare series wrt a multigrading</td>
</tr>
<tr>
<td>PoincareShifts</td>
<td>the Hilbert-Poincare series</td>
</tr>
<tr>
<td>Radical</td>
<td>radical of an ideal</td>
</tr>
<tr>
<td>RadicalOfUnmixed</td>
<td>radical of an unmixed ideal</td>
</tr>
<tr>
<td>ReducedGBasis</td>
<td>compute reduced Groebner basis</td>
</tr>
<tr>
<td>Res</td>
<td>free resolution</td>
</tr>
<tr>
<td>Saturation</td>
<td>saturation of ideals</td>
</tr>
<tr>
<td>Syz</td>
<td>syzygy module</td>
</tr>
</tbody>
</table>
IV-13.3 The Interactive Groebner Framework

For the following computations:

* Groebner bases
* minimal generators
* syzygies
* free resolutions
* elimination of variables

CoCoA provides the following features:

* step-by-step computation
* monitoring of the execution (verbose mode)
* various types of truncation (degree, resolution length, or regularity)
* customization of algorithms (through the GROEBNER panel and P-Series).

It works like this: instead of using one of the normal Groebner basis-type commands (listed in the previous section), start the computation with one of the commands,

* GB.Start_GBasis -- start interactive Groebner basis computation
* GB.Start_MinGens -- start interactive minimal generator calculation
* GB.Start_Res -- start interactive resolution computation
* GB.Start_Syz -- start interactive syzygy computation

After starting the computation, the following commands are available:

* GB.Complete -- Complete an interactive Groebner-type calculation
* GB.GetBettiMatrix -- returns the Betti matrix computed so far
* GB.GetNthSyz -- returns the part of the Nth syzygy module computed so far
* GB.GetNthSyzShifts -- shifts of the Nth syzygy module computed so far
* GB.GetRes -- returns the resolution computed so far
* GB.GetResLen -- returns the length of the resolution computed so far
* GB.ResReport -- status of an interactive resolution calculation
* GB.Stats -- status of an interactive Groebner-type calculation
* GB.Step, GB.Steps -- take steps in an interactive Groebner-type calculation
* ReducedGBasis -- compute a reduced Groebner basis

Almost all of these functions report more information if you set the Verbose flag in the GROEBNER panel by typing

Set Verbose;

(to unset, enter “Unset Verbose”). For more possibilities, see “Options in the GROEBNER Panel” (V-1.11 pg.143).

Use of the Interactive Groebner Framework is illustrated in the examples below.

IV-13.4 Example: Interactive Groebner Basis Computation

```
Use R ::= Q[t,x,y,z];
I ::= Ideal(t^3-x,t^4-y,t^5-z);
GB.Start_GBasis(I); -- start the interactive framework
I.GBasis; -- the Groebner basis is initially empty
Null
-----------------------------
GB.Step(I); -- a single step of the computation
I.GBasis;
```
Note that Groebner bases calculated in the interactive framework may not be reduced, as illustrated in the final step of the example.

IV-13.5 Example: Verbose Mode

The following example illustrates the use of “Verbose” mode. For more information, see “Verbose” (V-1.15 pg.144).

```
Set Verbose;
Use R ::= Q[t,x,y,z];
I := Ideal(t^3-x,t^4-y,t^5-z);
G := GBasis(I);
..................18
------------------------------------
IPs IVs Gens GBases MinGens MinDeg
------------------------------------
0 0 3 6 0 -1
------------------------------------
Betti numbers:
18 steps of computation
------------------------------------
Describe I; -- more information, (it would help to ```\verb&Set Indentation&````)
Record[Type = IDEAL, Value = Record[Gens = [t^3 - x, t^4 - y, t^5 - z], GBasis = [t^3 - x, -tx + y, -ty + z, -y^2 + xz, -x^2 + tz, t^2z - xy], IVs = ], Rules = [t^3 - x, t^4 - y, t^5 - z, -tx + y, t^2y - x^2, x^3 - ty^2, -ty + z, -y^2 + xz, -x^2 + tz, t^2z - xy], Discrepancy = -1, KFL = [1, 7, 14, 4, 16, 9, 10, 20, 22, 23, 28, 18, 0, 39, 42]]]
```

IV-13.6 Example: Interactive Resolution Computation

In this example we compute the minimal free resolution of the ideal I generated by the 2 by 2 minors of a catalecticant matrix, A, using the interactive environment of the system. We define the ideal I, and start the computation of its minimal free resolution using the Hilbert-driven algorithm described in

Example: Truncations

IV-13.7

The user may assign one or more of three different truncation conditions to a module: DegTrunc, ResTrunc and RegTrunc; in this case the execution will stop when a bound is reached (see the examples, below).

DEGREE TRUNCATION:

```
example

Use R ::= Z/(32003)[a,b,c,d,e]; -- set up the ring
I := Ideal(a+b+c+d, ab+bc+cd+da, abc+bcd+cda, abcd-e^4);
I.DegTrunc := 3;
GB.Start_GBasis(I);
GB.Complete(I);
LT(I.GBasis);
[a, b^2, bc^2]
```

IV-13.7 Example: Truncations

The user may assign one or more of three different truncation conditions to a module: DegTrunc, ResTrunc and RegTrunc; in this case the execution will stop when a bound is reached (see the examples, below).

DEGREE TRUNCATION:

```
example

Use R ::= Z/(32003)[z[0..3,0..3,0..3]]; -- set up the ring
A := Mat([ -- define the ideal
    [z[3,0,0], z[2,1,0], z[2,0,1]],
    [z[2,1,0], z[1,2,0], z[1,1,1]],
    [z[2,0,1], z[1,1,1], z[1,0,2]],
    [z[1,2,0], z[0,3,0], z[0,2,1]],
    [z[1,1,1], z[0,2,1], z[0,1,2]],
    [z[1,0,2], z[0,1,2], z[0,0,3]]
]);
I := Ideal(Minors(2,A)); -- start interactive framework
GB.Start_Res(I);
GB.Steps(I,1000); -- first 1000 steps
GB.GetRes(I);
0 --> R^176(-5) --> R^189(-4) --> R^105(-3) --> R^27(-2)
-------------------------------
GB.ResReport(I);
--------------------------------------------------------------
Minimal Pairs, : 650
Groebner Pairs : 14
Minimal (Type S) : 636
H-Killed (Type S0) : 9
--------------------------------------------------------------
-------------------------------
GB.Complete(I); -- complete the calculation
GB.GetRes(I);
0 --> R(-9) --> R^27(-7) --> R^105(-6) --> R^189(-5) --
R^189(-4) --> R^105(-3) --> R^27(-2)
-------------------------------
GB.ResReport(I);
--------------------------------------------------------------
Minimal Pairs, : 730
Groebner Pairs : 25
Minimal (Type S) : 705
Minimal (Type Smin) : 616
Minimal (Type S0) : 89
H-Killed (Type S0) : 78
Hard (Type S0) : 11
--------------------------------------------------------------
```
RESOLUTION TRUNCATION:

Use \(R ::= \mathbb{Z}/(32003)[x[1..10]] \);
\(I := \text{Ideal(Indets())} \);
\(I.\text{ResTrunc} := 4 \);
\(\text{GB.Start_Res(I)} \);
\(\text{GB.Complete(I)} \);
\(\text{GB.GetRes(I)} \);
\(0 \rightarrow R^{-252}(-5) \rightarrow R^{-210}(-4) \rightarrow R^{-120}(-3) \rightarrow R^{-45}(-2) \rightarrow R^{-10}(-1) \)

REGULARITY TRUNCATION: We know that the Castelnuovo regularity of \(I \) in the following example is 6.

```
Set Verbose;
Use R_Gen ::= \mathbb{Z}/(5)[x,y,z,t];
M := 3; N := 4;
D := \text{DensePoly(2)};
P := \text{Mat([ [ \text{Randomized(D)} | J In 1..N ] | I In 1.. M]});
I := \text{Ideal(Minors(2,P))};
\text{GB.Start_Res(I)};
\text{GB.Complete(I)};
```

Betti numbers: 17 \(\ 48 \ 48 \ 18 \)
318 steps of computation

```
I := \text{Ideal(Minors(2,P))};
\text{GB.Start_Res(I)};
I.\text{RegTrunc} := 6; -- here we store the Castelnuovo Regularity
\text{GB.Complete(I)};
```

Betti numbers: 17 \(\ 48 \ 48 \ 18 \)
281 steps of computation

```
\text{GB.GetBettiMatrix(I)};
```

IV-13.8 Hilbert-Driven Computations

CoCoA Groebner basis algorithms will use knowledge of a Poincare series to improve efficiency.
example

Use R ::= Q[w,x,y,z];
PS := HP.PSeries(1 + 2w + 3w^2 + 4w^3 + 5w^4 + 6w^5 + 5w^6 +
 4w^7 + 3w^8 + 2w^9 + w^10,2);
PS;
(1 + 2w + 3w^2 + 4w^3 + 5w^4 + 6w^5 + 5w^6 + 4w^7 + 3w^8 + 2w^9 + w^10) / (1-w)^2
I := Ideal((xy-zw)^3,(xz-yw)^3);
I.PSeries := PS; -- this is how to let CoCoA know about the Poincare series
G := GBasis(I);
Chapter IV-13. Groebner Bases and Related Computations
Chapter IV-14

CoCoAServer

IV-14.1 Introduction to CoCoAServer

Waiting for the completely new CoCoA-5, based on the C++ library CoCoALib (open source, GPL), you may get a good feel of the new capabilities using the CoCoAServer: here the word “server” stands for “serving process” doing the computations for CoCoA on the same computer (as opposed to “computer server” which runs, say, the mail services).

You need to start the CoCoAServer before calling these functions (otherwise an error message will remind you). You don’t need to worry about what this really means: what you have to do is just pressing a button ;-). Instructions for starting the server vary depending on the User Interface you use:

[text] From a shell call “COCOADIR/CoCoAServer”.

[emacs] From the CoCoA menu select “(re)start CoCoAServer”.

It will respond to any other request from you and from other CoCoA-4 processes connected to the same machine on the same port (See “OpenSocket” (VI-15.6 pg.301)). You may leave the CoCoAServer running on your computer even if you don’t use it: it takes no cpu time while waiting for requests.

IV-14.2 Functions using CoCoAServer

The following are the functions using CoCoAServer:
BBasis5 Border Basis of zero dimensional ideal
Colon ideal or module quotient
FGLM5 perform a FGLM Groebner Basis conversion
GBasis calculate a Groebner basis
calculations using the CoCoAServer
GBasis5, and more
Gin, Gin5
Homogenized
Intersection
IsServerReady
IsTree5
LT
MakeCheck
Numerical.BBasisOfPoints5
Numerical.BBasisOfPointsInIdeal5
Numerical.FirstVanishingRelations5
Numerical.FirstVanishingRelationsInIdeal5
Numerical.GBasisOfPoints5
Numerical.GBasisOfPointsInIdeal5
Numerical.HBasisOfPoints5
Numerical.HBasisOfPointsInIdeal5
Numerical.QR5
Numerical.SVD5
PreprocessPts5
Saturation
Syz

Border Basis of zero dimensional ideal
ideal or module quotient
perform a FGLM Groebner Basis conversion
calculate a Groebner basis
calculations using the CoCoAServer
generic initial ideal
homogenize with respect to an indeterminate
intersect lists, ideals, or modules
checks if CoCoAServer is running
checks if a facet complex is a tree
the leading term of an object
run a series of tests
Border basis of almost vanishing ideal for a set of points
border basis of an almost vanishing sub-ideal for a set of points and ideal
First vanishing relations for a set of points
First almost vanishing polynomials for a set of points and ideal
GBasis of almost vanishing ideal for a set of points
almost GBasis of an almost vanishing sub ideal for a set of points and ideal
almost vanishing ideal’s Macaulay basis for a set of points
Macaulay basis of a almost vanishing sub ideal for a set of points and ideal
QR-decomposition of a matrix
Singular value decomposition of a matrix
A representative subset of points
saturation of ideals
syzygy modules
Part V

Working the System
Chapter V-1

CoCoA Panels

V-1.1 Introduction to Panels

The user can customize some features of CoCoA by setting (or unsetting) some boolean options (ON/OFF) which are grouped in three panels. The function “Panels” (VI-16.3 pg.306) returns the list of panel names, and the settings in a particular panel can be seen using the function “Panel” (VI-16.2 pg.305) as illustrated in the example below.

```plaintext
Panels();
["GENERAL", "GROEBNER"]

Panel(GENERAL);
Echo............... : FALSE
Timer.............. : FALSE
Trace.............. : FALSE
Indentation........ : FALSE
TraceSources....... : FALSE
SuppressWarnings... : FALSE
ComputationStack... : FALSE
```

V-1.2 Setting Options

Each option name is unique, not just among the options in a particular panel, but among the options from all panels. The command “Set” followed by an option name (without parentheses or quotes) sets the corresponding option to TRUE. Similarly, “Unset” sets the option to FALSE. In addition, one may use the “Set” command to set an option either true or false using the syntax: “Set option-name := TRUE” or “Set option-name := TRUE”.

```plaintext
Use R ::= Q[x,y,z];
L := [(x+y)^N | N In 1..3];
Set Indentation; -- print each component on a separate line
L;
L;
[ x + y,
  x^2 + 2xy + y^2,
  x^3 + 3x^2y + 3xy^2 + y^3]
Unset Indentation;
```
The function “Option” (VI-15.7 pg. 302) takes as parameter an option name and returns the (boolean) value of the option. It is particularly useful within user-defined functions as illustrated in the example below:

```cocoa
Define Print_UnIndented(X)
  Opt := Option(Indentation);
  Unset Indentation;
  Print(X);
  Set Indentation := Opt;
EndDefine;

R := Record[X="test",L=[1,2,3]];
Set Indentation;
Print_UnIndented(R);
Record[L = [1, 2, 3], X = "test"]
-------------------------------
UnSet Indentation;
Print_UnIndented(R);
Record[L = [1, 2, 3], X = "test"]
-------------------------------
```

V-1.3 Options in the GENERAL Panel

The options in the GENERAL panel and their default settings are as follows:

```cocoa
Panel(GENERAL);

Echo............... : FALSE
Timer.............. : FALSE
Trace.............. : FALSE
Indentation........ : FALSE
TraceSources....... : FALSE
SuppressWarnings... : FALSE
ComputationStack... : FALSE
-------------------------------
```

They are discussed separately, below.

V-1.4 Echo

If the Echo option is on, then the system echoes every command at the top level. When logging a CoCoA session, one would set Echo to TRUE in order to log both the input as well as the output in a CoCoA session (see “OpenLog” (VI-15.3 pg. 300)).

```cocoa
1+1;
2
-------------------------------
Set Echo;
1+1;
1 + 1
2
-------------------------------
L := [1,2,3];
L := [1, 2, 3]
Unset Echo;
SET(Echo, FALSE)
```
L := [4,5,6];

V-1.5 Timer

If the Timer option is on, then the system displays the execution time of each command submitted at top-level.

Use R ::= Z/(32003)[t,x,y,z],Lex;
N := 31;
I := Ideal(t^N+t^6+t-x, t^5-t-y, t^9-t-z);
Set Timer;
Null

T := GBasis(I);
Cpu time = 2.88, User time = 30

To time a single command, use \verb&Time& (ref{Time} pg.\pageref{Time}). For example, above, we could have written \verb&Time T := GBasis(I)& instead of setting the timer.

V-1.6 Trace

If the Trace option is on, then the system echoes every command at every level. This is useful for debugging programs. The following (toy) user-defined function returns the same error message for N = 3 and N = 6. Turning the Trace option on makes the sources of the trouble clear.

Define T(N)
M := 1/(N-3);
If N = 6 Then N := 3 EndIf;
M := 1/(N-3);
Return M;
EndDefine;
T(3);
ERROR: Division by zero
CONTEXT: 1 / (N - 3)

T(6);
ERROR: Division by zero
CONTEXT: 1 / (N - 3)

Set Trace;
T(3);

T(3) M := 1 / (N - 3); If N = 6 Then N := 3 EndIf; M := 1 / (N - 3); Return(M);
M := 1 / (N - 3)
ERROR: Division by zero
CONTEXT: 1 / (N - 3)

T(6);

T(6) M := 1 / (N - 3); If N = 6 Then N := 3 EndIf; M := 1 / (N - 3); Return(M);
M := 1 / (N - 3)
If N = 6 Then N := 3 EndIf
N := 3
M := 1 / (N - 3)
Chapter V-1. CoCoA Panels

ERROR: Division by zero
CONTEXT: 1 / (N - 3)

V-1.7 Indentation

If the Indentation option is on, then the system performs some indentation on outputs. For example, each entry of a matrix will be printed on a new line.

Use R ::= Q[x,y,z];
T := GBasis(Ideal(x^2-xy+z^3,xz-y^4,x^3+y^3+xyz+z^5));
T;

\[
\begin{align*}
&z^3 + x^2 - xy, \\
&-y^4 + xz, \\
&x^2z^2 - xyz^2 - x^3 - y^3 - xyz, \\
&2x^3y + x^2y^2 + x^3z + y^3z + xyz^2
\end{align*}
\]

V-1.8 TraceSources

If the TraceSources option is on, then the name of every file read with the “Source” (VI-19.16 pg.337) command will be echoed.

V-1.9 SuppressWarnings

If the SuppressWarnings option is on, then the system suppress warning statements.

Use Z/(4);
-- WARNING: Coeffs are not in a field
-- GBasis-related computations could fail to terminate or be wrong

V-1.10 ComputationStack

If the ComputationStack option is on, a special variable named “ComputationStack” contains a list tracing errors that occur during the execution of CoCoA commands. This option is useful for debugging programs.

Define Test(X)
 If X>0 Then PrintLn(1/X) EndIf;
EndDefine;

Set ComputationStack;
Test(0);
V-1.11 Options in the GROEBNER Panel

The options in the GROEBNER panel and their default settings are as follows:

```plaintext
Panel(GROEBNER);
Sugar......... : TRUE
FullRed........ : TRUE
SingleStepRed... : FALSE
Verbose......... : FALSE
```

V-1.12 Sugar

If the Sugar option is on, as it is by default, then the critical pairs are processed by using the “sugar” strategy: the pairs are processed in an order which is as close as possible to the order which would have been chosen if the polynomials had been homogeneous. For details, see the article:

V-1.13 FullRed

If FullRed is set to TRUE, then when a normal form is required in any Groebner-type computation, CoCoA will reduce all monomials in a polynomial; if FullRed is FALSE, only the leading terms will be reduced. The default is to have FullRed set to TRUE.

```
UnSet FullRed;
Use R ::= Q[x,y];
Interreduced([xy^3+y^2+x,x]);
[x, y^2 + x]
Set FullRed;
Interreduced([xy^3+y^2+x,x]);
[x, y^2]
```
V-1.14 SingleStepRed

Sorry: documentation not yet available.

V-1.15 Verbose

During a Groebner basis (or Groebner-like) computation prints some progress information. Usually one dot represents a reduction.

V-1.16 Commands and Functions for Panels

The following are commands and functions for panels:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>status of a panel option</td>
</tr>
<tr>
<td>Panel</td>
<td>print status of a panel’s options</td>
</tr>
<tr>
<td>Panels</td>
<td>list of CoCoA panels</td>
</tr>
<tr>
<td>Reset</td>
<td>reset panels and random number seed to defaults</td>
</tr>
<tr>
<td>ResetPanels</td>
<td>reset panels to their default values</td>
</tr>
<tr>
<td>Set-Unset</td>
<td>set and unset panel options</td>
</tr>
<tr>
<td>Unset</td>
<td>set and unset panel options</td>
</tr>
</tbody>
</table>

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.
Chapter V-2

CoCoA’s Help System

V-2.1 Online Help

CoCoA’s online help is roughly divided into two parts: a manual and a list of commands. The manual includes a tutorial which can be started by entering

```
?tutorial
```

If you are a new user of CoCoA, the tutorial is a good place to start. To see the titles of the sections of the online manual, enter “H.Toc()”; to see a list of commands, enter “H.Commands("").

Each section of the manual and each command is uniquely identified by a set of keywords. The set of keywords always includes the title of the section or the title of the command. The online help command “?” takes a string from the user and searches for a match among the keywords. For instance, “?gbasis” will display information about the function “GBasis” (VI-7.17 pg.217). Note that when using “?”, the keyword does not appear in quotes. Also, a semicolon is not required.

The command “??” will return a list of entries in the manual that contain a given keyword. For instance, “??gbasis” returns

```
See:  
GB.Start_GBasis  
GBasis  
ReducedGBasis
```

Each command is associated with a list of topics. (This applies only to commands, not to sections of the manual.) The online help function “H.Commands” takes a string from the user and searches for all matches among these topics. For each match, the title of the command and a brief description is displayed. For instance, “H.Commands("poly")” will find all commands having to do with polynomials. Information about a specific command can then be retrieved with “?”. A list of topics is provided by “H.Commands()”, with no argument.

IMPORTANT NOTE: Searches are case insensitive and your keyword need only be a substring to make a match.

For a thorough description of the search function “?”, type “? ?” with a space between the two questions marks.

Tips on using online help and summary of the online help functions appear below. Enter “H.Browse();” to see the next section.

V-2.2 Quick Tips for Using Online Help

Here are some tips for using the online help system:

1. Searches are case insensitive and your search string need only be a substring of a keyword to make a match. Thus, for instance, to find the section of the manual entitled “Commands and Functions for Polynomials” (IV-9.3 pg.114), it is enough to type: “?for poly”.

2. In general, it is best to start with short keywords in order to maximize the number of matches.

3. If you cannot find a match using “?”, try using “H.Command” to search by type. For example, suppose you are looking for a command that will give the remainder of the division of one polynomial into another. Trying
“\texttt{remainder}” produces no matches. You know that the command you are looking for operates on polynomials, so try “\texttt{H.Command(“poly”)}”. It produces a list of a little over 30 commands, among which will be listed:

\begin{itemize}
\item \texttt{DivAlg} – division algorithm.
\end{itemize}

4. The command “\texttt{??keyword}”, with two question marks, will list all matches even if “\texttt{keyword}” exactly matches a keyword for the online help system.

\section*{V-2.3 Commands and Functions for Online Help}

The following are commands and functions for CoCoA online help:

\begin{verbatim}
Describe information about an expression
Functions list the functions of a package
H.Browse browse the online help system
H.Commands list commands according to type
H.Man search online help system
H.OutCommands print command descriptions to a file
H.OutManual print the online manual to a file
H.SetMore more-device for online help
H.Syntax display the syntax of a command
H.Toc display the Table Of Contents of the online manual
H.Tutorial run the CoCoA tutorial
H.UnSetMore more-device for online help
Help extend online help for user-defined functions
Man search online help system
Starting list functions starting with a given string
\end{verbatim}

For details look up each item by name. Online, try “\texttt{?\texttt{ItemName}}” or “\texttt{H.Syntax(“ItemName”)}”. A good place to start is with the command, “\texttt{?}”, itself. To see more information about “\texttt{?}”, enter “\texttt{? ?}” (with a space between the two question marks)

\section*{V-2.4 Other Help}

1. A user may provide help and sometimes (rarely) get help for a user-defined function using the “\texttt{Help}” feature of the “\texttt{Define}” (VI-4.4 pg.182) command.

\begin{verbatim}
Help();
Type Help < Op > to get help on operator < Op >

Help(“GBasis”); -- note the typical response, one of the main
 -- motivations for the author of the online manual.
No help available for GBasis

\end{verbatim}

2. The command, “\texttt{Describe}” (VI-4.13 pg.188), can be used to find more information about functions.

\begin{verbatim}
Describe Function(“Insert”);
Define Insert(L,I,O)
 "$list.Insert(L,I,O)
EndDefine;
--
Describe Function(“‘\\verb&$list.Insert&’”);
Define Insert(L,I,O)
 If NOT(Type(L) = LIST) Then
 Return(Error(ERR.BAD_PARAMS,": expected LIST"))
 ElsIf I = Len(L) + 1 Then
 Append(L,0)
EndIf;
\end{verbatim}
ElSIf I > Len(L) Then
 Return(Error(ERR.INDEX_TOO_BIG,I))
ElSIf I <= 0 Then
 Return(Error(ERR.INDEX_NEG,I))
Else
EndIf;
EndDefine;

3. The function, “Functions” (VI-6.17 pg.209), may be used to list all functions defined in a package. Note: “Functions("$user")” lists all current user-defined functions.

Functions("$mat");
[About(), Man(), Identity(N), Transposed(M), Submat(M,Rows,Cols),
Jacobian(S), Resultant(F,G,X), DirectSum(M1,M2), BlockMatrix(LL),
ColumnVectors(M), Complement(M,I,J), Bip(M,J), Pfaffian(M),
Sylvester(F,G,X), ExtendRows(M,N), PushRows(M,N), ConcatRows(L),
PkgName()]

The list of packages is given by “Packages()”.

4. The function “Starting(S)” where S is a string returns a list of all functions starting with the string S.

Starting("Su");

Chapter V-3

Fine Tuning At Start-up

V-3.1 User Initialization

At the beginning of a CoCoA session, CoCoA reads in a file called “init.coc”. This file performs certain initialization routines, reads in standard packages, and sets up global aliases for the packages. It also reads in a file called “userinit.coc”. It is in this latter file that users should put their own commands to be run when CoCoA starts.

For example, suppose a user wants a file called “MyFile.coc” — containing function definitions, variable assignments, etc.— to automatically be read into the CoCoA system on start-up. It suffices to add the following line to “userinit.coc”:

Source("MyFile.coc");

To load the package with identifier “$contrib/mypackage”, contained in a file “MyPackage.cpkg” and use MP as an alias, it suffices to add the following lines to “userinit.coc” (you may want to look at the section of the manual entitled “Package Sourcing and Autoloading” (III-9.4 pg. 72) for more details):

Source("MyPackage.cpkg");
Alias MP := $contrib/mypackage;
Chapter V-4

CoCoA Interfaces

V-4.1 CoCoA on a Macintosh

The CoCoA user interface on the Macintosh OS 9 is based on Mel Park’s PlainText (v.1.6) which handles very large text files (larger than 32K). It uses standard Macintosh editing techniques, so Macintosh users should be familiar with its basic operations.

Double-clicking on the CoCoA icon or on the icon of a CoCoA document will start up the system. The system draws the menu bar, opens a text editing window and loads the CoCoA packages and then possibly user’s packages (via the “userinit.coc” file).

After the system is started, it is ready to receive and execute commands. To execute a CoCoA command, type it into the window, ending it with a semicolon, then press the “enter” key. If the command occupies more than one line then highlight the whole command using the mouse and then press the “enter” key.

At this point the following part of the text of the active window is taken as being the “current command”:

* if there is no selection (the cursor is blinking somewhere), then the row containing the cursor is taken as current command;
* if there is a non-null selection range, then the whole selection is taken as current command (in this way the system can process multiline commands).

The editor uses all the standard Macintosh editing techniques as well as some special ones:

* Double-clicking on a word select the entire word.
* Triple-clicking anywhere in a line selects the whole line.
* Double-clicking on or just before a parenthesis, a bracket, or a brace, i.e. one of following symbols “(”, “)”, “[”, “]”, “{”, “}” causes all the text between that symbol and its matching symbol to become selected.

IMPORTANT NOTE. Devices of type FILE are not yet available with the Macintosh interface.

V-4.2 CoCoA under Unix

Probably the best way to run CoCoA under Unix is through the editor, emacs, in shell-mode. In that way, one may easily edit or repeat commands. From within emacs, issue the command “META-x shell”. You will be presented with a Unix prompt within emacs. Change to the CoCoA directory, and start CoCoA. For more information about shell-mode, issue the emacs command “Control-h m” after the shell is started. (You may want to use the emacs command: “META-x set-variable comint-scroll-show-maximum-output” to set the variable comint-scroll-show-maximum-output to the value 1.)

If running CoCoA in an xterm, it may be best to first start the xterm with the command “xterm -sb -sl 512” (scroll bar enabled, saving 512 lines). In addition, you may want to increase the vertical size of your window, e.g., “xterm -sb -sl 512 -geometry 80x40”. In that way, output that scrolls off of the screen is captured and easily reviewed.

At any rate, complicated CoCoA command sequences or any sequences that you may want to repeat should be saved in a text editor. The commands can then be executed by copying and pasting into a CoCoA window or using the “Source” (VI-19.16 pg.337) command. In addition, you may want to keep a log of your CoCoA session using the command “OpenLog” (VI-15.3 pg.300).
V-4.3 CoCoA under Windows/DOS

Sorry this section is still under construction. Probably the best advice I could give is to repartition your disk and install Linux.)
Part VI

Alphabetical List of Commands
Chapter VI-0

Special Characters

VI-0.1 Shortcuts

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M : N</td>
<td>"M, N: MODULE of IDEAL"</td>
</tr>
<tr>
<td>A >< B</td>
<td>"A, B: LIST"</td>
</tr>
<tr>
<td><<</td>
<td>"S:STRING"</td>
</tr>
<tr>
<td>?</td>
<td>"S:STRING"</td>
</tr>
<tr>
<td>??</td>
<td>"S:STRING"</td>
</tr>
<tr>
<td>@A</td>
<td>"A:TAGGED"</td>
</tr>
<tr>
<td>A..B</td>
<td>"A,B:INT or A,B:indeterminates"</td>
</tr>
</tbody>
</table>

Description

";" is equivalent to “Colon” (VI-3.17 pg.176): “M : N” stands for “Colon(M, N)
"<>" is equivalent to “CartesianProduct, CartesianProductList” (VI-3.2 pg.170): “A >< B” stands for “CartesianProduct(A, B)
"<<" is equivalent to “Source” (VI-19.16 pg.337): "<< "myfile.cocoa"” stands for “Source("myfile.cocoa")”
"?" is equivalent to “Man” (VI-13.3 pg.273): “? string” stands for “Man("string")
"??" is equivalent to “Man” (VI-13.3 pg.273): “?? string” stands for “Man("string", 0)”.
"@" is equivalent to “Untagged” (VI-21.3 pg.352): “@A” stands for “Untagged(A)
".." is the “Range Operator” (III-3.6 pg.53).

See Also: Colon (VI-3.17 pg.176), Source (VI-19.16 pg.337), CartesianProduct, CartesianProductList (VI-3.2 pg.170), Man (VI-13.3 pg.273), Untagged (VI-21.3 pg.352), Range Operator (III-3.6 pg.53), Character Set and Special Symbols (III-2.1 pg.47)
Chapter VI-1

A

VI-1.1 Abs

Syntax

\[
\begin{align*}
\text{Abs}(N: \text{INT}): \text{INT} \\
\text{Abs}(N: \text{RAT}): \text{RAT}
\end{align*}
\]

Description

This function returns the absolute value of N.

Example

\[
\begin{align*}
\text{Abs}(-3) & : 3 \\
\text{Abs}(-2/3) & : -2/3
\end{align*}
\]

VI-1.2 Adjoint

Syntax

\[
\text{Adjoint}(M: \text{MAT}): \text{MAT}
\]

where M is a square matrix.

Description

This function returns the adjoint matrix of M.

Example

\[
\begin{align*}
\text{Adjoint(Mat([[x,y,z],[t,y,x],[x,x^2,xy]]))} & : \\
\text{Mat([] & : } \\
\begin{align*}
\text{[-x}^3 + xy^2, -xy^2 + x^2z, xy - yz], \\
\text{[txy + x^2, x^2y - xz, -x^2 + tz],} \\
\text{[tx^2 - xy, -x^3 + xy, -ty + xy]} \\
\end{align*}
\)
\end{align*}
\]

\[
\begin{align*}
\text{Adjoint(Mat([[1%5,2%5],[3%5,1%5]])}) & : \\
\text{Mat([} & : \\
\begin{align*}
\text{[1 % 5, -2 % 5],} \\
\text{[2 % 5, 1 % 5]} \\
\end{align*}
\)
\end{align*}
\]
VI-1.3 AffHilbert

Syntax

\begin{verbatim}
AffHilbert(R:RING or TAGGED("Quotient")):TAGGED("\verb&$hp.Hilbert&")
AffHilbert(R:RING or TAGGED("Quotient"),N:INT):INT
\end{verbatim}

Description

The first form of this function computes the affine Hilbert function for R. The second form computes the N-th value of the affine Hilbert function. The weights of the indeterminates of R must all be 1. For repeated evaluations of the Hilbert function, use \texttt{EvalHilbertFn} (VI-5.9 pg.199) instead of \texttt{Hilbert(R,N)} in order to speed up execution.

This function is the same as \texttt{AffHilbertFn} (VI-1.4 pg.158).

The coefficient ring must be a field.

Example

\begin{verbatim}
Use R ::= Q[x,y,z];
AffHilbert(R/Ideal(z^4-1, xz^4-y-3));
H(0) = 1
H(1) = 3
H(t) = 4t - 2 for t >= 2
\end{verbatim}

See Also: AffHilbertSeries (VI-1.5 pg.158), EvalHilbertFn (VI-5.9 pg.199)

VI-1.4 AffHilbertFn

Syntax

\begin{verbatim}
AffHilbertFn(R:RING or TAGGED("Quotient")):TAGGED("\verb&$hp.Hilbert&")
AffHilbertFn(R:RING or TAGGED("Quotient"),N:INT):INT
\end{verbatim}

Description

Same as \texttt{AffHilbert} (VI-1.3 pg.158).

See Also: EvalHilbertFn (VI-5.9 pg.199), HilbertPoly (VI-8.19 pg.232), HVector (VI-8.27 pg.236), HilbertSeries (VI-8.20 pg.232)

VI-1.5 AffHilbertSeries

Syntax

\begin{verbatim}
HilbertSeries(M:RING or TAGGED("Quotient")):TAGGED("$hp.PSeries")
\end{verbatim}

Description

This function computes the affine Hilbert-Poincare series of M. The grading must be a positive \(Z^1\)-grading (i.e. \texttt{WeightsMatrix} (VI-23.2 pg.357) must have a single row with positive entries), and the ordering must be degree compatible (i.e. for a buggy behaviour of cocoa-4, \texttt{Ord} (VI-15.8 pg.302) must have all 1's in the first row). In the standard case, i.e. the weights of all indeterminates are 1, the result is simplified so that the power appearing in the denominator is the dimension of \(M + 1\).

It is exacly the same as \texttt{AffPoincare} (VI-1.6 pg.159).

NOTES:
(i) the coefficient ring must be a field.
(ii) these functions produce tagged objects: they cannot safely be (non-)equality to other values.

For further details on affine Hilbert functions see the book: Kreuzer, Robbiano \textit{Computer Commutative Algebra II}, Section 5.6.
VI-1.6. AffPoincare

```plaintext
Use R ::= Q[x,y,z];
AffPoincare(R/Ideal(z^4-1, xz^4-y-3));
(1 + x + x^2 + x^3) / (1-x)^2
```

See Also: AffHilbert (VI-1.3 pg.158), HilbertSeries (VI-8.20 pg.232)

VI-1.6 AffPoincare

Syntax

```
AffPoincare(M:RING or TAGGED("Quotient")):TAGGED("hp.PSeries")
```

Description

Same as “AffHilbertSeries” (VI-1.5 pg.158).

See Also: AffHilbert (VI-1.3 pg.158), AffHilbertSeries (VI-1.5 pg.158), Hilbert (VI-8.16 pg.231), HilbertSeries (VI-8.20 pg.232)

VI-1.7 Alias

Syntax

```
Alias B_1,..., B_r
```

where each B_i is a ‘‘{\it binding}’’ of the form: Identifier := $PackageName

Description

This function is for declaring both global and local aliases for package names. Recall that package names are meant to be long in order to avoid conflicts between the names of functions that are read into a CoCoA session. However, it is inconvenient to have to type out the long package name when referencing a function. So the user chooses an alias to take the place of the package name; the alias is just a means to avoid typing. Aliases for packages that are routinely loaded, may be added to “userinit.coc” (see “User Initialization” (V-3.1 pg.149)).

1. Global aliases. To avoid typing the full package name as a prefix to package functions, one may declare a short global alias during a CoCoA session. A list of the global aliases is produced by the function “Aliases” (VI-1.9 pg.160). For examples, see the chapter on packages in the manual, in particular the section, “Global Aliases” (HI-9.5 pg.73). Online, enter “?global aliases”.

2. Local aliases. A local alias has the same syntax as a global alias, however it appears inside a package definition. The local aliases work only inside the package and do not conflict with any global aliases already defined. In fact, in order to avoid conflicts, global aliases are not recognized within a package. For examples, again look in the chapter for packages.

```plaintext
Alias LL := $abcd;
Aliases();
```

H = $help
IO = $io
GB = $gb
HP = $hp
HL = $hilop
List = $list
Mat = $mat
Latex = $latex
LaTeX = $latex
Toric = $toric
See Also: Alias In (VI-1.8 pg.160), Aliases (VI-1.9 pg.160), Global Aliases (III-9.5 pg.73), Introduction to Packages (III-9.1 pg.71), Local Aliases (III-9.6 pg.74)

VI-1.8 Alias In

syntax

```
Alias B_1,...,B_r In C EndAlias
```

where each B_i is a "\{\it binding\}" of the form: Identifier := $PackageName$, and C is a command sequence.

Description

This command allows one to use the aliases defined by the "B_i"'s in the command sequence C without affecting the global aliases.

example

```
Aliases(); -- the global aliases

H = $help
IO = $io
GB = $gb
HP = $hp
HL = $hilop
List = $list
Mat = $mat
Latex = $latex
LaTeX = $latex
Toric = $toric
Coclib = $coclib
```

```
Alias HP := $help In HP.Man("Alias In") EndAlias;

------------------ Alias In ------------------
SYNTAX
Alias B_1,...,B_r In C EndAlias
```

where each B_i is a "\{\it binding\}" of the form: Identifier := $PackageName$, and C is a command sequence.

--- Output suppressed <---

```
HP.Examples(); -- the global alias HP is unaffected
```

--- STANDARD ---
Use R ::= Q[t,x,y,z];
Poincare(R);
--- Output suppressed <---

See Also: Alias (VI-1.7 pg.159), Introduction to Packages (III-9.1 pg.71)

VI-1.9 Aliases

syntax

```
Aliases():TAGGED("Aliases")
```
Description

This function prints a list of global aliases for packages. Aliases are formed with the function “Alias” (VI-1.7 pg.159).

```plaintext
Aliases();
```

```plaintext
H = $help
IO = $io
GB = $gb
HP = $hp
HL = $hilop
List = $list
Mat = $mat
Latex = $latex
LaTeX = $latex
Toric = $toric
Coclib = $coclib
```

```plaintext
Alias TT := $abc;
Aliases();
```

```plaintext
H = $help
IO = $io
GB = $gb
HP = $hp
HL = $hilop
List = $list
Mat = $mat
Latex = $latex
LaTeX = $latex
Toric = $toric
Coclib = $coclib
TT = $abc
-----------------------------
```

See Also: Alias (VI-1.7 pg.159), Introduction to Packages (III-9.1 pg.71)

VI-1.10 Append

<table>
<thead>
<tr>
<th>syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Append(V:LIST, E:OBJECT):NULL</td>
</tr>
</tbody>
</table>

where V is a variable containing a list.

Description

This function appends the object E to the list V.

```plaintext
Use R ::= Q[t,x,y,z];
L := [1,2,3];
Append(L,4);
L;
[1, 2, 3, 4]
-----------------------------
```

See Also: Concat (VI-3.21 pg.178), ConcatLists (VI-3.22 pg.178), Insert (VI-9.16 pg.246), Remove (VI-18.13 pg.321)
VI-1.11 Ascii

Syntax

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascii(N: INT): STRING</td>
<td>In the first form, Ascii returns the character whose ASCII code is N.</td>
</tr>
<tr>
<td>Ascii(L: LIST of INT): STRING</td>
<td>In the second form, Ascii returns the string whose characters, in order, have the ASCII codes listed in L.</td>
</tr>
<tr>
<td>Ascii(S: STRING): LIST of INT</td>
<td>The third form is the inverse of the second: it returns the ASCII codes of the characters in S.</td>
</tr>
</tbody>
</table>

Description

In the first form, Ascii returns the character whose ASCII code is N.

In the second form, Ascii returns the string whose characters, in order, have the ASCII codes listed in L.

The third form is the inverse of the second: it returns the ASCII codes of the characters in S.

Example

```text
Ascii(97);
a
-------------------------------
C := Ascii("hello world");
C;
-------------------------------
Ascii(C);
hello world
-------------------------------
```
Chapter VI-2

VI-2.1 BBasis5

syntax

\[\text{BBasis5}(I: \text{IDEAL}): \text{LIST} \]

Description

The function “`BBasis5`” calls the CoCoAServer to compute a Border Basis of zero dimensional ideal `I`.

example

```
Use Q[x, y], DegLex;
I := Ideal([x^2, xy + y^2]);
BBasis := BBasis5(I);
```

See Also: GBasis5, and more (VI-7.18 pg.217)

VI-2.2 BettiDiagram

syntax

\[\text{BettiDiagram}(M: \text{IDEAL or MODULE}): \text{TAGGED}("gb.BettiDiagram") \]

Description

This function returns the (“Macaulay style”) Betti diagram for `M`.

example

```
Use R ::= Q[t,x,y,z];
I := Ideal(x^2-yt,xy-zt,xy);
Res(I);
0 --> R^2(-5) --> R^4(-4) --> R^3(-2)
------------------------------------
BettiDiagram(I);
0 1 2
------------------------------------
2: 3 - -
3: - 4 2
------------------------------------
Tot: 3 4 2
------------------------------------
Untagged(BettiDiagram(I));
Record[Diagram = Mat([[3, 0, 0],
[0, 4, 2]
]), FirstShift = 2]
```
VI-2.3 BettiMatrix

syntax

\[
\text{BettiMatrix}\text{(M: IDEAL or MODULE): TAGGED(}"\text{i0.Matrix}\text{"
}\]

Description

This function returns the Betti matrix for M.

example

```
Use R ::= Q[t,x,y,z];
I := Ideal(x^2-yt,xy-zt,xy);
Res(I);
0 --> R^2(-5) --> R^4(-4) --> R^3(-2)
-------------------------------------
BettiMatrix(I);
-------------------------------------
```

```
0 0 0
0 0 3
0 0 0
0 4 0
2 0 0
-------------------------------------
```

```
Untagged(BettiMatrix(I));
Mat([ [0, 0, 0], [0, 0, 3], [0, 0, 0], [0, 4, 0], [2, 0, 0] ])  
```

See Also: Res (VI-18.15 pg.322), GB.GetBettiMatrix (VI-7.2 pg.211), BettiDiagram (VI-2.2 pg.163)

VI-2.4 Bin

syntax

\[
\text{Bin}\text{(N: INT or POLY, K: INT): INT}
\]

Description

This function computes the binomial coefficient, “\(N \choose K \)” according to the formula

\[
\frac{(N)(N-1)(N-2)...(N-K+1)}{ K!}
\]

The same formula is used if N is a polynomial. The integer K cannot be negative.

example

```
Bin(4,2);
6
-----------------

Bin(-4,3);
-20
-----------------
```

See Also: Res (VI-18.15 pg.322), GB.GetBettiMatrix (VI-7.2 pg.211), BettiDiagram (VI-2.2 pg.163)
Bin(x^2+2y,3);
1/6x^6 + x^4y - 1/2x^4 + 2x^2y^2 - 2x^2y + 4/3y^3 + 1/3x^2 - 2y^2 + 2/3y

It = (x^2+2y)(x^2+2y-1)(x^2+2y-2)/6;
TRUE

See Also: BinExp (VI-2.5 pg.165), EvalBinExp (VI-5.8 pg.198)

VI-2.5 BinExp

Syntax

where N and K are positive integers, and Up and Down are integers.

Description

This function computes the K-binomial expansion of N, i.e., the unique expression

\[N = \text{Bin}(N(K),K) + \text{Bin}(N(K-1),K-1) + \ldots + \text{Bin}(N(I),I) \]

where \(N(K) > \ldots > N(I) \geq 1\), for some I. The value returned is tagged for pretty printing.

It can also compute the sum of the binomial coefficients appearing in the K-binomial expansion of N after replacing each summand\(\text{Bin}(N(J),J) \) by\(\text{Bin}(N(J)+\text{Up},J+\text{Down}) \). It is useful in generalizations of Macaulay's theorem characterizing Hilbert functions.

Example

BE := BinExp(13,4);
BE;
Bin(5,4) + Bin(4,3) + Bin(3,2) + Bin(1,1)

BinExp(13,4,1,1);
16

See Also: Bin (VI-2.4 pg.164), EvalBinExp (VI-5.8 pg.198)

VI-2.6 Block

Syntax

Block C_1; ... ; C_n EndBlock;

where each C_i is a command.

Description

The “Block” command executes the commands as if they were one command. What this means in practice is that CoCoA will not print a string of dashes after executing each “C_i”. Thus, “Block” is used on-the-fly and not inside user-defined functions. (It has nothing to do with declaration of local variables, for instance, as one might infer from some other computer languages.) The following example should make the use of “Block” clear:

Example

Print "hello "; Print "world";
hello

world

Block Print "hello "; Print "world" EndBlock;
hello world

Block
 PrintLn GCD([12,24,96]);
 PrintLn LCM([12,24,96]);
 PrintLn GCD([x+y,x^2-y^2]);
 Print LCM([x+y,x^2-y^2]);
EndBlock;

12
96
x + y
x^2 - y^2

VI-2.7 BlockMatrix

syntax

BlockMatrix(L:LIST):MAT

where L is a list representing a block matrix.

Description

This function creates a block matrix. Each entry of the input list L has the form “[M_1,...,M_k]” where each “M_i” is either: (i) a matrix (or list cast-able to a matrix) or (ii) the number 0, representing a zero matrix of arbitrary size. The entry represents a row of a block matrix. For instance, if A, B, C, and D are matrices, then BlockMatrix([[A,B,0],[C,0,D]]) will return a matrix of the form

\[
\begin{pmatrix}
 A & B & 0 \\
 C & 0 & D
\end{pmatrix}
\]

The obvious restrictions on the sizes of the matrices apply. In the above example, we would need the number of rows in A and B to be the same. Similarly for C and D. The number of columns in A and C would need to be the same.

example

A := [[1,2,3], [4,5,6]];
B := [[1,2], [3,4]];
C := [[1,1,1], [2,2,2], [3,3,3]];
D := [[4,4], [5,5], [6,6]];
BlockMatrix([[A,B,0],[C,0,D]]);
Mat([[1, 2, 3, 1, 2, 0, 0],
 [4, 5, 6, 3, 4, 0, 0],
 [1, 1, 1, 0, 0, 4, 4],
 [2, 2, 2, 0, 0, 5, 5],
 [3, 3, 3, 0, 0, 6, 6]])

See Also: MatConcatHor (VI-13.7 pg.276), MatConcatVer (VI-13.8 pg.277), DiagonalMat (VI-4.16 pg.190)
VI-2.8 Break

Description
This command must be used inside a loop statement ("For", "Foreach", "Repeat", or "While"). When executed, the current loop statement is terminated and control passes to the command following the loop statement. Thus, in the case of nested loops "Break" does *not* break out of all loops back to the "top level" (see "Return").

```
For I := 5 To 1 Step -1 Do
  For J := 1 To 100 Do
    Print J, " ";
    If J = I Then PrintLn; Break EndIf;
  EndFor;
EndFor;
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1
```

See Also: Return (VI-18.19 pg.324)

VI-2.9 BringIn

Description
This function maps a polynomial or rational function (or a list, matrix, or vector of these) into the current ring, preserving the names of the indeterminates. When mapping from a ring of finite characteristic to one of zero characteristic then consistent choices of image for the coefficients are made (i.e. if two coefficients are equal mod p then their images will be equal).

If the two polynomial rings differ only in characteristic then it is faster to use the functions "QZP" (VI-17.3 pg.314), "ZPQ" (VI-25.1 pg.363).

This function does not work on ideals because “BringIn(Ideal(x-y, x+y))” into “R[x]” is ambiguous: one might expect “Ideal(2x)”, whereas just mapping the generators would return an error. So, if you want to map the generators of the ideal type “Ideal(BringIn(Gens(I)))”.

```
RR ::= Q[x[1..4],z,y];
SS ::= Z/(101)[z,y,x[1..2]];
Use RR;
F := (x[1]-y-z)^2;
F;
```

Use SS;
B := BringIn(F);
B;
z^2 + 2zy + y^2 - 2zx + 2yx + x^2

Use R ::= Q[x,y,z];
F := 1/2*x^3 + 34/567*x*y*z - 890; -- a poly with rational coefficients
Use S ::= Z/(101)[x,y,z];
QZP(F) = BringIn(F);
TRUE

See Also: Image (VI-9.9 pg.242), QZP (VI-17.3 pg.314), ZPQ (VI-25.1 pg.363)
Chapter VI-3

VI-3.1 Call

Call syntax

Call(F:FUNCTION,X_1,...,X_n):OBJECT

where X_1,...,X_n are the arguments for the function F.

Description

This function applies the function F to the arguments “X_1,...,X_n”.

Example

The following function MyMax takes a function LessThan as parameter, and returns the maximum of X and Y w.r.t. the ordering defined by the function LessThan.

Define MyMax(LessThan,X,Y)
 If Call(LessThan,X,Y) Then Return Y Else Return X EndIf
EndDefine;

Let’s use MyMax by giving two different orderings.

Define LT_Standard(X,Y)
 Return X < Y;
EndDefine;
Define LT_First(X,Y)
 Return TRUE;
EndDefine;

MyMax(Function("LT_Standard"),3,5);
5

MyMax(Function("LT_First"),5,3);
3

MyMax(Function("LT_First"),3,5);
5

MyMax(Function("LT_First"),5,3);
3

See Also: Function (VI-6.16 pg.208)
VI-3.2 CartesianProduct, CartesianProductList

syntax

\[L_1 \times \ldots \times L_n \]

where each \(L_i \) is a list.

Description

This command returns the list whose elements form the Cartesian product of \(L_1, \ldots, L_n \).

For the \(N \)-fold product of a list with itself, one may use “Tuples” (VI-20.8 pg.348).

example

\[
\text{L1 := [1,2,3];} \\
\text{L2 := ["a","b"];} \\
\text{L1 \times L2 \times [5]; -- same as} \\
\text{CartesianProduct(L1, L2, [5]); -- same as} \\
\text{CartesianProductList([L1, L2, [5]]); -- this takes a lists of lists} \\
\text{[[1, "a", 5], [1, "b", 5], [2, "a", 5], [2, "b", 5], [3, "a", 5], [3, "b", 5]]} \]

Note that only “\(\times \)” is used for “not equal” in CoCoA.

See Also: CoCoA Operators (III-3.1 pg.51), Tuples (VI-20.8 pg.348), Shortcuts (VI-0.1 pg.155)

VI-3.3 Cast

syntax

\[\text{Cast(E:OBJECT,T:TYPE):TYPE} \]

Description

This function returns the value of the expression \(E \) after converting it to type \(T \). If \(S \) and \(T \) are types with \(S \uparrow T \), then casting from \(S \) to \(T \) is usually possible.

example

\[
\text{L := [[1,2],[3,4]];} \\
\text{Type(L);} \\
\text{LIST} \\
\text{--} \\
\text{Cast(L,MAT);} \\
\text{Mat([} \\
\text{\[1, 2\],} \\
\text{\[3, 4\]} \\
\text{])} \\
\text{--} \\
\text{L; -- L is unchanged; it is still a list.} \\
\text{[[1, 2], [3, 4]]} \\
\text{--} \\
\text{Use \text{Z}/(5)[t];} \\
\text{A := 8;} \\
\text{A; -- A has type INT} \\
\text{8} \\
\text{--} \\
\text{Cast(A,POLY); -- cast as a polynomial, A = -2 since the coefficient} \\
\text{-- ring is \text{Z}/5\text{Z}} \\
\text{-2} \\
\text{--}
VI-3.4 Catch

See Also: Data Types (III-2.6 pg.48), Shape (VI-19.7 pg.332), Type (VI-20.9 pg.349), Types (VI-20.11 pg.350)

VI-3.4 Catch

Syntax

Catch C EndCatch;
Catch C In E EndCatch;

where C is a sequence of commands and E is a variable identifier.

Description

Usually, when an error occurs during the execution of a command, the error is automatically propagated out of the nesting of the evaluation. This can be prevented with the use of “Catch”.

If an error occurs during the execution of C, then it is captured by the command “Catch” and (in the second form) assigned to the variable E. If no error occurs, then E will contain the value “Null”. Note the use of the function “GetErrMesg” (VI-7.28 pg.223) in the example below.

IMPORTANT NOTE: There is a bug in “Catch”. Any “Return” command used inside “Catch” must return some value. If not, the “Return” command will just return from the Catch-EndCatch statement; it will not return from the function within which the statement is embedded. There is an example below.

Example

Define Test(N)
 Catch
 PrintLn(1/N);
 In E EndCatch;
 If Type(E) = ERROR Then Print("An error occurred: ", GetErrMesg(E)) EndIf;
 EndDefine;
Test(3);
1/3

Test(0);
An error occurred: Division by zero

--Illustration of the BUG--

Define Test2()
 Catch
 Print("Hello ");
 Return; -- incorrect: no value is returned
 EndCatch;
 PrintLn("world.");
EndDefine;
Test2();
Hello world.

Define Test3()
 Catch
 Print("Hello ");
 Return 3; -- correct a value is returned
 EndCatch;
 PrintLn("world.");
EndDefine;
Test3();
VI-3.5 CFAprox

syntax

CFAprox(X:RAT, Prec:RAT): RAT

Description

CFAprox finds the “simplest” rational approximation within a maximum specified relative error.

example

CFAprox(1.414213, 10^-2);
17/12

See Also: CFAproximants (VI-3.6 pg.172), ContFrac (VI-3.24 pg.179)

VI-3.6 CFAproximants

syntax

CFAproximants(X:RAT): LIST of INT and RAT

Description

CFAproximants returns a list of all continued fraction approximants to a specified rational

example

CFAproximants(1.414213);
[1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 816/577, 1393/985, 6388/4517, 7781/5502, 14169/10019, 21950/15521, 36119/25540, 58069/41061, 152257/107662, 210326/148723, 1414213/1000000]

See Also: CFAprox (VI-3.5 pg.172), ContFrac (VI-3.24 pg.179)

VI-3.7 Characteristic

syntax

Characteristic():INT
Characteristic(R:RING):INT

Description

This function returns the characteristic of the current ring, in the first case, or of the ring R, in the second.

example

Use R ::= Z/(3)[t];
S ::= Q[x,y];
Characteristic(); -- characteristic of the current ring, R
3

Characteristic(S);
0

VI-3.8 Ciao

Ciao

Description
This command is used to quit CoCoA. Note, it is issued as follows:
“Ciao;”
without parentheses.
See Also: Quit (VI-17.1 pg. 313)

VI-3.9 Clear

Clear
Clear R_1,...,R_n

where the R_i are identifiers for rings.

Description
The first form clears the working memory, i.e., all non-global variables. In the second form, the command clears the global variables bound to the rings “R_1,...,R_n”, i.e., the “ring-bound” memory for these rings. For more information on memory in CoCoA, see the chapter entitled “Memory Management” (III-8 pg. 67).

The contents of the working memory are listed by the command “Memory()”, and the global variables bound to the ring R are listed by the command “Memory(R)”.

Example
Use R ::= Q[x,y,z];
I := Ideal(x,y); -- I is added to the working memory
MEMORY.X := 3; -- a global variable
ENV.R.X := Ideal(x); -- a global variable bound to the ring R
 -- note that "ENV" is equivalent to "MEMORY.ENV"
Use S ::= Q[a,b];
ENV.S.Y := Ideal(a^2); -- global variable bound to S
J := Ideal(a,b); -- J is added to the working memory
Z := 4; -- Z is added to the working memory
Memory(); -- the contents of the working memory
["I", "J", "UserInitFile", "Z"]
--
Memory(R); -- the global variables bound to R
["X"]
--
Memory(S); -- the global variables bound to S
["Y"]
--
Clear; -- clear the working memory
Memory();
[]
--
Clear R; -- clear the global variables bound to R
Memory(R);
[]
--
Memory(S);
["Y"]
--
See Also: Delete (VI-4.8 pg.185), Destroy (VI-4.14 pg.189), Memory (VI-13.11 pg.279), Memory Management (III-8 pg.67)

VI-3.10 ClearDenom

Description
This function clears the denominators of the coefficients in a polynomial over \(\mathbb{Q} \). It simply multiplies by the least common multiple of the denominators.

description example

Use \(\mathbb{Q}[x,y] \);
\(F := (2/3)x + (4/5)y \);
ClearDenom(F);

VI-3.11 Close

Description
This function closes the device \(D \).

description example

D := OpenOFile("my-test"); -- open file for output from CoCoA
Print "test" On D; -- write to my-file
Close(D); -- close the file
Close(DEV.STDIN); -- close the standard input device
-- Bye

(Close(DEV.OUT) suppresses all output to the CoCoA window.)

See Also: Introduction to IO (III-7.1 pg.61)

VI-3.12 CloseLog

Description
This function “OpenLog” (VI-15.3 pg.300) opens the output device \(D \) and starts to record the output from a CoCoA session on \(D \).

This function closes the device \(D \) and stops recording the CoCoA session on \(D \).

See Also: OpenLog (VI-15.3 pg.300)

VI-3.13 CocoaLimits

Description
This function \(\text{CocoaLimits}() \) returns a record containing the current limits for a CoCoA session.

CocoaLimits():RECORD
VI-3.14 CocoaPackagePath

Description
This function returns the maximum allowable characteristic of a CoCoA ring and the maximum allowable exponent in a CoCoA expression. These numbers may vary depending on the platform on which CoCoA is run.

```plaintext
CocoaLimits();
Record[MaxChar = 32767, MaxExp = 2147483647]
```

VI-3.14 CocoaPackagePath

Syntax

```plaintext
CocoaPackagePath():STRING
```

Description
This function returns the path name of the directory containing the CoCoA libraries. It is platform dependent.

```plaintext
CocoaPackagePath();
/usr/local/lib/cocoa-4.7/packages
```

VI-3.15 Coefficients

Syntax

```plaintext
Coefficients(F:POLY or VECTOR):LIST
Coefficients(F:POLY,X:INDET):LIST
Coefficients(F:POLY,S:LIST):LIST
```

Description
This function returns the coefficients of F. In the first form, a list of the (non-zero) coefficients is returned; the order being decreasing on the terms in F as determined by the term-ordering of the ring to which F belongs.
In the second form, the function views F as a polynomial in X, and returns a list of coefficients which are polynomials in the remaining variables; their order is decreasing in powers of X, and a zero value is given for those powers of X absent from F.
In the third form, the coefficients of the specified terms are returned; their order is determined by the list S.

```plaintext
Use R ::= Q[x,y,z];
F := 3x^2y+5y^3-xy^5;
Coefficients(F);
[-1, 3, 5]

ScalarProduct(Coefficients(F), Support(F)) = F;
TRUE
```

```plaintext
V := Vector(3x^2+y, x-5z^3);
Coefficients(V);
[-5, 3, 1, 1]

ScalarProduct(Coefficients(V), Support(V)) = V;
TRUE
```

```plaintext
Coefficients(x^3z+xy+xz+y+2z, x);
[z, 0, y + z, y + 2z]
```
Chapter VI-3. C

\[F := (1+2x+3y^4+5z^6)^7; \]
\[\text{Skeleton := \{1, x^3, y^12, z^19, x^2*y^8*z^12\};} \]
\[\text{Coefficients}(F, \text{Skeleton}); \]
\[\{1, 280, 945, 0, 567000\} \]

See Also: Coefficient Rings (IV-8.3 pg.104), LC (VI-12.3 pg.264), Monomials (VI-13.21 pg.283), Support (VI-19.25 pg.341)

VI-3.16 CoeffOfTerm

Syntax

\[
\begin{align*}
\text{CoeffOfTerm}(T: \text{POLY}, F: \text{POLY}): \text{C} \\
\text{CoeffOfTerm}(T: \text{VECTOR}, F: \text{VECTOR}): \text{C}
\end{align*}
\]

where \(T \) is a term (no coefficient) and \(C \) is one of \(\text{INT}, \text{RAT}, \text{or ZMOD} \).

Description

This function returns the coefficient of the term \(T \) occurring in \(F \).

Example

Use \(R ::= \mathbb{Q}[x,y,z]; \)
\[F := 5xy^2-3z^3; \]
\[\text{CoeffOfTerm}(xy^2,F); 5 \]
\[\text{CoeffOfTerm}(x^3,F); 0 \]
\[\text{CoeffOfTerm}(z^3,F); -3 \]
\[\text{CoeffOfTerm}(\text{Vector}(0,x^3,0),\text{Vector}(x+3,6xy-5x^3,x-z^2)); -5 \]

See Also: Coefficients (VI-3.15 pg.175), LC (VI-12.3 pg.264), Log (VI-12.12 pg.269), LogToTerm (VI-12.13 pg.269), Monomials (VI-13.21 pg.283), Support (VI-19.25 pg.341)

VI-3.17 Colon

Syntax

\[
\begin{align*}
\text{Colon}(M: \text{IDEAL}, N: \text{IDEAL}): \text{IDEAL} \\
\text{Colon}(M: \text{MODULE}, N: \text{MODULE}): \text{IDEAL}
\end{align*}
\]

Description

This function returns the quotient of \(M \) by \(N \): the ideal of all polynomials \(F \) such that \(F*G \) is in \(M \) for all \(G \) in \(N \). The command \("M : N" \) is a shortcut for \("\text{Colon}(M,N)" \).

See also \("\text{HColon}\" (VI-8.12 pg.228) for non-homogeneous input.

Example

Use \(R ::= \mathbb{Q}[x,y]; \)
\[\text{Ideal}(xy,x^2) : \text{Ideal}(x); \]
\[\text{Ideal}(y, x) \]
\[\text{Colon}(\text{Ideal}(x^2,xy), \text{Ideal}(x,x-y^2)); \]
VI-3.18 ColumnVectors

Syntax

ColumnVectors(M: LIST or MAT): LIST of VECTOR

where if M is a list, is must be cast-able as a matrix.

Description

This function returns the list of column vectors of the matrix M.

Example

```plaintext
Use R ::= Q[x,y];
M := Mat([[1,1],[x,y],[x^2,y^2]]);
M;
Mat([ [1, 1], [x, y], [x^2, y^2] ])
-------------------------------
ColumnVectors(M);
[ Vector(1, x, x^2), Vector(1, y, y^2) ]
-------------------------------
```

VI-3.19 Comp

Syntax

Comp(E: LIST, RECORD, STRING, or VECTOR, X_1: INT, ..., X_k: INT): OBJECT

Description

This function returns "E[X_1, ..., X_k]" except in the case where there are no additional arguments "X_1, ..., X_k", in which case E, itself, is returned (in other words "Comp(E)" returns E). Since the square bracket notation works only for variables and indeterminates, this function must be used in all other situations (e.g. directly indexing into, or selecting from, the result of a function call).

Example

```plaintext
Use R ::= Q[x,y,z];
L := [4,5,[6,7],8];
Comp(L,1);
4  
-------------------------------
Comp(L,3);
[6, 7]  
-------------------------------
Comp(L,3,2);
7  
-------------------------------
F(X):=[X,X^2];  -- the following usage of "Comp" is useful for
                -- programming
F(2);
Chapter VI-3. C

VI-3.20 Comps

**syntax**

&ndash; Comps(V:VECTOR):LIST

**Description**

This function returns the list of components of V. It is the same as Cast(V, LIST).

**example**

Use R ::= Q[x,y];
Comps(Vector(x,x+y,x+y^2));
[x, x + y, y^2 + x]

**See Also:** Comp (VI-3.19 pg. 177), NumComps (VI-14.13 pg. 292)

VI-3.21 Concat

**syntax**

&ndash; Concat(L_1:LIST,...,L_n:LIST):LIST

**Description**

This function returns the list obtained by concatenating lists “L_1,...,L_n”.

**example**

Concat([[1,2,3],[4,5],[[]],[6]]);
[1, 2, 3, 4, 5, 6]

**See Also:** Concatenation (IV-3.2 pg. 91), ConcatLists (VI-3.22 pg. 178)

VI-3.22 ConcatLists

**syntax**

&ndash; ConcatLists([L_1:LIST,...,L_n:LIST]):LIST
VI-3.23. Cond

179

Description
This function takes a list whose components are lists and returns the concatenation of these components.
example
L := [[1,2],["abc","def"],[3,4]];
ConcatLists(L);
[1, 2, "abc", "def", 3, 4]
-------------------------------

See Also: Concatenation (IV-3.2 pg.91), Concat (VI-3.21 pg.178)

VI-3.23

Cond

syntax
Cond B_1 Then E_1 EndCond
Cond B_1 Then E_1 Elsif B_2 Then E_2 Elsif ... EndCond
Cond B_1 Then E_1 Elsif B_2 Then E_2 Elsif ... Else E_r EndCond
Cond(B_1,E_1,B_2,E_2,...,E_r)
where the B_i’s are boolean expressions and the $E_i$’s are expressions.

Description
If Bn is the first in the sequence of Bi ’s to evaluate to TRUE, then En is returned. If none of the Bi ’s evaluates
to TRUE, then Null is returned. The construct, “Elsif B Then E” can be repeated any number of times.
Note: be careful not to type “Elseif” by mistake (it has an extraneous “e”).
The difference between “Cond” and “If” is that “Cond” is an expression which may be assigned to a variable;
each of the Ei ’s is an expression, not a general sequence of commands (as their analogues in “If” might be).
example
Define Sign(A)
Return Cond A>0 Then 1 Elsif A=0 Then 0 Else -1 EndCond;
EndDefine;
Sign(3);
1
------------------------------Define PrintSign(A)
Return Cond(A>0,"positive",A=0,"zero","negative");
EndDefine;
PrintSign(3);
positive
-------------------------------

See Also: If (VI-9.7 pg.241)

VI-3.24

ContFrac
syntax

ContFrac(X:RAT):LIST of INT

Description
ContFrac returns a list of the continued fraction “denominators” for a given rational number.
example
ContFrac(1.414213);
[1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 6]
-------------------------------

See Also: CFApprox (VI-3.5 pg.172), CFApproximants (VI-3.6 pg.172)


### VI-3.25 Count

**syntax**

\[
\text{Count}(L:\text{LIST}, E:\text{OBJECT}):\text{INT}
\]

**Description**

This function counts the number of occurrences of the object \( E \) in the list \( L \).

**example**

\[
\begin{align*}
L & := [1,2,3,2,[2,3]]; \\
\text{Count}(L,2); & = 2 \\
\text{Count}(L,[2,3]); & = 1 \\
\text{Count}(L,"a"); & = 0
\end{align*}
\]

**See Also:** Distrib (VI-4.20 pg.192), Len (VI-12.5 pg.265)

### VI-3.26 CurrentRing

**syntax**

\[
\text{CurrentRing}()
\]

**Description**

This function returns the current ring. The related command, “\text{RingEnv}” (VI-18.23 pg.326) returns the name of the current ring.

**example**

\[
\begin{align*}
\text{Use } R & ::= \mathbb{Q}[x,y]; \\
\text{Use } S & ::= \mathbb{Z}/(3)[t]; \\
\text{CurrentRing}(); & = \mathbb{Z}/(3)[t] \\
\text{Use } R; \\
\text{CurrentRing}(); & = \mathbb{Q}[x,y]
\end{align*}
\]

**See Also:** Ring (VI-18.22 pg.325), RingEnv (VI-18.23 pg.326), RingEnvs (VI-18.24 pg.327)
Chapter VI-4

D

VI-4.1 Dashes

Description
This function returns a string of dashes:

Example

\[
\text{Dashes()}; \quad 1+1;
\]

See Also: Equals (VI-5.4 pg.196)

VI-4.2 Date

Description
This function returns the date.

Example

\[
\text{Date()}; \quad \text{Fri Jan 30 20:47:18 1998}
\]

VI-4.3 DecimalStr

Description
This function computes a decimal approximation with NumDigits decimal digits of a rational number (default value is 3) and converts it into a string for printing. If the returned string presents less than NumDigits decimal digits, then the string represents the exact value of the input.
VI-4.4 Define

Define F(X_1,...,X_n) Help S:STRING; C EndDefine
Define F(...) Help S:STRING; C EndDefine

where F is an identifier, C is a sequence of commands, the X_i’s are formal parameters and E is an expression. The third form, which literally includes the string ‘‘\verb&...&’’ is used for a variable number of parameters. The optional ‘‘\verb&Help S&’’, where S is a string, may be added to provide help for the user.

Description

1. INTRODUCTION. This command adds the user-defined function F to the library. The function F can be called in the following way:

   F(E_1,...,E_n)

where the “E_i”’s are expressions. The result of the evaluation of each expression “E_i” is assigned to the respective formal parameter “X_i”, and the command sequence C is executed. If, during the execution of C, a statement “Return E” is executed, then the result of the evaluation of E is the return-value of the function F. If no “Return” command is executed, or “Return” is executed without argument, then the return-value is “Null”.

example

Define Square(X)
  Return X^2;
EndDefine;
Square(5);
25

2. SCOPE. Every variable defined or modified by the command sequence C is considered local to the function unless the variable is global or relative to a “Var” parameter. For the use of global variables, see “Global Memory” (III-8.3 pg.68) or the example below. See “Var” to learn about calling a function “by reference”, i.e. so that the function can change the value of an existing variable.

example

Define Example_1(L)
  L := L + 5;
  Return L;
EndDefine;
L := 0;
Example_1(L);
5
-------------------------------
L; -- L is unchanged despite the function call.
0
-------------------------------
Define Example_2(L) -- Example using a global variable.
    MEMORY.X := L + 3;
EndDefine;
Example_2(10);
MEMORY.X;
13
-------------------------------

3. VARIABLE NUMBER OF PARAMETERS. It is also possible to have a variable number of parameters
using the syntax
Define F(...) Help S:STRING; C EndDefine;
In this case the special variable ARGV will contain the list of the arguments passed to the function. (The
statement, “Help S;” is optional.)
Define Sum(...) If Len(ARGV) = 0 Then Return Null; -- empty sum
Else
    Sum := 0;
    Foreach N In ARGV Do Sum := Sum+N EndForeach;
EndIf;
Return Sum;
EndDefine;
Sum(1,2,3,4,5);
15
-------------------------------
Sum();
Null
-------------------------------

4. SHORTCUT. The form “F(X_1,...,X_n) := E” is discouraged and may be discontinued in later versions
of CoCoA. If is shorthand for “Define F(X_1,...X_n) Return E EndDefine;”
F(X) := X^2;
F(5);
25
-------------------------------

5. HELP. Inside a user-defined function, one may add the command:
Help S;
where S is a string. Then, when a user enters “Help("F")” where F is the identifier for the function, the string,
S, is printed.
Define Test(N)
    Help "Usage: Test(N:INT):INT";
    Return N;
EndDefine;
Help "Test";
Usage: Test(N:INT):INT
-------------------------------
6. DEFINING RINGS INSIDE FUNCTIONS. For information on this topic, please see the section of the tutorial entitled, “Rings Inside User-Defined Functions” (II-2.18 pg.35)

See Also: An Overview of CoCoA Programming (III-1.1 pg.45), Introduction to User-Defined Functions (III-5.1 pg.57), Memory Management (III-8 pg.67), Return (VI-18.19 pg.324), Rings Inside User-Defined Functions (II-2.18 pg.35), Var (VI-22.1 pg.355)

VI-4.5 Deg

**syntax**

\[
\begin{align*}
\text{Deg}(F: \text{POLY or VECTOR}): & \text{INT} \\
\text{Deg}(F: \text{POLY or VECTOR}, X: \text{INDET}): & \text{INT}
\end{align*}
\]

**Description**

The first form of this function returns the (weighted) degree of F. The second form returns the (un-weighted) degree of the indeterminate X in F. In either case, if F is a vector, the maximum of the degrees of its components is returned. (For the degree of a ring or quotient object, see “Multiplicity” (VI-13.24 pg.285).)

**example**

```cocoa
Use R ::= Q[x,y];
Deg(xy^2+y);
3

Deg(xy^2+y,x);
1

Use R ::= Q[x,y], Weights(2,3);
Deg(xy^2+y);
8

Deg(xy^2+y,x);
1

Deg(Vector(x^2,xy^3+y,x^2-y^5));
5

Deg(Vector(x^2,xy^3+y,x^2-y^5),x);
2

```

See Also: MDeg (VI-13.10 pg.278), Weights Modifier (IV-8.5 pg.105)

VI-4.6 DegLexMat

**syntax**

\[
\text{DegLexMat}(N: \text{INTEGER}): \text{MAT}
\]

**Description**

This function return the matrix defining a standard term-ordering.

**example**

```cocoa
DegLexMat(3);
Mat([
 [1, 1, 1],
 [1, 0, 0],
 [0, 1, 0]
])
```
VI-4.7 DegRevLexMat

Syntax

DegRevLexMat(N:INTEGER):MAT

Description

This function returns the matrix defining a standard term-ordering.

Example

DegRevLexMat(3);
Mat(
  [1, 1, 1],
  [0, 0, -1],
  [0, -1, 0]
)

See Also: Ord (VI-15.8 pg.302), Orderings (IV-8.6 pg.106), DegLexMat (VI-4.6 pg.184), LexMat (VI-12.6 pg.266), RevLexMat (VI-18.21 pg.325), XelMat (VI-24.1 pg.361)

VI-4.8 Delete

Syntax

Delete V_1, ..., V_n

where each V_i is the identifier of a variable in the working memory.

Description

This function removes variables from the working memory. It will not delete global variables. For more information about memory in CoCoA, see the chapter entitled “Memory Management” (III-8 pg.67). The command “Memory()” lists the contents of the working memory.

Example

Use R ::= Q[x,y,z];
X := Ideal(x,y);
Y := 3;
Use S ::= Q[a,b];
Z := a^2+b^2;
Memory(); -- the contents of the working memory
["x", "y", "z"]
Delete X;
Memory(); -- X has been deleted from the working memory
["it", "y", "z"]

See Also: Clear (VI-3.9 pg.173), Destroy (VI-4.14 pg.189), Memory (VI-13.11 pg.279), Memory Management (III-8 pg.67)
VI-4.9 Den

**syntax**

Den(N: INT or RAT): INT  
Den(N: POLY or RATFUN): POLY

**Description**

These functions return the numerator and denominator of N. The numerator and denominator can also be found using “.Num” and “.Den” (fragile).

**example**

```plaintext
Den(3);
1

Den(x/(x+y));
x + y

X := 2/3;
X.Num; X.Den;
2
3
```

**See Also:** Numerators and Denominators for Rational Functions (IV-10.2 pg.117), Numerators and Denominators for Rational Numbers (IV-2.3 pg.87), Num (VI-14.12 pg.292)

VI-4.10 DensePoly

**syntax**

DensePoly(N: INT): POLY

**Description**

This function returns the sum of all power-products of degree N.

**example**

```plaintext
Use R ::= Q[x,y];
DensePoly(3);
x^3 + x^2y + xy^2 + y^3

Use R ::= Q[x,y],Weights(2,3); -- <--- NOTE
DensePoly(1);
0

DensePoly(6);
x^3 + y^2
```

**See Also:** Randomize (VI-18.4 pg.316), Randomized (VI-18.5 pg.317)

VI-4.11 Depth

**syntax**

Depth(I: IDEAL, M: Tagged("Quotient")): INT  
Depth(M: Tagged("Quotient")): INT
**Description**

This function calculates the depth of \( M \) in the ideal \( I \), i.e. the length of a maximal \( I \)-regular sequence in \( M \). In the second form, where \( I \) is not specified, it assumes that \( I \) is the maximal ideal generated by the indeterminates, i.e. “\( \text{Ideal(Indets())} \)”. Note that if \( M \) is homogeneous and \( I \) is the maximal ideal, then it uses the Auslander-Buchsbaum formula

\[
\text{depth}_I(M) = N - \text{pd}(M)
\]

where \( N \) is the number of indeterminates and \( \text{pd} \) is the projective dimension, otherwise it returns “\( \min(N \mid \text{Ext}^N(R/I,M)\neq 0) \)” using the function “\( \text{Ext} \)” (VI-5.10 pg.199).

```plaintext
Use R ::= Q[x,y,z];
Depth(Ideal(1)); -- the (x,y,z)-depth of the entire ring is 3
3

I := Ideal(x^5,y^3,z^2);
-- one can check that it is zerodimensional and CM this way
Dim(R/I);
Depth(R/I);
0

N := Module([x^2,y],[x+z,0]);
Depth(I,R^2/N); --- a max reg sequence would be (z^2,y^3)
2

Use R ::= Q[x,y,z,t,u,v];
N := Module([x,y],[-y,x],[z,t],[-t,z],[u,v],[-v,u]);
-- Cauchy-Riemann system in three complex vars!
-- is it CM?
Depth(R^2/N);
Dim(R^2/N);
3

--- yes!
M := Module([x,y,z],[t,v,u]);
Res(R^3/M);
0 --\(R^3(-1) \rightarrow R^3 \)

Depth(R^3/M); -- using Auslander Buchsbaum 6-1=5
5

Dim(R^3/M); -- not CM
6

Depth(Ideal(x,y,z,t), R^2/N);
2
```

**See Also:** Res (VI-18.15 pg.322), Ext (VI-5.10 pg.199)
**VI-4.12 Der**

**Syntax**

\[ \text{Der}(F, X: \text{INDET}): \text{POLY} \]

where \( F \) is a polynomial or a rational function.

**Description**

This function returns the derivative of \( F \) with respect to the indeterminate \( X \).

**Example**

Use \( R ::= \mathbb{Q}[x,y] \);
\[ \text{Der}(xy^2, x) \]
\[ y^2 \]

Define \( \text{Jac}(F) \rightarrow \) The Jacobian matrix for a polynomial.
\[ \text{Return Mat}([[\text{Der}(F, X) \mid X \text{ In Indets()}]]) \]
EndDefine;
\[ \text{Jac}(xy^2) \]
\[ \text{Mat}
\begin{bmatrix}
  y^2, & 2xy
\end{bmatrix}
\]

\[ \text{Der}(x/(x+y), x) \]
\[ y/(x^2 + 2xy + y^2) \]

**See Also:** Jacobian (VI-10.1 pg.259)

**VI-4.13 Describe**

**Syntax**

\[ \text{Describe}(E: \text{OBJECT}) \]
\[ \text{Describe } E: \text{OBJECT} \]

**Description**

This command gives information about the expression \( E \).

**Example**

Use \( R ::= \mathbb{Z}/(32003)[t,x,y] \);
\( I := \text{Ideal}(t^3-x, t^4-y) \);
\( G := \text{SyzOfGens}(I) \);
Print \( I \);
\[ \text{Ideal}(t^3 - x, t^4 - y) \]

Describe \( I \);
Record[Type = IDEAL, Value = Record[Gens = \{t^3 - x, t^4 - y\},
SyzOfGens = Module([-t^4 + y, t^3 - x], [t^4x - xy, -t^3x + x^2])]]

Describe Function("$mat.Transposed");
Define Transposed(M)
\[ \text{If NOT(Type(M) = MAT) Then} \]
\[ \text{Error("Transposed: argument must be a matrix")}; \]
EndIf;
\[ \text{Return Mat}([[ \]
\[ J, \]
\[ 1..\text{Len}(M[1]), \]
\[ ]]) \]
VI-4.14 Destroy

syntax

Destroy R_1, ... , R_n

where each R_i is the identifier of a ring.

Description

This command clears all global variables bound to the listed rings. Moreover, if R is a ring in the list and there are no variables in the current memory dependent upon R, then the ring identified by R is deleted; otherwise R is renamed with a name of the form "R#N" where N is an integer. This renamed ring is automatically removed as soon as the last variable dependent upon it is deleted.

The command will not work if one of the listed rings is the current ring.

For more information about memory in CoCoA, see the chapter entitled “Memory Management” (III-8 pg.67).

example

Use R ::= Q[x,y,z];
X := 3;
I := Ideal(x,y); -- dependent on R
ENV.R.Y := 5; -- in global memory bound to R
Use S ::= Q[a,b];
Destroy R;
RingEnvs(); -- R#1 created to hold because of the ideal I
["Q", "Qt", "R#1", "S", "Z"]
------------------------------------------
Memory(); -- ENV.R.Y was destroyed along with R
["I", "It", "X"]
------------------------------------------
I; -- I was not destroyed
R#1 :: Ideal(x, y)
------------------------------------------
I := 3; -- overwrite I; it is no longer dependent on a CoCoA ring
Describe Memory();
---------[Memory]---------
I = 3
It = R#1 :: Ideal(x, y)
X = 3
------------------------------------------
RingEnvs(); -- subtle point here: the variable "It" is still dependent
-- on R#1
["Q", "Qt", "R#1", "S", "Z"]
------------------------------------------
RingEnvs(); -- However, the previous command caused It to become a
-- string; hence, R#1 disappears.
["Q", "Qt", "S", "Z"]
------------------------------------------

See Also: Other Help (V-2.4 pg.146)
VI-4.15  Det

\[ \text{Det}(M: \text{MAT}) \]

the resulting type depends on the entries of the matrix.

**Description**

This function returns the determinant of the matrix \( M \). The resulting type depends on the types of the entries of the matrix.

\[ \text{example} \]

Use \( R := \mathbb{Q}[x] \);
\[ M := \text{Mat}(\begin{bmatrix} x & x^2 \\ x & x^3 \end{bmatrix}); \]
\[ \text{Det}(M); \]
\[ x^4 - x^3 \]

\[ \text{Det}(\text{Mat}(\begin{bmatrix} 1 & 2 \\ 0 & 5 \end{bmatrix})); \]
\[ 5 \]

**See Also:** Minors (VI-13.15 pg.281)

---

VI-4.16  DiagonalMat

\[ \text{DiagonalMat}(L: \text{LIST}): \text{MAT} \]

**Description**

This function return the diagonal matrix whose diagonal are the elements of the list \( L \).

\[ \text{example} \]

\[ \text{DiagonalMat}(\{3,4,5\}); \]
\[ \text{Mat}(\begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix}) \]

---

**See Also:** BlockMatrix (VI-2.7 pg.166), IsDiagonal (VI-9.26 pg.251)
VI-4.17 Diff

**Syntax**

\[
\text{Diff}(L:\text{LIST}, M:\text{LIST}):\text{LIST}
\]

**Description**

This function returns the list obtained by removing all the elements of \(M\) from \(L\).

**Example**

\[
L := [1,2,3,2,[2,3]];
M := [1,2];
\text{Diff}(L,M);
[3, [2, 3]]
\]

**See Also:** Insert (VI-9.16 pg.246), Remove (VI-18.13 pg.321)

VI-4.18 Dim

**Syntax**

\[
\text{Dim}(R:\text{RING or TAGGED("Quotient")}):\text{INT}
\]

**Description**

This function computes the dimension of \(R\). The weights of the indeterminates of the polynomial ring must all be 1.

The coefficient ring must be a field.

**Example**

\[
\text{Use } R ::= \mathbb{Q}[x,y,z];
\text{Dim}(R/\text{Ideal}(0));
3
\]

\[
\text{Dim}(R/\text{Ideal}(y^2-x,xz-y^3));
1
\]

VI-4.19 Discriminant

**Syntax**

\[
\text{Discriminant}(F:\text{POLY}):\text{POLY}
\]

\[
\text{Discriminant}(F:\text{POLY}, X:\text{INDET}):\text{POLY}
\]

**Description**

This function computes the discriminant of a polynomial \(F\) (with respect to a given indeterminate \(X\), if the polynomial is multivariate). If the polynomial is univariate then there is no need to specify which indeterminate to use.

The discriminant is defined to be the resultant of \(F\) and its derivative with respect to \(X\).

**Example**

\[
\text{Use } R ::= \mathbb{Q}[x,y];
\text{Discriminant}(x^2+3y^2, x);
12y^2
\]

\[
\text{Discriminant}(x^2+3y^2, y);
\]

\[
36x^2
\]

\[
\text{Discriminant}((x+1)^20+2);
\]
VI-4.20 Distrib

**syntax**

Distrib(L:LIST):LIST

**Description**

For each object E of a list L, let N(E) be the number of times E occurs as a component of L. Then Distrib(L) returns the list whose components are [E,N(E)].

**example**

Distrib(["b","a","b",4,4,[1,2]]);
[["b", 2], ["a", 1], [4, 2], [[1, 2], 1]]

**See Also:** Count (VI-3.25 pg.180)

VI-4.21 Div

**syntax**

Div(N:INT,D:INT):INT

**Description**

If N = Q*D + R, and 0 ≤ R < |D|, then “Div(N,D)” returns Q and “Mod(N,D)” returns R.

NOTE: To perform the division algorithm on a polynomial or vector, use “NR” (VI-14.11 pg.291) (normal remainder) to find the remainder, or “DivAlg” (VI-4.22 pg.192) to get both the quotients and the remainder. To determine if a polynomial is in a given ideal or a vector is in a given module, use “NF” (VI-14.7 pg.290) or “IsIn” (VI-9.29 pg.252), and to find a representation in terms of the generators use “GenRepr” (VI-7.24 pg.221).

**example**

Div(10,3);
3
----------------------------------------
Mod(10,3);
1
----------------------------------------

**See Also:** DivAlg (VI-4.22 pg.192), GenRepr (VI-7.24 pg.221), NF (VI-14.7 pg.290), NR (VI-14.11 pg.291), Mod (VI-13.17 pg.281)

VI-4.22 DivAlg

**syntax**

DivAlg(X:POLY,L:LIST of POLY):RECORD
DivAlg(X:VECTOR,L:LIST of VECTOR):RECORD
Description

This function performs the division algorithm on $X$ with respect to $L$. It returns a record with two fields:
“Quotients” holding a list of polynomials, and “Remainder” holding the remainder of $X$ upon division by $L$.

```
Use R ::= Q[x,y,z];
F := x^2y+xy^2+y^2;
L := [xy-1,y^2-1];
DivAlg(F,[xy-1,y^2-1]);
Record[Quotients = [x + y, 1], Remainder = x + y + 1]

D := It;
D.Quotients;
[x + y, 1]

D.Remainder;
x + y + 1

ScalarProduct(D.Quotients,L) + D.Remainder = F;
TRUE

V := Vector(x^2+y^2+z^2,xyz);
L := [Vector(x,y),Vector(y,z),Vector(z,x)];
DivAlg(V,L);
Record[Quotients = [0, -z^2, yz], Remainder = Vector(x^2 + y^2 + z^2, z^3)]

```

See Also: Div (VI-4.21 pg.192), Mod (VI-13.17 pg.281), GenRepr (VI-7.24 pg.221), NF (VI-14.7 pg.290), NR (VI-14.11 pg.291)
Chapter VI-5

E

VI-5.1 E_

syntax

E_**(K:INT,N:INT or MODULE):VECTOR

Description
If N is an integer, this function returns the K-th canonical vector of the free module of rank N over the current ring. If N is a module, it returns the K-th canonical vector of N.

example

Use R ::= Q[x,y];
E_(4,7);
Vector(0, 0, 0, 1, 0, 0, 0)
-------------------------------
M := Module([x^2,0,y^2],[x^3,x+y,y^3]);
E_(2,M);
Vector(0, 1, 0)
-------------------------------

VI-5.2 Elim

syntax

Elim(X:INDETS,M:IDEAL):IDEAL
Elim(X:INDETS,M:MODULE):MODULE

where X is an indeterminate or a list of indeterminates.

Description
This function returns the ideal or module obtained by eliminating the indeterminates X from M. The coefficient ring needs to be a field.

As opposed to this function, there is also the "modifier", "Elim", used when constructing a ring (see "Orderings" (IV-8.6 pg.106) and "Predefined Term-Orderings" (IV-8.7 pg.106)).

example

Use R ::= Q[t,x,y,z];
Set Indentation;
Elim(t,Ideal(t^15+t^6+t-x,t^5-y,t^3-z));
Ideal(
  -z^5 + y^3,
  -y^4 - yz^2 + xy - z^2,
  -xy^3 z - y^2 z^3 - x z^3 + x^2 z - y^2 - y,
  -y^2 z^4 - x^2 y^3 - xy^2 z^2 - y z^4 - x^2 z^2 + x^3 - y^2 z - 2 y z - z,
\[-y^3z^3 + xz^3 - y^3 - y^2\]-----------------------------
Use \( R := \mathbb{Q}[t,s,x,y,z,w]; \)
t..x;
\([t, s, x]\)-----------------------------
Elim(t..x, Ideal(t-x^2zw,x^2-t,y^2t-w)); -- Note the use of t..x.
Ideal(-zw^2 + w)-----------------------------
Use \( R := \mathbb{Q}[t[1..2],x[1..4]]; \)
t;
\([t[1], t[2]]\)-----------------------------
Elim(t,I); -- Note the use t.

See Also: Orderings (IV-8.6 pg.106), Predefined Term-Orderings (IV-8.7 pg.106)

### VI-5.3 EqSet

**syntax**

\[\text{EqSet}(L:\text{LIST}, M:\text{LIST}):\text{BOOL}\]

**Description**
This function returns TRUE if \( L \) equals \( M \) as sets, otherwise it returns FALSE.

**example**

\[
L := [1,2,2]; \\
M := [2,1]; \\
\text{EqSet}(L,M); \\
\text{TRUE}
\]

See Also: Intersection (VI-9.19 pg.248), IntersectionList (VI-9.20 pg.249), IsSubset (VI-9.39 pg.256)

### VI-5.4 Equals

**syntax**

\[\text{Equals}()\]

**Description**
This function returns a string of equal signs:

**example**

\[
\text{Equals}(); \\
\text{-----------------------------}
\]

See Also: Dashes (VI-4.1 pg.181)

### VI-5.5 EquiIsoDec

**syntax**

\[\text{EquiIsoDec}(I:\text{IDEAL}):\text{LIST of IDEAL}\]
VI-5.6 Error

Description
This function computes an equidimensional isoradical decomposition of \( I \), i.e. a list of unmixed ideals \( I_1, \ldots, I_k \) such that the radical of \( I \) is the intersection of the radicals of \( I_1, \ldots, I_k \). Redundancies are possible.

NOTE: at the moment, this implementation works only if the coefficient ring is the rationals or has large enough characteristic.

example

Use \( R ::= \mathbb{Q}[x,y,z] \);
I := Intersection(Ideal(x-1,y-1,z-1),Ideal(x-2,y-2)^2,Ideal(x)^3);
H := EquiIsoDec(I);
H;

\[ \text{Ideal}(x), \text{Ideal}(z - 1, y - 1, x - 1), \text{Ideal}(xy - y^2 - 2x + 2y, x^2 - y^2 - 4x + 4y, y^2z - y^2 - 4yz + 4y + 4z - 4, y^3 - 5y^2 + 8y - 4, x - 2) ] \]
-------------------------------
T := [Radical(J)|J In H];
S := IntersectionList(T);
Radical(I) = S;
TRUE
-------------------------------

See Also: PrimaryDecomposition (VI-16.15 pg.310), Radical (VI-18.1 pg.315), RadicalOfUnmixed (VI-18.2 pg.315)

VI-5.6 Error

syntax

Error(S:STRING):ERROR

Description
This function returns an error labeled with the string \( S \). To get \( S \) use “GetErrMesg” (VI-7.28 pg.223).

example

Define T(N)
  If Type(N) <> INT Then Error("Argument must be an integer.") EndIf;
  Return Mod(N,5);
EndDefine;
T(1/3);

ERROR: Argument must be an integer.
CONTEXT: Error("Argument must be an integer.")
-------------------------------
T(7);
2
-------------------------------

See Also: Catch (VI-3.4 pg.171), GetErrMesg (VI-7.28 pg.223)

VI-5.7 Eval

syntax

Eval(E:OBJECT,L:LIST):OBJECT
Description
This function substitutes the N-th element of L for the N-th indeterminate of the current ring for all N less than
or equal to the minimum of the number of indeterminates of the current ring and the number of components of
L.

Use Q[x,y];
Eval(x^2+y,[2, 3]);
7
----------------------------------
Eval(x^2+y,[2]);
y + 4
----------------------------------
F := x(x-1)(x-2)y(y-1)(y-2)/36;
P := [1/2, -2/3];
Eval(F, P);
-5/162
----------------------------------
Eval([x+y,x-y],[2,1]);
[3, 1]
----------------------------------
Eval([x+y,x-y],[x^2,y^2]);
[x^2 + y^2, x^2 - y^2]
----------------------------------
Eval([x+y,x-y],[y]);
[2y, 0]
----------------------------------

See Also: Evaluation of Polynomials (IV-9.2 pg.114), Image (VI-9.9 pg.242), Subst (VI-19.23 pg.340),
Substitutions (II-2.15 pg.33)

VI-5.8 EvalBinExp

syntax

where N and K are positive integers, and Up and Down are integers.

Description
The function “BinExp” (VI-2.5 pg.165) computes the K-binomial expansion of N, i.e., the unique expression
N = Bin(N(K),K) + Bin(N(K-1),K-1) + ... + Bin(N(I),I)
where N(K) > ... > N(I) >= 1, for some I.

This function computes the sum of the binomial coefficients appearing in the K-binomial expansion of N after
replacing each summand Bin(N(J),J) by Bin(N(J)+Up,J+Down). It is useful in generalizations of Macaulay’s
theorem characterizing Hilbert functions.

It is the same as “BinExp” (VI-2.5 pg.165) with 4 arguments except it takes a precomputed binomial
expansion as an argument rather than N and K.

BE := BinExp(13,4);
BE;
Bin(5,4) + Bin(4,3) + Bin(3,2) + Bin(1,1)
----------------------------------
EvalBinExp(BE,1,1);
16
----------------------------------
EvalHilbertFn(H: TAGGED("hp.Hilbert"), N: INT): INT

Description
This function evaluates the Hilbert function $H$ at $N$. If $H$ is the Hilbert function of a quotient $R/I$, then the value returned is the same as that returned by "Hilbert(R/I,N)" but time is saved since the Hilbert function does not need to be recalculated at each call.

Example
Use R ::= Q[w,x,y,z];
I := Ideal(z^2-xy,xz^2+w^3);
H := Hilbert(R/I);
H;
H(0) = 1
H(1) = 4
H(t) = 6t - 3 for t >= 2
EvalHilbertFn(H,1);
4
EvalHilbertFn(H,2);
9

See Also: Hilbert (VI-8.16 pg.231), HilbertFn (VI-8.18 pg.232), HilbertPoly (VI-8.19 pg.232)

Ext(I: INT, M: TAGGED(Quotient), Q: TAGGED(Quotient)): TAGGED(Quotient)
Ext(I: LIST, M: TAGGED(Quotient), Q: TAGGED(Quotient)): TAGGED($ext.ExtList)

Description
In the first form the function computes the I-th Ext module of $M$ and $N$. It returns a presentation of $\text{Ext}_I^I(R,M,N)$ as a quotient of a free module.

IMPORTANT: the only exception to the type of $M$ or $N$ (or even of the output) is when they are either a zero module or a free module. In these cases their type is indeed MOD.

It computes Ext via a presentation of the quotient of the two modules $\text{Ker} (\Phi_{i+1})$ and $\text{Im} (\Phi_i)$, where
- $\Phi_i$ is the I-th map in the free resolution of $M$
- $\Phi_{i+1}$ is the map $\text{Hom}(\Phi_{i+1}, N)$ in the dual of the free resolution.

Main differences with the previous version include:

- SHIFTS have been removed, consequently only standard homogeneous modules and quotients are supported
- as a consequence of 1), the type "Tagged("Shifted")" has been removed. Ext will just be a "Tagged("Quotient")"
- The former functions Presentation(), HomPresentation() and KerPresentation() have been removed
- The algorithm uses Res() to compute the maps needed, and not SyzOfGens anylonger, believed to cause troubles
- The function “Ext” always has THREE variables, see syntax...

In the second form the variable I is a LIST of nonnegative integers. In this case the function Ext prints all the Ext modules corresponding to the integers in I. The output is of special type “Tagged(\texttt{"ExtList"})” which is basically just the list of pairs \((J, Ext^J(M,N))\) \(J \in \text{Int}I\) in which the first element is an integer of I and the second element is the corresponding Ext module.

VERY IMPORTANT: CoCoA cannot accept the ring R as one of the inputs, so if you want to calculate the module \(Ext^I_R(M,N)\) you need to type something like

\[
\text{"Ext}(I, M, \text{Ideal}(1));"
\]

or

\[
\text{"Ext}(I, M, R^1);"
\]

or

\[
\text{"Ext}(I, M, R/\text{Ideal}(0));"
\]

NOTE: The input is pretty flexible in terms of what you can use for M and N. For example they can be zero modules or free modules. See some examples below.

```coconut
example

Use R ::= Q[x,y,z];
I := Ideal(x^5,y^3,z^2);
Ideal(0) : (I);
Ideal(0)
--- $\text{hom.Hom}(R^1/\text{Module}(I), R^1);$ -- from Hom package
Module([0])

Ext(0, R/I, R^1); --- all those things should be isomorphic
Module([0])

Ext(0..4, R/I, R/\text{Ideal}(0)); -- another way to define the ring R as a quotient
Ext^0 = Module([0])
Ext^1 = Module([0])
Ext^2 = Module([0])
Ext^3 = R^1/\text{Module([x^5], [-y^3], [z^2])}
Ext^4 = Module([0])

N := Module([x^2,y],[x+z,0]);
Ext(0..4,R/I,R^2/N);
Ext^0 = Module([0])
Ext^1 = Module([0])
Ext^2 = R^8/\text{Module([0, 0, 0, -1, 0, 0, 0], (.....
Ext^3 = R^2/\text{Module([x^5, 0], [0, x^5], [-y^3, 0], [0, -y^3],
[z^2, 0], [0, z^2], [x^2, y], [x + z, 0])
Ext^4 = Module([0])
```

As you can see the \(Ext^2\) is not presented minimally. The minimal presentation will be available in an upcoming release of CoCoA.

See Also: Res (VI-18.15 pg.322); Depth (VI-4.11 pg.186)
VI-6.1 Fact

**syntax**

\[ \text{Fact}(N:\text{INT}):\text{INT} \]

where \( N \) is a non-negative integer.

**Description**

This function returns \( N \) factorial.

**example**

\[
\begin{align*}
\text{Fact}(5); & \\
& 120 \\
\end{align*}
\]

\[
\begin{align*}
\text{Fact}(100); & \\
& 9332621544394415268169923885626670049071596826438162146859 \\
& 2963895217599993229915608941463976156518286253697920827223 \\
& 75825118521091664000000000000000000000000 \\
\end{align*}
\]

See Also: Bin (VI-2.4 pg.164)

VI-6.2 Factor

**syntax**

\[ \text{Factor}(F:\text{POLY}):\text{LIST} \]

**Description**

This function factors a polynomial in its ring of definition. Multivariate factorization is not yet supported over finite fields. (For information about the algorithm, consult “Pointers to the Literature” (II-1.5 pg.24).)

The function returns a list of the form \( \{[F_1,N_1],...,[F_r,N_r]\}\) where \( F_1^{N_1} \cdots F_r^{N_r} = F \) and the \( F_i \) are irreducible in the polynomial ring of \( F \).

**example**

\[
\begin{align*}
\text{Use } R ::= \mathbb{Q}\{x,y\}; \\
F & := x^{12} - 37x^{11} + 608x^{10} - 5852x^9 + 36642x^8 - 156786x^7 + 468752x^6 \\
& \quad - 984128x^5 + 1437157x^4 - 1422337x^3 + 905880x^2 - 333900x + 54000; \\
\text{Factor}(F); & \quad \{[x - 2, 1], [x - 4, 1], [x - 6, 1], [x - 3, 2], [x - 5, 3], [x - 1, 4]\} \\
F & = G; \\
\end{align*}
\]
TRUE

---

\[
\frac{(8x^2+16x+8)}{27}; \quad \text{-- the "content" appears as a factor of degree 0;}
\]

\[
\left[ [x + 1, 2], \left[ \frac{8}{27}, 1 \right] \right]
\]

---

\[
F := (x+y)^2*(x^2y+y^2x+3);
\]

\[
F;
\]

\[
x^4y + 3x^3y^2 + 3x^2y^3 + xy^4 + 3x^2 + 6xy + 3y^2
\]

---

\[
\text{Factor}(F); \quad \text{-- multivariate factorization}
\]

\[
\left[ [x^2y + xy^2 + 3, 1], [x + y, 2] \right]
\]

---

\[
\text{Use } \mathbb{Z}/(37)[x];
\]

\[
\text{Factor}(x^6-1);
\]

\[
\left[ [x - 1, 1], [x + 1, 1], [x + 10, 1], [x + 11, 1], [x - 11, 1], [x - 10, 1] \right]
\]

---

\[
\text{Factor}(2x^2-4); \quad \text{-- over a finite field the factors are made monic;}
\]

\[
\left[ [x^2 - 2, 1], [2, 1] \right]
\]

---

### VI-6.3 FactorMultiplicity

**syntax**

\[
\text{FactorMultiplicity(N:INT, Fac:INT):INT}
\]

**Description**

This function counts how many times a give factor divides a given integer. Obviously Fac must not be -1, 0, or 1, and N must not be zero.

**example**

\[
\text{FactorMultiplicity}(20, 2);
\]

2

---

\[
\text{FactorMultiplicity}(20, 10);
\]

1

---

\[
\text{FactorMultiplicity}(20, 7);
\]

0

---

### VI-6.4 FGLM5

**syntax**

\[
\text{FGLM5}(\text{GBOld:LIST, M:MAT):LIST}
\]

**Description**

The function “FGLM5” calls the CoCoAServer to perform a FGLM Groebner Basis conversion. The Groebner Basis contained in list GBOld will be converted into a Groebner Basis with respect to term ordering “\text{Ord(M)}”, i.e. M must be a matrix specifying a term ordering.

**example**

\[
\text{Use } \mathbb{Q}(x, y, z), \text{DegRevLex};
\]

\[
\text{GBOld} := [x^4 - 3z^3 - 4yz + 2z^2 - y + 2z - 2, yz^2 + 2yz - 2z^2 + 1, y^2 - 2yz + z^2 - z, x + y - z];
\]
```plaintext
M := LexMat(3);
GBNew := FGLM5(GBOld, M);
Use Q[x, y, z], Ord(M);
-- New basis (Lex)
BringIn(GBNew);
See Also: GBasis5, and more (VI-7.18 pg.217)

VI-6.5 Fields

Description
This function returns a list of all of the fields of the record P.

example
P := Record[Name = "David", Number = 3728852, Data = ["X","Y"]];
Fields(P);
["Data", "Name", "Number"]

P.Data;
["X", "Y"]

See Also: Introduction to Records (IV-5.1 pg.97), Record (VI-18.9 pg.319)

VI-6.6 First

Description
In the first form, the function is the same as the function “Head” (VI-8.13 pg.229); it returns the first element of the list L. In the second form, it returns the list of the first N elements of L.

example
L := [1,2,3,4,5];
First(L);
1

First(L,3);
[1, 2, 3]

See Also: Head (VI-8.13 pg.229), Last (VI-12.1 pg.263)

VI-6.7 FirstNonZero

```
**Description**

This function returns the first non-zero entry of V. If it is handed a zero vector then an error is signalled.

```plaintext
Use R ::= Q[x,y,z];
V := Vector(0,0,x^2+yz,0,z^2);
FirstNonZero(V);
x^2 + yz
```

**See Also:** NonZero (VI-14.9 pg.291), FirstNonZeroPos (VI-6.8 pg.204)

---

**VI-6.8 FirstNonZeroPos**

**syntax**

FirstNonZeroPos(V:VECTOR):POLY

**Description**

This function returns the index of the first non-zero entry of V. If it is handed a zero vector then an error is signalled.

```plaintext
Use R ::= Q[x,y,z];
V := Vector(0,0,x^2+yz,0,z^2);
FirstNonZero(V);
x^2 + yz

FirstNonZeroPos(V);
3

V[FirstNonZeroPos(V)];
x^2 + yz

```

**See Also:** NonZero (VI-14.9 pg.291), FirstNonZero (VI-6.7 pg.203)

---

**VI-6.9 Flatten**

**syntax**

Flatten(L:LIST):LIST
Flatten(L:LIST,N:INT):LIST

**Description**

Components of lists may be lists themselves, i.e., lists may be nested. With one argument this function returns the list obtained from the list L by removing all nesting, bringing all elements "to the top level". With the optional second argument, N, nesting is removed down N levels. Thus, the elements of M := Flatten(L,1) are formed as follows: go through the elements of L one at a time; if an elements is not a list, add it to M; if an element is a list, add all of its elements to M. Recursively, Flatten(L,N) = Flatten(Flatten(L,N-1),1). For N large, depending on L, Flatten(L,N) gives the same result as Flatten(L).

```plaintext
Flatten([1,"a","b"],[2,3,4],"c","d"],[5,6]);
[1, "a", "b", 2, 3, 4, "c", "d", 5, 6]

L := [1,2, [3,4], [5, [6,7,[8,9]]]]; Flatten(L,1);
[1, 2, 3, 4, 5, [6, 7, [8, 9]]]
```
VI-6.10  FloatApprox

**syntax**

FloatApprox(X:RAT, RelErr:RAT):RAT

**Description**

This function computes an approximation of the form $M \times 10^E$ to a rational number $X$ and to within a maximum specified relative error. $\text{RelErr}$ says indirectly how many decimal digits to include in the mantissa. Compare with “MantissaAndExponent” (VI-13.4 pg.275).

**example**

FloatApprox(1/3, 10^-(-2));
333/1000

FloatingApprox(1000000/3, 10^-(-2));
333000

FloatingApprox(1/3, 10^-(-9));
3333333333/10000000000

**See Also:** DecimalStr (VI-4.3 pg.181), FloatStr (VI-6.11 pg.205), MantissaAndExponent (VI-13.4 pg.275)

VI-6.11  FloatStr

**syntax**

FloatStr(X:RAT):STRING
FloatStr(X:RAT, Prec:INT):STRING

**Description**

These two functions convert a rational number $X$ into a (decimal) floating point string. The optional second argument $\text{Prec}$ says how many decimal digits to include in the mantissa; the default value is 10. Note that an exponent is always included; the only exception being the number zero which is converted to the string “0”.

**example**

FloatStr(2/3);  -- last printed digit is rounded
6.666666667*10^-(-1)

FloatingStr(7^-510);  -- no arbitrary limit on exponent range
1.0000000938*10^-431

FloatingStr(1/81, 50);  -- precision of mantissa specified by user
1.2345679012345679012345679012345679012346*10^-(-2)

FloatingStr(1/2);  -- trailing zeroes are not suppressed
5.000000000*10^(-1)

See Also: DecimalStr (VI-4.3 pg.181), FloatApprox (VI-6.10 pg.205)

VI-6.12 For

For I := N_1 To N_2 Do C EndFor
For I := N_1 To N_2 Step D Do C EndFor

where I is a dummy variable, N_1, N_2, and D are integer expressions,
and C is a sequence of commands.

Description

In the first form, the variable I is assigned the values “N_1, N_1+1, ..., N_2” in succession. After each
assignment, the command sequence C is executed. The second form is the same, except that I is assigned
the values “N_1, N_1+D, N_1+2D”, etc. until the greatest value less than or equal to “N_2” is reached. If
“N_2 < N_1”, then C is not executed.

Note: Large values for “N_1, N_2”, or D are not permitted; typically they should lie in the range about
−10^9 to +10^9.

Note: Don’t forget the capitalization in the word “To”.

example

For N := 1 To 5 Do Print(2^N, " ") EndFor;
2 4 8 16 32

For N := 1 To 20 Step 3 Do Print(N, " ") EndFor;
1 4 7 10 13 16 19

For N := 10 To 1 Step -2 Do Print(N, " ") EndFor;
10 8 6 4 2

For N := 5 To 3 Do Print(N, " ") EndFor; -- no output

Loops can be nested.

example

Define Sort(Var(L))
For I := 1 To Len(L)-1 Do
M := I;
For J := I+1 To Len(L) Do
If L[J] < L[M] Then M := J EndIf;
EndFor;
If M <> I Then
C := L[M];
L[M] := L[I];
L[I] := C
EndIf
EndFor
EndDefine;

M := [5,3,1,4,2];
Sort(M);
M;
[i, 2, 3, 4, 5]

--------------------
(Note that “\texttt{Var(L)}” is used so that the function can change the value of the variable referenced by \( L \). See “\texttt{Var}”.)

\textbf{See Also:} Foreach (VI-6.13 pg.207), Repeat (VI-18.14 pg.321), While (VI-23.3 pg.358)

\section*{VI-6.13 Foreach}

\texttt{Foreach X In L Do C EndForeach}

where \( X \) is a dummy variable, \( L \) is a list, and \( C \) is a sequence of commands.

\textbf{Description}

The dummy variable \( X \) is assigned the value of each component of \( L \) in turn. After each assignment the command sequence \( C \) is executed. Note: don’t forget to capitalize “In”.

\texttt{Foreach N In 1..10 Do -- Note: 1..10 gives the list \([1,...,10]\).}
\texttt{Print(N^2, " ");}
\texttt{EndForeach;}
\texttt{1 4 9 16 25 36 49 64 81 100}

\begin{verbatim}
Use R ::= Q[x,y,z];
F := x^2y + 3y^2z - z^3;
J := [Der(F,X) | X In Indets()]; -- the Jacobian for F
J;
[2xy, x^2 + 6yz, 3y^2 - 3z^2]
\end{verbatim}

\texttt{Foreach X In J Do -- square each component of the Jacobian}
\texttt{PrintLn(X^2);}
\texttt{EndForeach;}
\texttt{4x^2y^2}
\texttt{x^4 + 12x^2yz + 36y^2z^2}
\texttt{9y^4 - 18y^2z^2 + 9z^4}

\textbf{See Also:} For (VI-6.12 pg.206), Repeat (VI-18.14 pg.321), While (VI-23.3 pg.358)

\section*{VI-6.14 Format}

\texttt{Format(E:OBJECT,N:INT):STRING}

\textbf{Description}

Like \texttt{Sprint}, this function converts the value of \( E \) into a string. If the string has fewer than \( N \) characters, then spaces are added to the front to make the length \( N \).

\texttt{L := [1,2,3];}
\texttt{M := Format(L,20);}
\texttt{M;}
\texttt{[1, 2, 3]}

\texttt{Type(L);}
\texttt{LIST}

\texttt{Type(M);}

STRING
-----------------------------------
Format(L,2); -- "Format" does not truncate
[1, 2, 3]
-----------------------------------

See Also: IO.SprintTrunc (VI-9.22 pg.249), Latex (VI-12.2 pg.263), Sprint (VI-19.11 pg.338)

VI-6.15 Fraction

Syntax
Fraction(E:OBJECT,F:OBJECT)

Description
This function returns E/F provided the quotient is defined (see “Algebraic Operators” (III-3.2 pg.51)).

Example
Use R ::= Q[x,y];
Fraction(2,3);
2/3
-----------------------------------
Fraction(2,4);
1/2
-----------------------------------
Fraction(x,x+y);
x/(x + y)
-----------------------------------
Fraction(5%11,6%11);
10 % 11
-----------------------------------

See Also: Algebraic Operators (III-3.2 pg.51)

VI-6.16 Function

Syntax
Function(S:STRING):FUNCTION
Function(P:STRING,S:STRING):FUNCTION

Description
This function returns the function—user-defined or built in—identified by the string S. In the second form, one first provides the name of the package, then the name of the function. (An alternative is the syntax “Function(P.S)”.

One may use “Function” to assign a function to a variable which can then be executed via the function “Call” (VI-3.1 pg.169):

Example
F := Function("Deg");
F;
Deg(...)-----------------------------------
Type(F);
FUNCTION-----------------------------------
Call(F,x+y^2);
2
See Also: Call (VI-3.1 pg.169), Functions (VI-6.17 pg.209)

VI-6.17 Functions

Syntax

Functions(S:STRING):LIST of FUNCTION

Description

This function returns a list of functions defined in the package identified by S. (The function “Packages” (VI-16.1 pg.305) lists the packages currently loaded into memory.)

Example

L := It;
Describe L[6];
Define BinExp(...)
   If Shape(ARGV) = [INT, INT] Then
      Return($binrepr.Aux_BinExp(ARGV[1],ARGV[2])
   ElsIf Shape(ARGV) = [INT, INT, INT, INT] Then
      Return(EvalBinExp($binrepr.Aux_BinExp(ARGV[1],ARGV[2]),ARGV[3],ARGV[4])
   Else
      Error(ERR.BAD_PARAMS,"(BinExp arguments must be 2 or 4 INT)"
   EndIf;
EndDefine;
Chapter VI-7

G

VI-7.1 GB.Complete

**syntax**

```
GB.Complete(M:IDEAL or MODULE):NULL
```

**Description**

This function completes a calculation started in the Interactive Groebner Framework. For explanations and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).

**See Also:** The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.2 GB.GetBettiMatrix

**syntax**

```
GB.GetBettiMatrix(M:IDEAL or MODULE):TAGGED("$io.Matrix")
```

**Description**

This function, if used after executing “Res(M)”, prints the Betti matrix for M. Within the Interactive Groebner Framework, in which resolutions may be computed one step at a time, the function returns the Betti matrix for the part of the resolution computed so far. See “GB.GetRes” for an example.

**example**

Use R ::= Q[t,x,y,z];
I := Ideal(x^2-yt,xy-zt,xy);
Res(I);
0 --> \( R^2(-5) \) --> \( R^4(-4) \) --> \( R^3(-2) \)
-------------------------
GB.GetBettiMatrix(I);
-------------

0 0 0
0 0 3
0 0 0
0 4 0
2 0 0
-------------

**See Also:** GB.GetRes (VI-7.5 pg.213), GB.GetResLen (VI-7.6 pg.214), Res (VI-18.15 pg.322), The Interactive Groebner Framework (IV-13.3 pg.129), BettiDiagram (VI-2.2 pg.163), BettiMatrix (VI-2.3 pg.164)
VI-7.3 GB.GetNthSyz

**syntax**

```
GB.GetNthSyz(M::IDEAL or MODULE,N::INT):MODULE
```

**Description**

This function, if used after executing “Res(M)”, returns the Nth syzygy module for M. Within the Interactive Groebner Framework, in which resolutions may be computed one step at a time, the function returns the part of the Nth syzygy module computed so far. In contrast, the function “Syz” (VI-19.27 pg.342) always determines the complete syzygy module even from within the Interactive Groebner Framework.

**example**

```
Use R ::= Q[t,x,y,z];
I := Ideal(x^2-yt,xy-zt,xy);
GB.Start_Res(I);
GB.Step(I);
GB.GetNthSyz(I,1); GB.GetNthSyz(I,2);
Module([0])

Module([0])

GB.Step(I);
GB.GetNthSyz(I,1); GB.GetNthSyz(I,2);
Module([0, 0])

Module([0])

GB.Steps(I,5);
GB.GetNthSyz(I,1); GB.GetNthSyz(I,2);
Module([-xz, -y^2, yz])

Module([0])

GB.Complete(I);
GB.GetNthSyz(I,1); GB.GetNthSyz(I,2);
Module([-xz, -y^2, yz], [tz, xy, 0], [0, -x^2 + ty, -tz], [-x^2 + ty, 0, xy])

Module([-x, -y, 0, z], [-t, -x, -y, 0])

```

See Also: GB.GetNthSyzShifts (VI-7.4 pg.212), GB.GetRes (VI-7.5 pg.213), Res (VI-18.15 pg.322), Syz (VI-19.27 pg.342), The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.4 GB.GetNthSyzShifts

**syntax**

```
GB.GetNthSyzShifts(M::IDEAL or MODULE,N::INT):TAGGED("shifts")
```

**Description**

This function, if used after executing “Res(M)”, returns the shifts for the Nth syzygy module for M. Within the Interactive Groebner Framework, in which resolutions may be computed one step at a time, the function returns shifts of the part of the Nth syzygy module computed so far.

**example**

```
Use R ::= Q[t,x,y,z];
I := Ideal(x^2-yt,xy-zt,xy);
GB.Start_Res(I);
```
GB.Steps(I,6);
GB.GetNthSyzShifts(I,2);
Shifts([x^2yz])

GB.Complete(I);
GB.GetNthSyzShifts(I,2);
Shifts([x^2yz, txyz, tx^2z, x^3y])

J := Ideal(t,x)^3;
Res(J);
0 --> R^3(-4) --> R^4(-3)

GB.GetNthSyzShifts(J,1);
Shifts([x^3, tx^2, t^2x, t^3])

GB.GetNthSyzShifts(J,2);
Shifts([tx^3, t^2x^2, t^3x])

SS := It;
SS[1];
tx^3

See Also: GB.GetNthSyz (VI-7.3 pg.212), GB.GetRes (VI-7.5 pg.213), Res (VI-18.15 pg.322), Shifts (IV-12.3 pg.124), The Interactive Groebner Framework (IV-13.3 pg.129)

**VI-7.5 GB.GetRes**

**Syntax**

```
```

**Description**

This function returns the part of the resolution of M computed so far. It does not compute the resolution of M as does "Res" (VI-18.15 pg.322), rather, "GB.GetRes" is intended primarily to be used within the Interactive Groebner Framework. Thus, for example, "GB.GetRes" may be used to examine the resolution as it is computed, one step at a time.

**Example**

```
Use R ::= Q[t,x,y,z];
I := Ideal(x^2-yt,xy-zt,xy);
GB.Start_Res(I); -- start Interactive Groebner Framework
GB.Step(I); -- take one step in calculation of resolution
GB.GetRes(I); -- the resolution so far
0 --> R(-2)

GB.Step(I); -- one more step
GB.GetResLen(I); -- the computed resolution still has length 1
1

GB.GetBettiMatrix(I); -- the Betti Matrix so far

0
2

```
GB.GetRes(I);  
0 --> R\(^{-2}(-2)\)

GB.Steps(I,5); -- five more steps
GB.GetRes(I);
0 --> R(-4) --> R\(^{-3}(-2)\)

GB.Complete(I); -- complete the calculation
GB.GetResLen(I);
3

GB.GetBettiMatrix(I);

0 0 0
0 0 3
0 0 0
0 4 0
2 0 0

GB.GetRes(I);
0 --> R\(^{-2}(-5)\) --> R\(^{-4}(-4)\) --> R\(^{-3}(-2)\)

---

See Also: GB.GetBettiMatrix (VI-7.2 pg.211), GB.GetResLen (VI-7.6 pg.214), Res (VI-18.15 pg.322), The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.6  GB.GetResLen

Syntax

GB.GetResLen(M:IDEAL or MODULE):INT

Description

This function, if used after executing \("\text{Res}(M)\)\), prints the length of the resolution for M. Within the Interactive Groebner Framework, in which resolutions may be computed one step at a time, the function returns the length of the part of the resolution computed so far. See “GB.GetRes” for an example.

Example

Use R ::= Q[t,x,y,z];
I := Ideal(x^2-yt,xy-zt,xy);
Res(I);
0 --> R\(^{-2}(-5)\) --> R\(^{-4}(-4)\) --> R\(^{-3}(-2)\)

GB.GetResLen(I);
3

---

See Also: GB.GetBettiMatrix (VI-7.2 pg.211), GB.GetRes (VI-7.5 pg.213), Res (VI-18.15 pg.322), The Interactive Groebner Framework (IV-13.3 pg.129)
VI-7.7  GB.ResReport

**syntax**

\[
\text{GB.ResReport}(M: \text{IDEAL or MODULE}): \text{NULL}
\]

**Description**

This function reports statistics about the current status of a resolution computation begun in the Interactive Groebner Framework. For explanations and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).

**See Also:** GB.Stats (VI-7.14 pg.216), The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.8  GB.Start_GBasis

**syntax**

\[
\text{GB.Start_GBasis}(M: \text{IDEAL or MODULE}): \text{NULL}
\]

**Description**

This command starts the Interactive Groebner Framework for calculating a Groebner basis for M. For explanations and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).

**See Also:** The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.9  GB.Start_MinGens

**syntax**

\[
\text{GB.Start_MinGens}(M: \text{IDEAL or MODULE}): \text{NULL}
\]

**Description**

This command starts the Interactive Groebner Framework for calculating minimal generators for M. For explanations and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).

**See Also:** The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.10  GB.Start_MinSyzMinGens

**syntax**

\[
\text{GB.Start_MinSyzMinGens}: \text{COMMAND ELIMINATED}
\]

**Description**

The “\text{GB.Start_MinSyzMinGens}” command has been removed.

**See Also:** The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.11  GB.Start_Res

**syntax**

\[
\text{GB.Start_Res}(M: \text{IDEAL or MODULE}): \text{NULL}
\]

**Description**

This command starts the Interactive Groebner Framework for calculating a resolution for M. For explanations and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).

**See Also:** The Interactive Groebner Framework (IV-13.3 pg.129)
VI-7.12 GB.Start_Syz

**Syntax**

GB.Start_Syz(M: IDEAL or MODULE): NULL

**Description**

This command starts the Interactive Groebner Framework for calculating syzygies for M. For explanations and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).

**See Also:** The Interactive Groebner Framework (IV-13.3 pg.129)

---

VI-7.13 GB.Start_SyzMinGens

**Syntax**

GB.Start_SyzMinGens: COMMAND ELIMINATED

**Description**

The “GB.Start_SyzMinGens” command has been removed.

**See Also:** The Interactive Groebner Framework (IV-13.3 pg.129)

---

VI-7.14 GB.Stats

**Syntax**

GB.Stats(M: IDEAL or MODULE): NULL

**Description**

This function displays information about the current status of a calculation started in the Interactive Groebner Framework. For explanations and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).

**See Also:** GB.ResReport (VI-7.7 pg.215), The Interactive Groebner Framework (IV-13.3 pg.129)

---

VI-7.15 GB.Step

**Syntax**

GB.Step(M: IDEAL or MODULE): NULL

**Description**

This function performs one step in a calculation started in the Interactive Groebner Framework. For explanations and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).

**See Also:** The Interactive Groebner Framework (IV-13.3 pg.129), GB.Steps (VI-7.16 pg.216)

---

VI-7.16 GB.Steps

**Syntax**

GB.Steps(M: IDEAL or MODULE, N: INT): NULL

**Description**

This function performs N steps in a calculation started in the Interactive Groebner Framework. For explanations and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).

**See Also:** The Interactive Groebner Framework (IV-13.3 pg.129), GB.Steps (VI-7.16 pg.216)
VI-7.17 GBasis

**syntax**

GBasis(M: IDEAL, MODULE, or TAGGED("Quotient")): LIST

**Description**

If M is an ideal or module, this function returns a list whose components form a Groebner basis for M with respect to the term-ordering of the polynomial ring of M. If M is a quotient ring by an ideal I or of a free module by a submodule N, then the Groebner basis for M is defined to be that of I or N, respectively.

If M is a variable, then the result is stored in M for later use. It can be retrieved as M.GBasis and can also be seen using the command “Describe” (VI-4.13 pg.188).

For a reduced Groebner basis, use the command “ReducedGBasis” (VI-18.10 pg.319).

The coefficient ring must be a field.

**example**

Use R ::= Q[t,x,y];
I := Ideal(t^3-x,t^4-y);
Describe I;
Record[Type = IDEAL, Value = Record[Gens = [t^3 - x, t^4 - y]]]
-------------------------------
GBasis(I);
[t^3 - x, -tx + y, t^2y - x^2, x^3 - ty^-2]
-------------------------------
Describe(I); -- the Groebner basis has been stored in I
Record[Type = IDEAL, Value = Record[Gens = [t^3 - x, t^4 - y], GBasis = [t^3 - x, -tx + y, t^2y - x^2, x^3 - ty^-2]]]
-------------------------------
I.GBasis;
[t^3 - x, -tx + y, t^2y - x^2, x^3 - ty^-2]
-------------------------------

For fine control and monitoring of Groebner basis calculations, see “The Interactive Groebner Framework” (IV-13.3 pg.129) and “Introduction to Panels” (V-1.1 pg.139).

See Also: Introduction to Groebner Bases in CoCoA (IV-13.1 pg.127), GBasisTimeout (VI-7.19 pg.219), GBasis5, and more (VI-7.18 pg.217)

VI-7.18 GBasis5, and more

**syntax**

- operation-5(same as -operation-)
- operation-5x(same as -operation-, Info5: RECORD)
GBasis5(M: IDEAL, MODULE): LIST
GBasis5x(M: IDEAL, MODULE, Info5: RECORD): LIST

**Description**


All the “5” functions behave like the corresponding function in CoCoA-4, i.e. should give the same output!

All the “5x” functions allow extra options to be set, such as (twin)floating point computations, parameters, shifts, different orderings, gradings...

NB if you set incompatible options with the “CurrentRing” (e.g. a different grading or ordering) the resulting GBasis will be incompatible with “CurrentRing”... of course!

**example**

---[ parameters ]---------------------------------------------------------------
M := $cocoa5.AddParamOrdMat(DegRevLexMat(3), 1); // compatible Term Ordering
Use Z/(32003)[a, x,y,z], Ord(M);
I := Ideal((a-1)x+(a^2+a)y,(a+1)x + y);
GBasis5(I);
GBasis5x(I, Record(NumParams=1));

----[ Twin floats ]-------------------------------------------------------------
Use Q[x[0..5]]; 
L := [Randomized(DensePoly(4)) | I In 1..2];
Time LT(Ideal(L));
LT5x(Ideal(L), Record(FloatPrecision=128));

----[ Elimination ]-----------------
Use Q[x,y,z,w[3..5]], Weights([7, 4, 3, 1, 1, 1]);

I := Ideal( 
);

Time E := Elim([w[3],w[4]], I);
E5 := Elim5([w[3],w[4]], I); // usually much much faster than CoCoA4
// input MUST be homogeneous
E = E5;

----[ Intersection ]-------------------------------
Use Q[x,y,z], Weights([1,2,1]);
I := Ideal(xy, z^2);
J := Ideal(yz, x-z);
Intersection5(I, J);
// with parameters
M := CoCoA5.AddParamOrdMat(DegRevLexMat(3), 2); -- 2 parameters
Use Z/(32003)[a,b, x,y,z], Ord(M);
II := Ideal(x-y);
I := (a-b+1) * x * II;
J := (a+1) * y * II;
Intersection5x(I,J, Record(NumParams=2)); -- 2 parameters

----[ Syzygies ]-------------------------------------------------------------
Use Z/(101)[x,y,z], Weights([1,2,4]);
L := [Vector(x^-2,x^-2),Vector(xy,xy)];
S5 := SyzOfGens5(L);

----[ Modules ]-------------------------------------------------------------
Use Q[x,y,z], PosTo;
M := Module([x,z], [z,y]);
ReducedGBasis(M);
ReducedGBasis5(M);
ReducedGBasis5x(M, Record(IsPosTo=False));

Use Q[x,y,z], Weights([1,2,4]);
M := Module([x^-2-y,1],[x^-4-z,y^-2]);
Info5 := Record();
Info5.ModuleShifts := Mat([[0,2]]);
GBasis5x(M, Info5);

// Grading given via OrdMat and Grading Dim
OrdMat := Mat([[1,1,1],[2,1,1],[1,1,0]]); // Ring Grading (first 2 Rows)  
// Plus order (last row)
Use Z/(101)[x,y,z], Ord(OrdMat), ToPos;
M := Module([y-x,0,0], [x,0,z], [0,y^2-z^2,0]);
X := ReducedGBasis5(Module(Gens(M)));  
// GBasis on a module with shifts
Info5 := Record();
Info5.OrdMat := OrdMat;
Info5.GradDim := 2;
Info5.ModuleShifts := Mat([[3,1,2],[2,2,5]]);  
// GrDim rows!!
ReducedGBasis5x(M, Info5);

See Also: Introduction to Groebner Bases in CoCoA (IV-13.1 pg.127), OpenSocket (VI-15.6 pg.301)

VI-7.19 GBasisTimeout

GBasisTimeout(M:IDEAL, MODULE, or TAGGED("Quotient"), SECONDS:INT):LIST

Description
Same as “GBasis” (VI-7.17 pg.217), but it will stop and return an error if the computation is not completed.

example

Use R ::= Q[t,x,y,z];
I := Ideal(t^3-x,t^4-y,t^5-z);
J := I^5; Time G := GBasisTimeout(J, 1);
ERROR: Time expired: use $gb.Complete to complete the computation
CONTEXT: Error(GBasisTimeout_Err)
---------------------------------------------
J := I^5; Time G := GBasisTimeout(J, 10);
Cpu time = 1.96, User time = 2
---------------------------------------------

See Also: Introduction to Groebner Bases in CoCoA (IV-13.1 pg.127), GBasis (VI-7.17 pg.217), GBasis5, and more (VI-7.18 pg.217)

VI-7.20 GBM

GBM(L:LIST):IDEAL

Description
This function computes the intersection of ideals corresponding to zero-dimensional schemes: GBM is for affine schemes, and “HGBM” (VI-8.15 pg.230) for projective schemes. The list L must be a list of ideals. The function “IntersectionList” (VI-9.20 pg.249) should be used for computing the intersection of a collection of general ideals.

The name GBM comes from the name of the algorithm used: Generalized Buchberger-Moeller.

example

Use Q[x,y,z];
I1:=IdealOfPoints([[1,2,1], [0,1,0]]);  // a simple affine scheme
I2:=IdealOfPoints([[1,1,1], [2,0,1]])^2;  // another affine scheme
GBM([I1,I2]);  // intersect the ideals
Ideal(xz + yz - z^2 - x - y + 1,
\[ z^3 - 2z^2 + z, \]
\[ yz^2 - 2yz - z^2 + y + 2z - 1, \]
\[ y^2z - y^2 - yz + y, \]
\[ xy^2 + y^3 - 2x^2 - 5xy - 5y^2 + 2z^2 + 8x + 10y - 4z - 6, \]
\[ x^2y - y^3 + 2x^2 + 2xy + 4y^2 - 3z^2 - 8x - 8y + 6z + 5, \]
\[ x^3 + y^3 - 7x^2 - 5xy - 4y^2 + 5z^2 + 16x + 10y - 10z - 7, \]
\[ y^4 - 2y^3 - 4x^2 - 8xy - 3y^2 + 4z^2 + 16x + 16y - 8z - 12 \]

---

**See Also:** Finite Point Sets: Buchberger-Moeller (II-2.24 pg.40), IdealAndSeparatorsOfPoints (VI-9.2 pg.237), IdealAndSeparatorsOfProjectivePoints (VI-9.3 pg.238), IdealOfPoints (VI-9.4 pg.239), IdealOfProjectivePoints (VI-9.5 pg.240), HGBM (VI-8.15 pg.230)

### VI-7.21 GCD

**Syntax**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCD(F_1:INT,...,F_n:INT):INT</td>
<td>This function returns the greatest common divisor of “F_1,...,F_n” or of the elements in the list L. For the calculation of the GCDs and LCMs of polynomials, the coefficient ring must be a field.</td>
</tr>
<tr>
<td>GCD(L:LIST of INT):INT</td>
<td></td>
</tr>
<tr>
<td>GCD(F_1:POLY,...,F_n:POLY):POLY</td>
<td></td>
</tr>
<tr>
<td>GCD (L:LIST of POLY):POLY</td>
<td></td>
</tr>
</tbody>
</table>

**Description**

This function returns the greatest common divisor of “F_1,...,F_n” or of the elements in the list L. For the calculation of the GCDs and LCMs of polynomials, the coefficient ring must be a field.

**Example**

Use \( R ::= \mathbb{Q}[x,y] \);

\[
F := x^2-y^2; \\
G := (x+y)^3; \\
\text{GCD}(F,G); \]

\( x + y \)

---

**See Also:** Div (VI-4.21 pg.192), Mod (VI-13.17 pg.281), LCM (VI-12.4 pg.264)

### VI-7.22 GCDFreeBasis

**Syntax**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCDFreeBasis(L:LIST of INT):LIST of INT</td>
<td>This function returns a GCD free basis of a set of integers; you can think of this as the set of all numbers (except 1) obtainable by performing GCD and exact division operations. Given a set ( N = {N_1,...,N_k} ) we seek a basis ( G = {G_1,...,G_s} ) such that each ( N_i ) is a product of powers of the ( G_j ), and the ( G_j ) are pairwise coprime; the set ( G ) is called a GCD free basis for ( N ). In general the set ( G ) is not uniquely defined.</td>
</tr>
</tbody>
</table>

**Description**

This function returns a GCD free basis of a set of integers; you can think of this as the set of all numbers (except 1) obtainable by performing GCD and exact division operations. Given a set \( N = \{N_1,...,N_k\} \) we seek a basis \( G = \{G_1,...,G_s\} \) such that each \( N_i \) is a product of powers of the \( G_j \), and the \( G_j \) are pairwise coprime; the set \( G \) is called a GCD free basis for \( N \). In general the set \( G \) is not uniquely defined.
VI-7.23. GenericPoints

**Syntax**

GenericPoints(NumPoints: INT): LIST
GenericPoints(NumPoints: INT, RandomRange: INT): LIST

**Description**

"GenericPoints" returns a list of NumPoints generic projective points with integer coordinates; it is not guaranteed that these points are distinct. RandomRange specifies the largest value any coordinate may take. If the second argument is omitted, the largest value possible is 100 (or P-1 where P is the characteristic of the coefficient ring).

**Example**

```
Use R ::= Q[x,y];
GenericPoints(7);
[[1, 0], [0, 1], [1, 1], [12, 59], [6, 63], [12, 80], [17, 63]]
```

**See Also:** GCD (VI-7.21 pg.220)

VI-7.24. GenRepr

**Syntax**

GenRepr(X: POLY, I: IDEAL): LIST of POLY
GenRepr(X: VECTOR, I: MODULE): LIST of POLY

**Description**

This function returns a list giving a representation of X in terms of generators for I. Let the generators for I be "\([G_1, \ldots, G_t]\)". If X is in I, then "GenRepr" will return a list "\([F_1, \ldots, F_t]\)" such that

\[
X = F_1*G_1 + \ldots + F_t*G_t.
\]

If X is not in I, then "GenRepr" returns the empty list, [].

**Example**

```
Use R ::= Q[x,y];
I := Ideal(x+y^2,x^2-xy);
GenRepr(x^3-x^2y-y^3-xy,I);
[-y, x]
```
\[ x^3 - x^2y - y^3 - xy \]

---

```
GenRepr(x+y,I);
[]

xy IsIn I; -- the empty list was returned above since x+y is not in I
FALSE

V1:= Vector(x,y,y^2); V2:= Vector(x-y,0,x^2);
X := x^2 V1 - y^2 V2;
M := Module(V1,V2);
GenRepr(X,M);
[x^2, -y^2]

```

See Also: DivAlg (VI-4.22 pg.192), IsIn (VI-9.29 pg.252), NF (VI-14.7 pg.290)

### VI-7.25 Gens

**syntax**

```
Gens(I: IDEAL): LIST
Gens(M: MODULE): LIST
```

**Description**

This function returns a list of polynomials which generate the ideal I or the module M. The list is not necessarily minimal. Note that I.Gens and M.Gens will give the same lists of generators. The advantage of “Gens” is that its argument can be any expression evaluating to an ideal or module.

**example**

```
Use R ::= Q[x,y];
I := Ideal(y^2-x^3,xy);
Gens(I);
[-x^3 + y^2, xy]

I.Gens;
[-x^3 + y^2, xy]

Gens(I^2);
[x^6 - 2x^3y^2 + y^4, -x^4y + xy^3, x^2y^2]

```

See Also: Minimalize (VI-13.13 pg.280), Minimalized (VI-13.14 pg.280)

### VI-7.26 Get

**syntax**

```
Get(D: DEVICE, N: INT): LIST of INT
```

**Description**

This function reads N characters from D and returns the list of their ascii codes.

**example**

```
D := OpenFile("io.cpkg"); -- open the file "io.cpkg"
Get(D,10); -- get the first 10 characters
[45, 45, 32, 105, 111, 100, 101, 118, 46, 112]

```
The instruction “Get(DEV.STDIN,3)”, for instance, will read 3 characters typed in by the user. Clever use of this function can be used to prompt a user for input to a function, although it is usually easier for functions to take input directly as arguments. NOTE: this function does not work properly under the GUI Interface.

See Also: Introduction to IO (III-7.1 pg.61), OpenIFile (VI-15.1 pg.299), OpenOFile (VI-15.4 pg.301), OpenIString (VI-15.2 pg.299), OpenOString (VI-15.5 pg.301)

### VI-7.27 GetEnv

**Syntax**

GetEnv(S:STRING):STRING

**Description**

This function returns the value of system shell variables

**Example**

```plaintext
GetEnv("HOME");
/Users/bigatti

GetEnv("COCOARC");
/Users/bigatti/.cocoarc

GetEnv("COCOA_PACKAGES");
/Applications/CoCoA-4.7/packages
```

### VI-7.28 GetErrMesg

**Syntax**

GetErrMesg(E:ERROR):STRING

**Description**

This function returns the error message associated with an error.

**Example**

```plaintext
Str := GetErrMesg(1/0);
PrintLn(Str);
Division by zero
```

See Also: Catch (VI-3.4 pg.171), Error (VI-5.6 pg.197)

### VI-7.29 Gin, Gin5

**Syntax**

Gin(I: IDEAL): IDEAL  
Gin(I: IDEAL, Range: INT): IDEAL  
Gin5(I: IDEAL): IDEAL  
Gin5(I: IDEAL, Range: INT): IDEAL
### Description

These functions return the [probabilistic] gin (generic initial ideal) of the ideal $I$. It is obtained by computing the leading term ideal of $g(I)$, where $g$ is a random change of coordinates.

While “Gin” uses integer coefficients in $[-\text{Range}, \text{Range}]$, with default value $[-100, 100]$ (repeated until 4 consecutive random changes of coordinates give the same result), the function “Gin5” uses the special TwinFloat implementation in “CoCoAServer” (IV-14 pg.135) to allow a much wider range of coefficients (and then performs the computation only twice). The latter is faster, but needs you to start the server!

```plaintext
Use R ::= Q[x,y,z], DegRevLex;
Gin(Ideal(y^2-xz, x^2z-yz^2));
Ideal(x^2, xy^2, y^4)
--
Use R ::= Q[x,y,z], Lex;
Gin(Ideal(y^2-xz, x^2z-yz^2), 10); -- coeffs in [-10, 10]
Ideal(x^2, xy^2, y^6)
--
Use R ::= Q[x,y,z], DegRevLex; -- default range [10000, 10000]
Gin5(Ideal(y^2-xz, x^2z-yz^2));
Ideal(x^2, xy^2, y^4)
--
Use R ::= Q[x,y,z], Lex;
Gin5(Ideal(y^2-xz, x^2z-yz^2), 2); -- coeffs in [-2,2], dangerously small:
 -- => answer might be wrong
```

### VI-7.30 GlobalMemory

#### syntax

GlobalMemory():TAGGED("Memory")

#### Description

This function prints the contents of the global memory which are not bound to rings: variables prefixed by “MEMORY” but not by “MEMORY.ENV”. Untagging the value returned by “GlobalMemory” gives a list of strings which are identifiers for the global variables. The command “Fields(MEMORY)” gives the same set of strings.

For more information about memory in CoCoA, see the chapter entitled “Memory Management” (III-8 pg.67).

```plaintext
Use R ::= Q[x,y,z];
A := 3;
ENV.R.B := 7;
MEMORY.C := 6;
GlobalMemory();
["C", "DEV", "ENV", "ERR", "PKG"]
--
MEMORY.ENV; -- the record holding the rings defined during the
 -- CoCoA session
Record[Q = Q, Qt = Q[t], R = Q[x,y,z], Z = Z]
--
Memory(); -- the working memory
["A", "It"]
--
Memory(R); -- the global variables bound to the ring R
["B"]
--
```

### See Also:
Memory (VI-13.11 pg.279), Memory Management (III-8 pg.67)
Chapter VI-8

H

VI-8.1 H.Browse

syntax

H.Browse():NULL;
H.Browse(N:INT):NULL

Description

This function browses the online help system. Without an argument, it displays the next section of the online manual or the next command. With integer argument N, it skips ahead (or skips back, if N is negative) N sections of the manual or N commands.

See Also: H.Commands (VI-8.2 pg.225), Man (VI-13.3 pg.273)

VI-8.2 H.Commands

syntax

H.Commands():NULL;
H.Commands(S:STRING):NULL

Description

This function prints a list of commands associated with the string S. For example, “H.Commands("poly")” will list all documented commands having to do with polynomials. Unlike “?”, this function searches only the list of commands (not both the list of commands and online manual, both of which are a part of the online help system). Also, unlike “?”, this function does not try to use the string S to identify a unique function. Instead it looks for all functions whose “type” is S, i.e., that are somehow related with the search string S. The types are often the names of data types in CoCoA. A complete list of these types, along with additional information, can be found by entering “H.Commands()”, without any argument.

After a command name is found, complete information on the command can be obtained using “?”. The function “H.Syntax” prints just the syntax for the command.

Note: entering “H.Commands("")” will produce a complete list of the documented commands.

See Also: Man (VI-13.3 pg.273), H.Syntax (VI-8.7 pg.227)

VI-8.3 H.Man

syntax

H.Man():NULL
H.Man(S:STRING):NULL
H.Man(S:STRING,N:INT):NULL

where N = 0 or 1.
**Description**

This function is synonymous with “Man” (VI-13.3 pg.273), which performs the same task as “?” . See “Man” (VI-13.3 pg.273) for more information.

**See Also:** H.Commands (VI-8.2 pg.225), H.Syntax (VI-8.7 pg.227), Man (VI-13.3 pg.273)

### VI-8.4 H.OutCommands

<table>
<thead>
<tr>
<th>syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.OutCommands(S:STRING):NULL</td>
</tr>
<tr>
<td>H.OutCommands(S:STRING,A:INT):NULL</td>
</tr>
<tr>
<td>H.OutCommands(S:STRING,A:INT,B:INT):NULL</td>
</tr>
</tbody>
</table>

**Description**

The function prints the online descriptions of commands to the text file named S. Warning: if a file named S already exists, it is appended to. The first form prints all of the command descriptions, the second prints only the command with number A, and the last prints commands with numbers A to B. The total number of commands is given by Len(MEMORY.Doc.Commands). The name of the command with number I is MEMORY.Doc.Commands[I].Title. Entering “H.Commands(‘”)” will list the documented commands, in order.

**example**

H.OutCommands("CommandFile",1,10);

To print sections of the online manual, use the function “H.OutManual” (VI-8.5 pg.226).

**See Also:** H.OutManual (VI-8.5 pg.226)

### VI-8.5 H.OutManual

<table>
<thead>
<tr>
<th>syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.OutManual(S:STRING):NULL</td>
</tr>
<tr>
<td>H.OutManual(S:STRING,P:INT):NULL</td>
</tr>
<tr>
<td>H.OutManual(S:STRING,P:INT,C:INT):NULL</td>
</tr>
</tbody>
</table>

**Description**

This function prints sections of the manual to a text file named S. Warning: if a file named S already exists, it is appended to. The first form prints the entire manual to a file. The others are used to print part P, chapter C, section S. Recall that the online help consists of a manual *and* a list of commands. To print out the commands, use “H.OutCommands” (VI-8.4 pg.226).

**example**

H.OutManual("part1.chp2",1,2);

**See Also:** H.OutCommands (VI-8.4 pg.226), H.Toc (VI-8.9 pg.228)

### VI-8.6 H.SetMore

<table>
<thead>
<tr>
<th>syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.SetMore(N:INT):NULL</td>
</tr>
<tr>
<td>H.SetMore():NULL</td>
</tr>
</tbody>
</table>
The purpose of these functions is to turn on and off filtering of the online help system through the function “More”. When the online help system filters through “More” any output from online help is stored in a “MoreDevice” then printed to the screen, N lines at a time. The number N is stored in the global variable MEMORY.MoreCount and may be set directly by the user with the command “MEMORY.MoreCount := X” where X is an integer. The idea is to keep the output from scrolling off of the screen. See “More” (VI-13.23 pg.284) for more information.

The function “H.SetMore” turns on filtering through “More”; and if the optional argument N is supplied, it sets MEMORY.MoreCount to N.


See Also: More (VI-13.23 pg.284), H.UnSetMore (VI-8.11 pg.228)

VI-8.7 H.Syntax

```plaintext
<table>
<thead>
<tr>
<th>syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.Syntax():NULL</td>
</tr>
<tr>
<td>H.Syntax(S:STRING):NULL</td>
</tr>
</tbody>
</table>
```

Description

The first form of the command, with no arguments, just prints this message. The second form looks for a command with associated keywords containing S as a substring. If S is exactly the keyword of a command or if S is the substring of a keyword of only one command, then the syntax for that command is displayed. (The command “H.Browse” (VI-8.1 pg.225) can then be called to display additional information.) Otherwise, H.Syntax(S) lists the names all commands with associated keywords containing S as a substring. Note: the search is case insensitive.

```plaintext
<table>
<thead>
<tr>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.Syntax("dense");</td>
</tr>
<tr>
<td>DensePoly(N:INT):POLY</td>
</tr>
<tr>
<td>Description: the sum of all power-products of a given degree</td>
</tr>
<tr>
<td>--> "H.Browse();" for more information. <---</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
</tbody>
</table>
```

VI-8.8 H.Tips

```plaintext
<table>
<thead>
<tr>
<th>syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.Tips():NULL</td>
</tr>
</tbody>
</table>
```

Description

This function prints advice on using CoCoA’s online help system effectively.

```plaintext
<table>
<thead>
<tr>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.Tips();</td>
</tr>
<tr>
<td>=========== Quick Tips for Using Online Help ===========</td>
</tr>
<tr>
<td>Here are some tips for using the online help system:</td>
</tr>
<tr>
<td>1. Searches are case insensitive and your search string need only be a substring of a keyword to make a match. Thus, for instance, to find the section of the manual entitled "Commands and Functions for Polynomials", it is enough to type: "?for poly".</td>
</tr>
</tbody>
</table>
```
VI-8.9  H.Toc

**Description**

The first form of this function, with no arguments, lists the titles of the parts and chapters of the manual. The second prints the table of contents for part P. The third prints the table of contents for part P, chapter C. The last form, with the string "all" as argument, prints the entire table of contents.

The contents of each section can be read online by giving enough of its title as an argument to “?”.

**See Also:** Man (VI-13.3 pg.273)

VI-8.10  H.Tutorial

**Description**

The CoCoA tutorial is part of the online manual. This function displays the first section of the tutorial. The following sections can then be browsed using “H.Browse” (VI-8.1 pg.225).

**See Also:** H.Browse (VI-8.1 pg.225)

VI-8.11  H.UnSetMore

**Description**

The purpose of these functions is to turn on and off filtering of the online help system through the function “More”. When the online help system filters through “More” any output from online help is stored in a “MoreDevice” then printed to the screen, N lines at a time. The number N is stored in the global variable MEMORY.MoreCount and may be set directly by the user with the command “MEMORY.MoreCount := X” where X is an integer. The idea is to keep the output from scrolling off of the screen. See “More” (VI-13.23 pg.284) for more information.


**See Also:** More (VI-13.23 pg.284), H.SetMore (VI-8.6 pg.226)

VI-8.12  HColon

**Syntax**

HColon(M:IDEAL,N:IDEAL):IDEAL
**Description**

The function “Colon” (VI-3.17 pg.176) returns the quotient of M by N: the ideal of all polynomials F such that F*G is in M for all G in N.

This function computes the same ideal using a Hilbert-driven algorithm. It differs from “Colon” (VI-3.17 pg.176) only when the input is non-homogeneous, in which case, “HColon” may be faster.

```plaintext
Use R ::= Q[x,y];
Ideal(xy,x^2) : Ideal(x);
Ideal(y, x)

Colon(Ideal(x^2,xy), Ideal(x,x-y^2));
Ideal(x)

HColon(Ideal(x^2,xy), Ideal(x,x-y^2));
Ideal(x)

```

**See Also:** HSaturation (VI-8.26 pg.235), Saturation (VI-19.1 pg.329), HColon (VI-8.12 pg.228), Colon (VI-3.17 pg.176)

**VI-8.13 Head**

**Syntax**

```plaintext
Head(L:LIST):OBJECT
```

**Description**

This function returns the first element of the list L.

```plaintext
Head([3,2,1]);
3

```

**See Also:** First (VI-6.6 pg.203), Last (VI-12.1 pg.263), Tail (VI-20.3 pg.346)

**VI-8.14 Help**

**Syntax**

```plaintext
Help(S:STRING):NULL
```

**Description**

This command is used for extending the online help to include information about user-defined functions. It is *not* the main command for getting information about CoCoA online. For information about online help in general, enter “?” or “?online help”.

There are two ways to let “Help” know about a help string associated with a user-defined function. First, one may use the line “Help S” where S is the help string, as the first line of the function definition.

```plaintext
Define AddThree(X)
 Help "adds 3 to its argument";
 Return X+3;
EndDefine;
Help("AddThree");
adds 3 to its argument

```
The second way to provide a help string for "Help" is to define a function "Help_F" where F is the function identifier.

```plaintext
Define AddFive(X)
 Return X+5;
EndDefine;
Define Help_AddFive()
 Return "adds 5 to its argument";
EndDefine;
Help("AddFive");
adds 5 to its argument
```

---

**VI-8.15  HGBM**

**syntax**

HGBM(L:LIST):IDEAL

**Description**

This function computes the intersection of ideals corresponding to zero-dimensional schemes: "GBM" (VI-7.20 pg.219) is for affine schemes, and HGBM for projective schemes. The list L must be a list of ideals. The function "IntersectionList" (VI-9.20 pg.249) should be used for computing the intersection of a collection of general ideals.

The name GBM comes from the name of the algorithm used: Generalized Buchberger-Moeller. The prefix H comes from Homogeneous since ideals of projective schemes are necessarily homogeneous.

```plaintext
Use Q[x[0..2]];
I1:=IdealOfProjectivePoints([[1,2,1], [0,1,0]]); -- simple projective scheme
I2:=IdealOfProjectivePoints([[1,1,1], [2,0,1]])^2; -- another projective scheme
HGBM([I1,I2]); -- intersect the ideals
```

---

**See Also:** Finite Point Sets: Buchberger-Moeller (II-2.24 pg.40), IdealAndSeparatorsOfPoints (VI-9.2 pg.237), IdealAndSeparatorsOfProjectivePoints (VI-9.3 pg.238), IdealOfPoints (VI-9.4 pg.239), IdealOfProjectivePoints (VI-9.5 pg.240), GBM (VI-7.20 pg.219)
**VI-8.16 Hilbert**

**Syntax**

\[
\text{Hilbert}(R: \text{RING or TAGGED("Quotient")}) : \text{TAGGED("'}\verb\&$hp.Hilbert'\verb\")}
\]

\[
\text{Hilbert}(R: \text{RING or TAGGED("Quotient")}, N: \text{INT}) : \text{INT}
\]

**Description**

The first form of this function computes the Hilbert function for \( R \). The second form computes the \( N \)-th value of the Hilbert function. The weights of the indeterminates of \( R \) must all be 1. If the input is not homogeneous, the Hilbert function of the corresponding leading term (initial) ideal or module is calculated. For repeated evaluations of the Hilbert function, use “EvalHilbertFn” (VI-5.9 pg.199) instead of “Hilbert\( (R,N) \)” in order to speed up execution.

This function is the same as “HilbertFn” (VI-8.18 pg.232).

The coefficient ring must be a field.

**Example**

\[
\text{Use } R ::= Q[t,x,y,z];
\]

\[
\text{Hilbert}(R/\text{Ideal}(z^2-xy,xz^2+t^3));
\]

\[
\begin{align*}
H(0) &= 1 \\
H(1) &= 4 \\
H(t) &= 6t-3 \text{ for } t \geq 2
\end{align*}
\]

\[
\text{-----------------------------}
\]

\[
\text{M} := R^2/\text{Module}([x^2-t,xy-z^3],[zy,tz-x^3y+3]);
\]

\[
\text{Hilbert(M)};
\]

\[
\begin{align*}
H(0) &= 2 \\
H(1) &= 8 \\
H(2) &= 20 \\
H(3) &= 39 \\
H(t) &= 3t^2 + 6t-7 \text{ for } t \geq 4
\end{align*}
\]

\[
\text{-----------------------------}
\]

\[
\text{Hilbert(M,3)}
\]

\[
39
\]

\[
\text{-----------------------------}
\]

\[
\text{Hilbert(M,5)}
\]

\[
98
\]

\[
\text{-----------------------------}
\]

**See Also:** EvalHilbertFn (VI-5.9 pg.199), HilbertPoly (VI-8.19 pg.232), HVector (VI-8.27 pg.236), HilbertSeries (VI-8.20 pg.232)

---

**VI-8.17 HilbertBasis**

**Syntax**

\[
\text{HilbertBasis}(M: \text{MAT}) : \text{LIST}
\]

where \( M \) is a matrix over \( \mathbb{Z} \).

**Description**

This function returns a list whose components are lists (of non-negative integers) representing the Hilbert basis for the monoid of elements with non-negative coordinates in the kernel of \( M \).

**Example**

\[
\text{M} := \text{Mat}([[1,-2,3,4], [1, 0, 0, -1]]);
\]

\[
\text{HilbertBasis(M)};
\]

\[
\begin{bmatrix}0, 3, 2, 0\end{bmatrix}, \begin{bmatrix}1, 4, 1, 1\end{bmatrix}, \begin{bmatrix}2, 5, 0, 2\end{bmatrix}
\]

\[
\text{-----------------------------}
\]

\[
\text{M} * \text{Transposed(}\text{Mat(}\text{It})\text{)};
\]

---
VI-8.18 HilbertFn

**Syntax**

\[ \text{HilbertFn}(R: \text{RING or \text{TAGGED}("Quotient")}) : \text{TAGGED}("\verb&$hp.Hilbert&") } \]

\[ \text{HilbertFn}(R: \text{RING or \text{TAGGED}("Quotient")}, N: \text{INT}) : \text{INT} \]

**Description**

Same as “Hilbert” (VI-8.16 pg.231).

- **See Also:** EvalHilbertFn (VI-5.9 pg.199), HilbertPoly (VI-8.19 pg.232), HVector (VI-8.27 pg.236), HilbertSeries (VI-8.20 pg.232)

VI-8.19 HilbertPoly

**Syntax**

\[ \text{Hilbert}(R: \text{RING or \text{TAGGED}("Quotient")}) : \text{POLY in the ring Qt.} \]

**Description**

This function returns the Hilbert polynomial for R as a polynomial in the standard CoCoA ring Qt (= Q[t]).

The weights of the indeterminates of R must all be 1, and the coefficient ring must be a field.

If the input is not homogeneous, the Hilbert polynomial of the corresponding leading term (initial) ideal or module is calculated. For the Hilbert *function*, see “Hilbert” (VI-8.16 pg.231).

**Example**

Use R ::= Q[w,x,y,z];
I := Ideal(z^2-xy,xz^2+w^3);
Hilbert(R/I);
H(0) = 1
H(1) = 4
H(t) = 6t-3 for t >= 2

F := HilbertPoly(R/I);
F; -- a polynomial in the ring Qt
Qt := 6t-3
Subst(F,Qt::t,3);
Qt := 15

**See Also:** EvalHilbertFn (VI-5.9 pg.199), Hilbert (VI-8.16 pg.231), HVector (VI-8.27 pg.236), HilbertSeries (VI-8.20 pg.232)

VI-8.20 HilbertSeries

**Syntax**

\[ \text{HilbertSeries}(M: \text{RING or \text{TAGGED}("Quotient")}) : \text{TAGGED("$hp.PSeries")} \]
Description

This function computes the Hilbert-Poincare series of M. The input, M, must be homogeneous (with respect to the first row of the weights matrix). In the standard case, i.e. the weights of all indeterminates are 1, the result is simplified so that the power appearing in the denominator is the dimension of M.

The function “Poincare” (VI-16.8 pg.307) is exactly the same as “HilbertSeries” (VI-8.20 pg.232).

NOTES:
(i) the coefficient ring must be a field.
(ii) these functions produce tagged objects: they cannot safely be (non-)equality to other values.


example

Use R ::= Q[t,x,y,z];
HilbertSeries(R/Ideal(0));
(1) / (1-t)^4
-----------------------------------
Q := R/Ideal(t^2,x,y^3); Poincare(Q);
(1 + 2t + 2t^2 + t^3) / (1-t)
-----------------------------------
Poincare(R^2/Module([x^2,y],[z,y]));
(2 + t) / (1-t)^3
-----------------------------------
Use R ::= Q[t,x,y,z], Weights(Mat([[1,2,3,4],[0,0,5,8]]));
Poincare(R/Ideal(t^2,x,y^3));
--- Non Simplified Pseries ---
(1-2t^2 + t^4 - t^9 + t^11 - t^13) / ( (1-t) (1-t^2) (1-t^3) (1-t^4) )
-----------------------------------

See Also: Dim (VI-4.18 pg.191), Hilbert (VI-8.16 pg.231), HVector (VI-8.27 pg.236), Multiplicity (VI-13.24 pg.285), HilbertSeriesShifts (VI-8.22 pg.234), HilbertSeriesMultiDeg (VI-8.21 pg.233), Weights Modifier (IV-8.5 pg.105), WeightsMatrix (VI-23.2 pg.357)

VI-8.21 HilbertSeriesMultiDeg

Syntax

HilbertSeriesMultiDeg(TAGGED("Quotient"),WM:MAT):TAGGED("$hp.PSeries")

Description

This function computes the Hilbert-Poincare series of M. The input, M, must be homogeneous with respect to the grading defined by the second argument.

The function “PoincareMultiDeg” (VI-16.9 pg.308) is exactly the same as “HilbertSeriesMultiDeg” (VI-8.21 pg.233).

NOTES: CoCoA-4 has an intrinsic limitation on multigradings (“Weights Modifier” (IV-8.5 pg.105)) which does not allow zero-entries in the first row of the defining matrix. This function performs all the appropriate conversions for computing the HilbertSeries wrt any positive grading (“IsPositiveGrading” (VI-9.32 pg.253)).

example

Use R ::= Q[x,y,z];
WM := Mat([[1,0,0],[1,-1,0]]);
HilbertSeriesMultiDeg(R/Ideal(Indets())^2, WM);
See Also: HilbertSeries (VI-8.20 pg.232), Weights Modifier (IV-8.5 pg.105), IsPositiveGrading (VI-9.32 pg.253), PositiveGrading4 (VI-16.12 pg.309), PoincareMultiDeg (VI-16.9 pg.308)

VI-8.22 HilbertSeriesShifts

**Syntax**

HilbertSeriesShifts(M: Module, ShiftsList: LIST):TAGGED("hp.PSeries")

HilbertSeriesShifts(M: TAGGED("Quotient"), ShiftsList: LIST):TAGGED("hp.PSeries")

**Description**

This function computes the Hilbert-Poincare series of a (single-graded) module M with shifts. The input, M, must be homogeneous (with respect to the weights list). In the standard case, i.e., the weights of all indeterminates are 1, the result is simplified so that the power appearing in the denominator is the dimension of M.

The function “PoincareShifts” (VI-16.10 pg.308) is exactly the same as “HilbertSeriesShifts” (VI-8.22 pg.234).

NOTES:
(i) the coefficient ring must be a field.
(ii) these functions produce tagged objects: they cannot safely be (non-)equality to other values.


**Example**

Use P ::= Q[x,y,z];
M := Module([x,y^-3], [x-z,0]);
HilbertSeriesShifts(M, [2,0]); -- HilbertPoincare series of a shifted module
(2x^3) / (1-x)^3
-------------------------------
PoincareShifts(P^2/M, [3,1]); -- HP series of a shifted quotient module
(x + x^2 + 2x^3) / (1-x)^2
-------------------------------

See Also: Dim (VI-4.18 pg.191), Hilbert (VI-8.16 pg.231), HVector (VI-8.27 pg.236), Multiplicity (VI-13.24 pg.285), Weights Modifier (IV-8.5 pg.105), WeightsMatrix (VI-23.2 pg.357)

VI-8.23 HIntersection

**Syntax**

HIntersection(I_1:IDEAL,...,I_n:IDEAL):IDEAL
HIntersectionList(L:LIST of IDEAL):IDEAL

**Description**

The function “HIntersection” returns the intersection of “I_1,...,I_n” using a Hilbert-driven algorithm. It differs from “Intersection” (VI-9.19 pg.248) only when the input is non-homogeneous, in which case, “HIntersection” may be faster.

The coefficient ring must be a field.

**Example**

Use R ::= Q[x,y,z];
HIntersection(Ideal(x-z,y-2z),Ideal(x-2z,y-z));
Ideal(x + y - 3z, y^-2 - 3yz + 2z^-2)

See Also: Intersection (VI-9.19 pg.248), IntersectionList (VI-9.20 pg.249), HIntersectionList (VI-8.24 pg.235)
VI-8.24 HIntersectionList

**Syntax**

```plaintext
HIntersectionList(L: LIST of IDEAL): IDEAL
```

**Description**

The function “HIntersectionList” applies the function “HIntersection” to the elements of a list, i.e., “HIntersectionList([I_1,...,I_n])” is the same as “HIntersection(I_1,...,I_n)”.

The coefficient ring must be a field.

**Example**

```plaintext
L := [Ideal(x-z,y-2z),Ideal(x-2z,y-z)];
HIntersectionList(L);
Ideal(x + y - 3z, y^2 - 3yz + 2z^2)
```

**See Also:** Intersection (VI-9.19 pg.248), IntersectionList (VI-9.20 pg.249), HIntersection (VI-8.23 pg.234)

VI-8.25 Homogenized

**Syntax**

```plaintext
Homogenized(X: INDET, E:T): T
```

where T is of type IDEAL or POLY, or T is a LIST recursively constructed of types IDEAL, POLY, and LIST.

**Description**

This function returns the homogenization of E with respect to the indeterminate X, which must have weight 1. Note that in the case where E is an ideal, “Homogenized” returns the ideal generated by the homogenizations of all the elements of E, not just the homogenization of the generators of E (see the example, below). The coefficient ring must be a field for this function to work reliably.

**Example**

```plaintext
Use R ::= Q[x,y,z,w];
Homogenized(w, x^3-y);
x^3 - yw^2
```

**See Also:** GBasis5, and more (VI-7.18 pg.217)

VI-8.26 HSaturation

**Syntax**

```plaintext
Saturation(I: IDEAL, J: IDEAL): IDEAL
HSaturation(I: IDEAL, J: IDEAL): IDEAL
```

**Chapter VI-8. H**

**Description**

This function returns the saturation of $I$ with respect to $J$: the ideal of polynomials $F$ such that $F*G$ is in $I$ for all $G$ in $J^d$ for some positive integer $d$.

It calculates the saturation using a Hilbert-driven algorithm. It differs from “Saturation” (VI-19.1 pg.329) only when the input is inhomogeneous, in which case, “HSaturation” may be faster.

The coefficient ring must be a field.

```plaintext
Use R ::= Q[x,y];
I := Ideal(x^4-x, yx-2x);
Saturation(I, Ideal(x));
HSaturation(I, Ideal(x));
```

**See Also:** Colon (VI-3.17 pg.176), HColon (VI-8.12 pg.228), Saturation (VI-19.1 pg.329)

**VI-8.27 HVector**

**Syntax**

```
HVector(R:RING or TAGGED("Quotient")):LIST
```

**Description**

This function returns the h-vector of $M$, i.e., the coefficients of the numerator of the simplified Poincare series for $M$. $M$ can be a module or a quotient.

The weights of the indeterminates of the polynomial ring of $M$ must all be 1, and the coefficient ring must be a field.

If the input is not homogeneous, the Hilbert function of the corresponding leading term (initial) ideal or module is calculated.

```plaintext
Use R ::= Q[t,x,y,z];
HVector(R/Ideal(x,y,z)^5);
[1, 3, 6, 10, 15]

Poincare(R/Ideal(x,y,z)^5);
(1 + 3t + 6t^2 + 10t^3 + 15t^4) / (1-t)

```

**See Also:** Hilbert (VI-8.16 pg.231), HilbertSeries (VI-8.20 pg.232)
Chapter VI-9

I

VI-9.1 Ideal

**syntax**

Ideal(P_1:POLY,...,P_n:POLY):IDEAL
Ideal(L:LIST):IDEAL
Ideal(M:MODULE):IDEAL

where L is a list of polynomials and M is contained in a free module of rank 1.

**Description**

The first form returns the ideal generated by “P_1,...,P_n”. The second form returns the ideal generated by the polynomials in L. The third form returns the ideal generated by the polynomials in M; it is the same as “Cast(M,IDEAL)”, and requires that the module be a submodule of the free module of rank 1.

**example**

Use R ::= Q[x,y,z];
I := Ideal(x-y^2,xy-z);
I;
Ideal(-y^2 + x, xy - z)
-----------------------------------
L := [xy-z,x-y^2];
J := Ideal(L);
I = J;
TRUE
-----------------------------------
M := Module([y^3-z],[x-y^2]);
Ideal(M) = I;
TRUE
-----------------------------------

VI-9.2 IdealAndSeparatorsOfPoints

**syntax**

IdealAndSeparatorsOfPoints(Points:LIST):RECORD

where Points is a list of lists of coefficients representing a set of *distinct* points in affine space.

237
Description

This function computes the results of “IdealOfPoints” (VI-9.4 pg.239) and “SeparatorsOfPoints” (VI-19.4 pg.330) together at a cost lower than making the two separate calls. The result is a record with three fields:

- **Points** -- the points given as argument
- **Ideal** -- the result of IdealOfPoints
- **Separators** -- the result of SeparatorsOfPoints

Thus, if the result is stored in a variable with identifier X, then: X.Points will be the input list of points; X.Ideal will be the ideal of the set of points, with generators forming the reduced Groebner basis for the ideal; and X.Separators will be a list of polynomials whose i-th element will take the value 1 on the i-th point and 0 on the others.

**NOTE:**
- the current ring must have at least as many indeterminates as the dimension of the space in which the points lie;
- the base field for the space in which the points lie is taken to be the coefficient ring, which should be a field;
- in the polynomials returned, the first coordinate in the space is taken to correspond to the first indeterminate, the second to the second, and so on;
- if the number of points is large, say 100 or more, the returned value can be very large. To avoid possible problems when printing such values as a single item we recommend printing out the elements one at a time as in this example:

```plaintext
X := IdealAndSeparatorsOfPoints(Pts);
Foreach Element In Gens(X.Ideal) Do
 PrintLn Element;
EndForeach;
```

For ideals and separators of points in projective space, see “IdealAndSeparatorsOfProjectivePoints” (VI-9.3 pg.238).

---

**example**

```plaintext
Use R ::= Q[x,y];
Points := [[1, 2], [3, 4], [5, 6]];
X := IdealAndSeparatorsOfPoints(Points);
X.Points;
[[[1, 2], [3, 4], [5, 6]]

X.Ideal;
Ideal(x - y + 1, y^3 - 12y^2 + 44y - 48)

X.Separators;
[1/8y^2 - 5/4y + 3, -1/4y^2 + 2y - 3, 1/8y^2 - 3/4y + 1]

```

**See Also:** GBM (VI-7.20 pg.219), HGBM (VI-8.15 pg.230), GenericPoints (VI-7.23 pg.221), IdealAndSeparatorsOfProjectivePoints (VI-9.3 pg.238), IdealOfPoints (VI-9.4 pg.239), IdealOfProjectivePoints (VI-9.5 pg.240), Interpolate (VI-9.17 pg.247), QuotientBasis (VI-17.2 pg.313), SeparatorsOfPoints (VI-19.4 pg.330), SeparatorsOfProjectivePoints (VI-19.5 pg.331)

**VI-9.3 IdealAndSeparatorsOfProjectivePoints**

---

**syntax**

```
IdealAndSeparatorsOfProjectivePoints(Points:LIST):RECORD

where Points is a list of lists of coefficients representing a set of *distinct* points in projective space.
```
**Description**

This function computes the results of “IdealOfProjectivePoints” (VI-9.5 pg.240) and “SeparatorsOfProjectivePoints” (VI-19.5 pg.331) together at a cost lower than making the two separate calls. The result is a record with three fields:

```
Points -- the points given as argument
Ideal -- the result of IdealOfProjectivePoints
Separators -- the result of SeparatorsOfProjectivePoints
```

Thus, if the result is stored in a variable with identifier X, then: X.Ideal will be the ideal of the set of points, with generators forming a reduced Groebner basis for the ideal; and X.Separators will be a list of homogeneous polynomials whose i-th element will be non-zero (actually 1, using the given representatives for the coordinates of the points) on the i-th point and 0 on the others.

**NOTE:**

* the current ring must have at least one more indeterminate than the dimension of the projective space in which the points lie, i.e., at least as many indeterminates as the length of an element of the input, Points;
* the base field for the space in which the points lie is taken to be the coefficient ring, which should be a field;
* in the polynomials returned, the first coordinate in the space is taken to correspond to the first indeterminate, the second to the second, and so on;
* if the number of points is large, say 100 or more, the returned value can be very large. To avoid possible problems when printing such values as a single item we recommend printing out the elements one at a time as in this example:

```
X := IdealAndSeparatorsOfProjectivePoints(Pts);
Foreach Element In Gens(X.Ideal) Do
 PrintLn Element;
EndForeach;
```

For ideals and separators of points in affine space, see “IdealAndSeparatorsOfPoints” (VI-9.2 pg.237).

**example**

Use R ::= Q[x,y,z];
Points := [[0,0,1],[1/2,1,1],[0,1,0]];
X := IdealAndSeparatorsOfProjectivePoints(Points);
X.Points;
[ [0, 0, 1], [1, 1, 1], [0, 1, 0] ]
-------------------------------
X.Ideal;
(Ideal(xz - 1/2yz, xy - 1/2yz, x^2 - 1/4yz, y^2z - yz^2))
-------------------------------
X.Separators;
[ -2x + z, x, -2x + y ]
-------------------------------

**See Also:** HGBM (VI-8.15 pg.230), GBM (VI-7.20 pg.219), GenericPoints (VI-7.23 pg.221), IdealAndSeparatorsOfPoints (VI-9.2 pg.237), IdealOfPoints (VI-9.4 pg.239), IdealOfProjectivePoints (VI-9.5 pg.240), Interpolate (VI-9.17 pg.247), QuotientBasis (VI-17.2 pg.313), SeparatorsOfPoints (VI-19.4 pg.330), SeparatorsOfProjectivePoints (VI-19.5 pg.331)

### VI-9.4 IdealOfPoints

**syntax**

```
IdealOfPoints(Points:LIST):IDEAL
```

where Points is a list of lists of coefficients representing a set of *distinct* points in affine space.
**Description**

This function computes the reduced Groebner basis for the ideal of all polynomials which vanish at the given set of points. It returns the ideal generated by that Groebner basis.

**NOTE:**
* the current ring must have at least as many indeterminates as the dimension of the space in which the points lie;
* the base field for the space in which the points lie is taken to be the coefficient ring, which should be a field;
* in the polynomials returned, the first coordinate in the space is taken to correspond to the first indeterminate, the second to the second, and so on;
* if the number of points is large, say 100 or more, the returned value can be very large. To avoid possible problems when printing such values as a single item we recommend printing out the elements one at a time as in this example:

```
I := IdealOfPoints(Pts);
Foreach Element In Gens(I) Do
 PrintLn Element;
EndForeach;
```

For ideals of points in projective space, see “IdealOfProjectivePoints” (VI-9.5 pg.240).

**example**

Use R ::= Q[x,y];
Points := [[1, 2], [3, 4], [5, 6]];
I := IdealOfPoints(Points);
I;
Ideal(x - y + 1, y^3 - 12y^2 + 44y - 48)
-------------------------------
I.Gens; -- the reduced Groebner basis
[x - y + 1, y^3 - 12y^2 + 44y - 48]
-------------------------------

**See Also:** GBM (VI-7.20 pg.219), HGBM (VI-8.15 pg.230), GenericPoints (VI-7.23 pg.221), IdealAndSeparatorsOfPoints (VI-9.2 pg.237), IdealAndSeparatorsOfProjectivePoints (VI-9.3 pg.238), IdealOfProjectivePoints (VI-9.5 pg.240), Interpolate (VI-9.17 pg.247), QuotientBasis (VI-17.2 pg.313), SeparatorsOfPoints (VI-19.4 pg.330), SeparatorsOfProjectivePoints (VI-19.5 pg.331)

**VI-9.5  IdealOfProjectivePoints**

**syntax**

```
IdealOfProjectivePoints(Points:LIST):IDEAL
```

where Points is a list of lists of coefficients representing a set of *distinct* points in projective space.

**Description**

This function computes the reduced Groebner basis for the ideal of all homogeneous polynomials which vanish at the given set of points. It returns the ideal generated by that Groebner basis.

**NOTE:**
* the current ring must have at least one more indeterminate than the dimension of the projective space in which the points lie, i.e. at least as many indeterminates as the length of an element of the input, Points;
* the base field for the space in which the points lie is taken to be the coefficient ring, which should be a field;
* in the polynomials returned, the first coordinate in the space is taken to correspond to the first indeterminate, the second to the second, and so on;
* if the number of points is large, say 100 or more, the returned value can be very large. To avoid possible problems when printing such values as a single item we recommend printing out the elements one at a time as in this example:

```
I := IdealOfProjectivePoints(Pts);
Foreach Element In Gens(I) Do
 PrintLn Element;
EndForeach;
```

For ideals of points in affine space, see “IdealOfPoints” (VI-9.4 pg.239).

```
Use R ::= Q[x,y,z];
I := IdealOfProjectivePoints([[0,0,1],[1/2,1,1],[0,1,0]]);
I;
Ideal(xz - 1/2yz, xy - 1/2yz, x^2 - 1/4yz, y^2z - yz^2)

I.Gens; -- the reduced Groebner basis
[xz - 1/2yz, xy - 1/2yz, x^2 - 1/4yz, y^2z - yz^2]

```

See Also: GBM (VI-7.20 pg.219), HGBM (VI-8.15 pg.230), GenericPoints (VI-7.23 pg.221), IdealAndSeparatorsOfPoints (VI-9.2 pg.237), IdealAndSeparatorsOfProjectivePoints (VI-9.3 pg.238), IdealOfPoints (VI-9.4 pg.239), Interpolate (VI-9.17 pg.247), QuotientBasis (VI-17.2 pg.313), SeparatorsOfPoints (VI-19.4 pg.330), SeparatorsOfProjectivePoints (VI-19.5 pg.331)

### VI-9.6 Identity

**syntax**

```
Identity(N:INT):MAT
```

**Description**

This function returns the NxN identity matrix.

```
Identity(3);
Mat([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

```

### VI-9.7 If

**syntax**

```
If B Then C EndIf
If B_1 Then C_1 Else C_2 EndIf
If B_1 Then C_1 Elsif B_2 Then C_2 Elsif ... EndIf
If B_1 Then C_1 Elsif B_2 Then C_2 Elsif ... Else C_r EndIf

D If B
```

where the B's are boolean expressions, the C's are command sequences, and D is a single command.
Description

If “$B_n$” is the first in the sequence of “$B_i$’s” to evaluate to TRUE, then “$C_n$” is executed. If none of the “$B_i$’s” evaluates to TRUE, nothing is done. The construct, “Elsif B Then C” can be repeated any number of times. Note: be careful not to type “Elseif” by mistake (it has an extraneous “e”).

In the last form, the single command D is performed if B evaluates to TRUE. NOTE: the use of this form is discouraged. It will probably disappear from future versions of CoCoA.

For a conditional “expression”, assignable to a variable, see “Cond” (VI-3.23 pg.179).

\begin{verbatim}
Define Sign(A)
  If A > 0 Then Return 1
  Elsif A = 0 Then Return 0
  Else Return -1
  EndIf
EndDefine;

Sign(3);
1
\end{verbatim}

See Also: Cond (VI-3.23 pg.179)

\section*{VI-9.8 ILogBase}

\textbf{syntax}

\begin{verbatim}
ILogBase(X:RAT, Base:INT):INT
\end{verbatim}

\textbf{Description}

This function computes the integer part (floor) of the logarithm of a rational number in a given base. The signs of X and Base are ignored.

\begin{verbatim}
ILogBase(128,2);
7
-----------------------------
ILogBase(81.5,3);
4
-----------------------------
\end{verbatim}

\section*{VI-9.9 Image}

\textbf{syntax}

\begin{verbatim}
Image(R::E:OBJECT,F:TAGGED("RMap")):OBJECT
Image(V:OBJECT,F:TAGGED("RMap")):OBJECT
\end{verbatim}

\textbf{Description}

This function maps the object E from one ring into the current ring as determined by F. Suppose the current ring is S, and E is an object dependent on a ring R; then
Image(R::E,F)

returns the object in S obtained by substituting “F_i” for the i-th indeterminate of R in E. Effectively, we get the image of E under the ring homomorphism,

\[ F: R \longrightarrow S \\
\quad x_i \ |\rightarrow F_i, \]

where “x_i” denotes the i-th indeterminate of R.

Notes:

1. The coefficient rings for the domain and codomain must be the same.
2. If R = S, one may use “Image(E,F)” but in this case it may be easier to use “Eval” (VI-5.7 pg.197) or “Subst” (VI-19.23 pg.340).
3. The exact domain is never specified by the mapping F. It is only necessary that the domain have the same number of indeterminates as F has components. Thus, we are abusing terminology somewhat in calling F a map.
4. The second form of the function does not require the prefix “R::” since the prefix is associated automatically.
5. If the object E in R is a polynomial or rational function (or list, matrix, or vector of these) which involves only indeterminates that are already in S, the object E can be mapped over to S without change using the command “BringIn” (VI-2.9 pg.167).

```
example

Use C ::= Q[u,v]; -- domain
Use B ::= Q[x,y]; -- another possible domain
I := Ideal(x^2-y); -- an ideal in B
Use A ::= Q[a,b,c]; -- codomain
F := RMap(a,c^2-ab);
Image(B::xy, F); -- the image of xy under F:B --> A
\[-a^2b + ac^2\]

Image(C::uv,F); -- the image of uv under F:C --> A
\[-a^2b + ac^2\]

Image(I,F); -- the image of the ideal I under F: B --> A
Ideal(a^2 + ab - c^2)

I; -- the prefix "B::" was not needed in the previous example since
\quad I is already labeled by B
B :: Ideal(x^2 - y)

Image(B::Module([x+y,xy^2],[x,y]), F); -- the image of a module
Module([-ab + c^2 + a, a^3b^2 - 2a^2bc^2 + ac^4], [a, -ab + c^2])

X ::= C:: u+v; -- X is a variable in the current ring (the codomain), A,
\quad X; -- whose value is an expression in the ring C.
C ::= u + v

Image(X,F); -- map X to get a value in C
\[-ab + c^2 + a\]

```

See Also: Accessing Other Rings (IV-8.11 pg.108), BringIn (VI-2.9 pg.167), QZP (VI-17.3 pg.314), ZPQ (VI-25.1 pg.363), Ring Mappings: the Image Function (IV-8.12 pg.109), Subst (VI-19.23 pg.340), Using (VI-21.5 pg.353)
VI-9.10  In

**Syntax**

\[
\begin{align*}
&[E:OBJECT \mid X \text{ In } L:\text{LIST And } B:\text{BOOL}]:\text{LIST} \\
&[X \text{ In } L:\text{LIST } \mid B:\text{BOOL}]:\text{LIST} \\
&E:OBJECT \mid X \text{ In } L
\end{align*}
\]

where \( X \) is a variable identifier which may occur in \( B \) or \( E \).

**Description**

In the first form, \( E \) is an arbitrary CoCoA expression and \( B \) is a boolean expression, both of which are functions of the variable \( X \). Write \( E(X) \) for \( E \) and \( B(X) \) for \( B \). The first listed command then returns the list of all \( E(X) \) such that \( X \) is in the list \( L \) and \( B(X) \) evaluates to TRUE.

**Example**

\[
\begin{align*}
&[[X^2, X^3] \mid X \text{ In } [-2,-1,0,1,2] \text{ And } X \neq 0]; \\
&[[4, -8], [1, -1], [1, 1], [4, 8]] \\
\end{align*}
\]

(Note: the \( \neq \) operator is used to form Cartesian products; it is not the same as the “not equal” operator, \(<\neq\).)

The second form of the command is the same as the first with \( E = X \).

**Example**

\[
\begin{align*}
&[X \text{ In } [1,2,3] \mid X > 1]; \\
&[2, 3] \\
\end{align*}
\]

The third form is the same as the first with \( B = \text{TRUE} \).

**Example**

\[
\begin{align*}
&[X^2 \mid X \text{ In } [1,2,3]]; \\
&[1, 4, 9] \\
\end{align*}
\]

**See Also:** IsIn (VI-9.29 pg.252), NewList (VI-14.2 pg.288), Comp (VI-3.19 pg.177)

VI-9.11  Indet

**Syntax**

\[
\text{Indet}(N:\text{INT}):\text{POLY}
\]

**Description**

This function returns the \( N \)-th indeterminate of the current ring.

**Example**

\[
\begin{align*}
&\text{Use } R ::= \mathbb{Q}[x,y,z]; \\
&\text{Indet}(2); \\
&y \\
\end{align*}
\]

**See Also:** IndetInd (VI-9.12 pg.245), IndetIndex (VI-9.13 pg.245), IndetName (VI-9.14 pg.245), Indets (VI-9.15 pg.246), NumIndets (VI-14.24 pg.298)
VI-9.12 IndetInd

**Syntax**

\[
\text{IndetInd}(X: \text{INDET}): \text{LIST}
\]

**Description**

This function returns the index of the indeterminate X.

**Example**

\[
\text{Use } R ::= Q[x[1..3,1..2], y, z]; \\
\text{IndetInd}(x[3,2]); \\
[3, 2] \\
\]

\[
\text{IndetInd}(y); \\
[ ]
\]

**See Also:** Indet (VI-9.11 pg.244), IndetIndex (VI-9.13 pg.245), IndetName (VI-9.14 pg.245), Indets (VI-9.15 pg.246), NumIndets (VI-14.24 pg.298)

---

VI-9.13 IndetIndex

**Syntax**

\[
\text{IndetIndex}(X: \text{INDET}): \text{INT}
\]

**Description**

This function returns the index of the named determinate. The index is determined by the order in which the indeterminate is listed when the corresponding ring was created.

**Example**

\[
\text{Use } R ::= Q[x,y,z] \\
\text{IndetIndex}(y); \\
2 \\
\]

\[
\text{Use } R ::= Q[x[1..2,1..2], y[1..2]]; \\
\text{Indets}(); \\
[x[1,1], x[1,2], x[2,1], x[2,2], y[1], y[2]] \\
\]

\[
\text{IndetIndex}(x[2,1]); \\
3 \\
\]

\[
S ::= Q[a,b,c]; \\
\text{IndetIndex}(S::b); \\
2 \\
\]

**See Also:** Indet (VI-9.11 pg.244), IndetInd (VI-9.12 pg.245), IndetName (VI-9.14 pg.245), Indets (VI-9.15 pg.246), NumIndets (VI-14.24 pg.298), UnivariateIndetIndex (VI-21.1 pg.351)

---

VI-9.14 IndetName

**Syntax**

\[
\text{IndetName}(X: \text{INDET}): \text{STRING}
\]
Description
This function returns the name of the indeterminate X as a string.

```
example
Use R ::= Q[x,y,z];
IndetName(Indet(2));
y

Type(It);
STRING

```

See Also: Indet (VI-9.11 pg.244), IndetInd (VI-9.12 pg.245), IndetIndex (VI-9.13 pg.245), NumIndets (VI-14.24 pg.298)

VI-9.15 Indets

```
syntax
Indets():LIST
```

Description
This function returns the list of indeterminates of the current ring.

```
example
Use R ::= Q[x,y,z];
Indets();
[x, y, z]

```

See Also: Indet (VI-9.11 pg.244), IndetInd (VI-9.12 pg.245), IndetIndex (VI-9.13 pg.245), IndetName (VI-9.14 pg.245), NumIndets (VI-14.24 pg.298)

VI-9.16 Insert

```
syntax
Insert(V:LIST,N:INT,E:OBJECT):NULL
```

where V is a variable containing a list.

Description
This function inserts E into the list L as the N-th component.

```
example
L := ["a","b","d","e"];
Insert(L,3,"c");
L;
["a", "b", "c", "d", "e"]

```

See Also: Append (VI-1.10 pg.161), Remove (VI-18.13 pg.321)
VI-9.17 Interpolate

**syntax**

\[
\text{Interpolate(Points:LIST,Values:LIST):POLY}
\]

where Points is a list of lists of coefficients representing a set of *distinct* points and Values is a list of the same size containing numbers from the coefficient ring.

**Description**

This function returns a multivariate polynomial which takes given values at a given set of points.

NOTE:
* the current ring must have at least as many indeterminates as the dimension of the space in which the points lie;
* the base field for the space in which the points lie is taken to be the coefficient ring, which should be a field;
* in the polynomials returned, the first coordinate in the space is taken to correspond to the first indeterminate, the second to the second, and so on;
* if the number of points is large, say 100 or more, the returned value can be very large. To avoid possible problems when printing such values as a single item we recommend printing out the elements one at a time as in this example:

\[
\begin{align*}
X & := \text{Interpolate(Pts,Vals)}; \\
\text{Foreach Element In } X \text{ Do} & \quad \text{PrintLn Element;} \\
\text{EndForeach;}
\end{align*}
\]

Use \( Q[x,y] \);
Points := \([1/2, 2], [3/4, 4], [5, 6/11], [-1/2, -2] \];
Values := \([1/2,1/3,1/5,-1/2] \);
F := \text{Interpolate(Points, Values)};
F;
\[-46849/834000y^2 - 1547/52125x + 13418/52125y + 46849/208500\]
\[\text{-------------------------------}\]
\[\text{[Eval(F,P) | P In Points] = Values; -- check} \]
\[\text{TRUE}\]
\[\text{-------------------------------}\]

VI-9.18 Interreduce, Interreduced

**syntax**

\[
\begin{align*}
\text{Interreduce(V:LIST of POLY):NULL} \\
\text{Interreduce(V:LIST of VECTOR):NULL} \\
\text{Interreduced(L:LIST of POLY):LIST of POLY} \\
\text{Interreduced(L:LIST of VECTOR):LIST of VECTOR}
\end{align*}
\]

where \( V \) is a variable containing a list.

**Description**

These functions reduce each polynomial (resp., vector) using the other polynomials (resp., vectors) as reduction rules. The process terminates when each is in normal form with respect to the others. The function “Interreduce” takes a variable containing a list and overwrites that variable with the interreduced list. The second returns an interreduced list without affecting its arguments.
Note that the definition of normal form depends on the current value of the option FullRed of the panel GROEBNER. If FullRed is FALSE it means that a polynomial (resp., vector) is in normal form when its leading term with respect to the current term ordering cannot be reduced. If FullRed is TRUE it means that a polynomial (resp., vector) is in normal form if and only if each monomial cannot be reduced.

Example

UnSet FullRed; -- FullRed = FALSE
Use R ::= Q[x,y,z];
Interreduced([x^3-xy^2+yz,xy,z]);
[x^3 - xy^2 + yz, xy, z]

--------------------
Set FullRed; -- FullRed = TRUE (the default value)
Interreduced([x^3-xy^2+yz,xy,z]);
[xy, z, x^3]

--------------------
L := [x^3-xy^2+yz,xy,z];
Interreduce(L);
L;
[xy, z, x^3]

See Also: FullRed (V-1.13 pg.143)

VI-9.19 Intersection

Syntax

Intersection(E_1:LIST,...,E_n:LIST):LIST
Intersection(E_1:IDEAL,...,E_n:IDEAL):IDEAL
Intersection(E_1:MODULE,...,E_n:MODULE):MODULE

Description

The function “Intersection” returns the intersection of “E_1,...,E_n”. In the case where the “E_i”’s are lists, it returns the elements common to all of the lists.

The coefficient ring must be a field.

NOTE: In order to compute the intersection of inhomogeneous ideals, it may be faster to use the function “HIntersection”. To compute the intersection of ideals corresponding to zero-dimensional schemes, see the commands “GBM” (VI-7.20 pg.219) and “HGBM” (VI-8.15 pg.230).

Example

Use R ::= Q[x,y,z];
Points := [[0,0],[1,0],[0,1],[1,1]]; -- a list of points in the plane
I := Ideal(x,y); -- the ideal for the first point
Foreach P In Points Do
    I := Intersection(I,Ideal(x-P[1]z,y-P[2]z));
EndForeach;
I; -- the ideal for (the projective closure of) Points
Ideal(y^2 - yz, x^2 - xz)

--------------------
Intersection(["a","b","c"],["b","c","d"]);
["b", "c"]

--------------------
It = Intersection(Ideal(x,y),Ideal(y^2,z));
TRUE

See Also: GBM (VI-7.20 pg.219), HGBM (VI-8.15 pg.230), IntersectionList (VI-9.20 pg.249), HIntersection (VI-8.23 pg.234), HIntersectionList (VI-8.24 pg.235), GBasis5, and more (VI-7.18 pg.217)
**VI-9.20 IntersectionList**

**Syntax**

<table>
<thead>
<tr>
<th>IntersectionList(L:LIST of LIST):LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>IntersectionList(L:LIST of IDEAL):IDEAL</td>
</tr>
<tr>
<td>IntersectionList(L:LIST of MODULE):MODULE</td>
</tr>
</tbody>
</table>

**Description**

The function "IntersectionList" applies the function "Intersection" to the elements of a list, i.e., "IntersectionList([X_1,...,X_n])" is the same as "Intersection(X_1,...,X_n)".

The coefficient ring must be a field.

NOTE: In order to compute the intersection of inhomogeneous ideals, it may be faster to use the function "HIntersectionList".

To compute the intersection of ideals corresponding to zero-dimensional schemes, see the commands "GBM" (VI-7.20 pg.219) and "HGBM" (VI-8.15 pg.230).

**Example**

Use R ::= Q[x,y,z];
Points := [[0,0],[1,0],[0,1],[1,1]]; -- a list of points in the plane
IntersectionList([ Ideal(x-P[1]z, y-P[2]z) | P In Points]);
Ideal(y^2 - yz, x^2 - xz)
-------------------------------

Intersection(["a","b","c"],["b","c","d"]);
["b", "c"]
-------------------------------

IntersectionList([Ideal(x,y),Ideal(y^2,z)]);
Ideal(yz, xz, y^2)
-------------------------------

It = Intersection(Ideal(x,y),Ideal(y^2,z));
TRUE
-------------------------------

**See Also:** IdealOfProjectivePoints (VI-9.5 pg.240), IdealOfPoints (VI-9.4 pg.239), HGBM (VI-8.15 pg.230), HIntersection (VI-8.23 pg.234), HIntersectionList (VI-8.24 pg.235), Intersection (VI-9.19 pg.248)

**VI-9.21 Inverse**

**Syntax**

Inverse(X:OBJECT):OBJECT

**Description**

This function computes the multiplicative inverse of its argument. It is included for use when writing Inverse(X) comes more naturally than writing “X^(-1)”, though both notations are functionally equivalent.

**Example**

Inverse(Mat([[[1,2], [3,4]]]));
Mat([[-2, 1], [3/2, -1/2]])
-------------------------------

**VI-9.22 IO.SprintTrunc**

**Syntax**

IO.SprintTrunc(E:OBJECT,N:INT):STRING
**Description**

This function works like “Sprint” (VI-19.18 pg.338), turning the value of the expression \( E \) into a string, but if the string has length greater than \( N-1 \), it is truncated and the string “...” is concatenated. This function is useful in formatting reports of results.

```plaintext
Use R ::= Q[x,y];
I := Ideal(x,y);
I0.SprintTrunc(I,4);
Idea...
```

See Also: Format (VI-6.14 pg.207), Sprint (VI-19.18 pg.338)

**VI-9.23 Iroot**

**syntax**

\[ \text{Iroot}(N: \text{INT}, R: \text{INT}): \text{INT} \]

**Description**

This function computes the \( R \)-th root of an integer. If the argument is not a perfect \( R \)-th power it returns the integer part of the root.

```plaintext
Iroot(25, 2);
5
Iroot(99, 3);
4
Iroot(-1, 3);
-1
```

See Also: ILogBase (VI-9.8 pg.242)

**VI-9.24 IsAntiSymmetric**

**syntax**

\[ \text{IsAntiSymmetric}(M: \text{MAT}): \text{BOOL} \]

**Description**

This function tests whether the square matrix \( M \) is anti-symmetric.

```plaintext
M := Mat([
[0, 1, 2],
[-1, 0, 3],
[-2, -3, 0]
]);
IsAntiSymmetric(M);
TRUE
```

See Also: IsSymmetric (VI-9.40 pg.256)
VI-9.25  IsDefined

IsDefined(E)

where E is a CoCoA expression.

Description

This function returns TRUE if E is defined, otherwise it returns false. Typically, it is used to check if a name has already been assigned.

NOTE: this function used to be named “Defined”.

Example

IsDefined(MyVariable);
FALSE
---------------------------------
MyVariable := 3;
IsDefined(MyVariable);
TRUE
---------------------------------

VI-9.26  IsDiagonal

IsDiagonal(M: MAT): BOOL

Description

This function tests whether the square matrix M is diagonal.

Example

M := Mat([[0, 1, 2], [-1, 0, 3], [-2, -3, 0]]);
IsDiagonal(M);
FALSE
---------------------------------

See Also: IsSymmetric (VI-9.40 pg. 256), DiagonalMat (VI-4.16 pg. 190)

VI-9.27  IsEven, IsOdd

IsEven(N:INT):BOOL
IsOdd(N:INT):BOOL

Description

These functions test whether an integer is even or odd.

Example

IsEven(3);
FALSE
---------------------------------
IsOdd(3);
TRUE
---------------------------------
**VI-9.28** IsHomog

**Syntax**

\[
\text{IsHomog}(F:\text{POLY or VECTOR}):\text{BOOL} \\
\text{IsHomog}(L:\text{LIST}):\text{BOOL} \\
\text{IsHomog}(I:\text{IDEAL or MODULE}):\text{BOOL}
\]

**Description**

The first form of this function returns TRUE if F is homogeneous. The second form returns TRUE if every element of L is homogeneous. Otherwise, they return FALSE. The third form returns TRUE if the ideal/module can be generated by homogeneous elements, and FALSE if not. Homogeneity is with respect to the first row of the weights matrix.

**Example**

Use R ::= Q[x,y];
IsHomog(x^2-xy);
TRUE

-------------------------------

IsHomog(x-y^2);
FALSE

-------------------------------

IsHomog([x^2-xy,x-y^2]);
FALSE

-------------------------------

Use R ::= Q[x,y],Weights(Mat([[2,3], [1,2]]));
IsHomog(x^3y^2+y^4);
TRUE

-------------------------------

Use R ::= Q[x,y];
IsHomog(Ideal(x^2+y,y));
TRUE

-------------------------------

**See Also:** IsZero (VI-9.44 pg.258)

---

**VI-9.29** IsIn

**Syntax**

\[
E\text{ IsIn }F
\]

where E and F are CoCoA objects. For a precise description of allowable objects, see the full online help entry.

**Description**

The semantics of IsIn is explained in the following table:

POLY IsIn IDEAL	checks for ideal membership.
VECTOR IsIn MODULE	checks for module membership.
OBJECT IsIn LIST	checks if the list contains the object.
STRING IsIn STRING	checks if the first string is a substring of the second one.

**IsIn operator**
**VI-9.30 IsLexSegment**

**syntax**

\[
\text{IsLexSegment}(I: \text{MONOMIAL IDEAL}): \text{BOOL}
\]

**Description**

This function tests whether the monomial ideal I is a lex-segment ideal.

```
Use R ::= Q[x,y,z];
I := Ideal(xy^3, y^4, x^3, x^2y, x^2z);
IsLexSegment(I);
FALSE
```

**See Also:** `IsStable (VI-9.37 pg.255)`, `IsStronglyStable (VI-9.38 pg.255)`

**VI-9.31 IsNumber**

**syntax**

\[
\text{IsNumber}(E: \text{OBJECT}): \text{BOOL}
\]

**Description**

This function returns `TRUE` if E has type `INT`, `RAT`, or `ZMOD`. Otherwise, it returns `FALSE`.

```
Use R ::= Q[x,y];
IsNumber(x+y);
FALSE
IsNumber(3);
TRUE
IsNumber(3%5);
TRUE
```

**VI-9.32 IsPositiveGrading**

**syntax**

\[
\text{IsPositiveGrading}(M: \text{MAT}): \text{BOOL}
\]

**Description**

This function determines whether a matrix defines a positive grading, i.e. foreach column the first nonnegative entry is positive.

```
IsPositiveGrading(LexMat(5));
TRUE
IsPositiveGrading(Mat([[0,2,3], [1, -1, 0]]));
TRUE
IsPositiveGrading(Mat([[1,1], [0,-1], [-1, 0]]));
TRUE
```

**See Also:** `HilbertSeriesMultiDeg (VI-8.21 pg.233)`, `PositiveGrading4 (VI-16.12 pg.309)`
**VI-9.33 IsPPrime**

**syntax**

\[\text{IsPPrime}(N: \text{INT}): \text{BOOL}\]

**Description**

This function returns TRUE if its integer argument passes a fairly stringent primality test; otherwise it returns FALSE. There is a very small chance of the function returning TRUE even though the argument is composite; if it returns FALSE, we are certain that the argument is composite. Some people call it a compositeness test.

**example**

\[
\begin{align*}
\text{IsPPrime}(2); & \quad \text{TRUE} \\
\text{IsPPrime}(1111111111111111111); & \quad \text{TRUE} \\
\end{align*}
\]

\[
\{N \text{ in } 1..1111 \mid \text{IsPPrime}((10^N-1)/9)\}; \quad \text{only five values are known}
\]

\[
\{2, 19, 23, 317, 1031\}; \quad \text{next might be 49081}
\]

**See Also:** IsPrime (VI-9.34 pg.254), NextPPrime (VI-14.5 pg.289)

**VI-9.34 IsPrime**

**syntax**

\[\text{IsPrime}(N: \text{INT}): \text{BOOL}\]

**Description**

This function determines whether a small integer is prime. The range of permitted values for \(N\) is the same the range of permitted values for the NextPrime function: on most platforms \(N \leq 45000\) should work fine, on some platforms considerably larger values will work. For \(N\) greater than the limit an error is raised.

**example**

\[
\begin{align*}
\text{IsPrime}(32003); & \quad \text{TRUE} \\
\text{IsPrime}(10^{100}); & \quad \text{ERROR: IsPrime: number too large} \\
\end{align*}
\]

\[
\text{CONTEXT: Return/Error("IsPrime: number too large")}
\]

**See Also:** IsPPrime (VI-9.33 pg.254), NextPrime (VI-14.6 pg.289)

**VI-9.35 Isqrt**

**syntax**

\[\text{Isqrt}(N: \text{INT}): \text{INT}\]

**Description**

This function computes the square root of an integer. If the argument is not a perfect square it returns the integer part of the square root.

**example**

\[
\begin{align*}
\text{Isqrt}(16); & \quad 4 \\
\end{align*}
\]
\textbf{IsServerReady}

\begin{verbatim}
\texttt{IsServerReady()}: BOOL
\end{verbatim}

\textbf{Description}

This function tests whether the CoCoAServer is running. This may cause a harmless error message in the CoCoAServer window.

\begin{verbatim}
IsServerReady();
TRUE
\end{verbatim}

\textbf{See Also:} CoCoAServer (IV-14 pg.135)

\textbf{IsStable}

\begin{verbatim}
\texttt{IsStable(I: MONOMIAL IDEAL): BOOL}
\end{verbatim}

\textbf{Description}

This function tests whether the monomial ideal \(I\) is stable.

\begin{verbatim}
Use \texttt{R ::= Q[x,y,z];}
I := \texttt{Ideal(xy^3, y^4, x^3, x^2y, x^2z);} 
IsStable(I);
TRUE
\end{verbatim}

\textbf{See Also:} IsLexSegment (VI-9.30 pg.253), IsStronglyStable (VI-9.38 pg.255)

\textbf{IsStronglyStable}

\begin{verbatim}
\texttt{IsStronglyStable(I: MONOMIAL IDEAL): BOOL}
\end{verbatim}

\textbf{Description}

This function tests whether the monomial ideal \(I\) is strongly stable (Borel-fixed in characteristic 0).

\begin{verbatim}
Use \texttt{R ::= Q[x,y,z];}
I := \texttt{Ideal(xy^3, y^4, x^3, x^2y, x^2z);} 
IsStronglyStable(I);
TRUE
\end{verbatim}

\textbf{See Also:} IsLexSegment (VI-9.30 pg.253), IsStable (VI-9.37 pg.255)
Chapter VI-9

VI-9.39  IsSubset

**syntax**

IsSubset(L:LIST,M:LIST):BOOL

**Description**

This function returns TRUE is MakeSet(L) is contained in MakeSet(M); otherwise it returns FALSE.

NOTE: The obsolete function SubSet used to have the same behaviour.

**example**

IsSubset([1,1,2],[1,2,3,"a"]);
TRUE
-------------------------------
IsSubset([1,2],["a","b"]);
FALSE
-------------------------------
IsSubset([],[1,2]);
TRUE
-------------------------------

See Also: EqSet (VI-5.3 pg.196), MakeSet (VI-13.2 pg.273), Subsets (VI-19.22 pg.340)

VI-9.40  IsSymmetric

**syntax**

IsSymmetric(M: MAT): BOOL

**Description**

This function tests whether the square matrix M is symmetric.

**example**

M := Mat([  
[1, 2, 3],
[2, 4, 5],
[3, 5, 6]  
]);
IsSymmetric(M);
TRUE
-------------------------------

See Also: IsAntiSymmetric (VI-9.24 pg.250)

VI-9.41  IsTerm

**syntax**

IsTerm(X:POLY or VECTOR):BOOL

**Description**

The function determines whether X is a term. For a polynomial, a “term” is a power-product, i.e., a product of indeterminates. Thus, \( xy^2z \) is a term, while \( 4xy^2z \) and \( xy^2z + 2z^3 \) are not. For a vector, a term is a power-product times a standard basis vector, e.g., \((0, xy^2z, 0)\).

**example**

Use R ::= Q[x,y,z];
IsTerm(x+y^2);
FALSE
-------------------------------
### VI-9.42 IsTermOrdering

#### Syntax

```
IsTermOrdering(M:MAT):BOOL
```

#### Description

This function determines whether a square matrix defines a term-ordering, i.e. if its determinant is non-zero and if foreach column the first nonnegative entry is positive.

#### Example

```
IsTermOrdering(LexMat(5));
TRUE

IsTermOrdering(DegRevLexMat(5));
TRUE

IsTermOrdering(RevLexMat(5));
FALSE
```

#### See Also:
Custom Term-Orderings (IV-8.9 pg.107)

### VI-9.43 IsTree5

#### Syntax

```
IsTree5(L: LIST): [BOOL,LIST]
IsTree5(L: LIST, "NOOPT"): [BOOL,LIST]
IsTree5(L: LIST, "OPT"): [BOOL,LIST]
IsTree5(L: LIST, "CS_NOOPT"): [BOOL,LIST]
IsTree5(L: LIST, "CS_OPT"): [BOOL,LIST]
```

#### Description

This function tests whether the facet complex described by the list L of square free power products is a tree, plus a list which:
- is empty if L is a tree
- contains three elements of a cycle of L if L is not a tree.

Four options “NOOPT”, “OPT”, “CS_NOOPT”, “CS_OPT” are available as second argument, specifying different algorithms; the default is “CS_OPT”. 

```plaintext
Use R ::= Q[x,y,z,t];
D := [xy, yz, zt, tx];
IsTree5(D);
[FALSE, [xy, xt, yt]]

IsTree5([xy, yz, zt]);
[TRUE, []]

See Also: Introduction to CoCoAServer (IV-14.1 pg.135)

VI-9.44 IsZero

IsZero(X:OBJECT):BOOL

Description
This function tests whether its argument is zero; the argument can be of almost any type for which “zero” makes sense.

```plaintext
IsZero(23);
FALSE
-----------------------------------------------
IsZero(3-3);
TRUE
-----------------------------------------------
Use R ::= Q[x,y];
IsZero(x^2+3y-1);
FALSE
-----------------------------------------------
IsZero(Ideal(x^2,xy^3));
FALSE
-----------------------------------------------
IsZero(Vector(0,0,0));
TRUE
-----------------------------------------------

See Also: IsEven, IsOdd (VI-9.27 pg.251)
Chapter VI-10

J

VI-10.1 Jacobian

syntax

\[
\text{Jacobian}(L:\text{LIST}):\text{MAT}
\]

where \(L\) is a list of polynomials.

Description

This function returns the Jacobian matrix of the polynomials in \(L\) with respect to all the indeterminates of the current ring.

example

\[
\text{Use } R ::= \mathbb{Q}[x,y];
\]
\[
L := [x-y,x^2-y,x^3-y^2];
\]
\[
\text{Jacobian}(L);
\]
\[
\text{Mat}([
    \text{[1, -1]},
    \text{[2x, -1]},
    \text{[3x^2, -2y]}]
\])
\]

---------------------------------

259
Chapter VI-11

K
Chapter VI-12

L

VI-12.1 Last

**syntax**

Last(L:LIST):OBJECT
Last(L:LIST,N:INT):OBJECT

**Description**

In the first form, the function returns the last element of L. In the second form, it returns the list of the last N elements of L.

**example**

L := [1,2,3,4,5];
Last(L);
5

-----------------------------------

Last(L,3);
[3, 4, 5]

-----------------------------------

**See Also:** First (VI-6.6 pg.203), Head (VI-8.13 pg.229), Tail (VI-20.3 pg.346)

VI-12.2 Latex

**syntax**

Latex(X:OBJECT):TAGGED("'\verb&$latex.Latex&'")

**Description**

This function returns its argument in a format suitable for inclusion in a LaTeX document.

**example**

Use R ::= Q[x,y,z];
F := x^3+2y^2z;
Latex(F);
x^3 + 2y^2z

-----------------------------------

M := Mat([[1,2],[3,4]]);
Latex(M);
\left( \begin{array}{ll}
1 & 2 \\
3 & 4 \end{array}\right)

-----------------------------------
F := (x+y)/(1-z)^3;
Latex(F);
\frac{ - x - y}{z^{3}-3z^{2} + 3z-1}
-------------------------------
Latex(Ideal(x^2,y+z));
( \ x^{2},
y + z\ )
-------------------------------

See Also: Format (VI-6.14 pg.207), Sprint (VI-19.18 pg.338)

VI-12.3 LC

\begin{verbatim}
syntax

LC(F:POLY or VECTOR):C

where C is one of INT, RAT, or ZMOD.

Description

This function returns the leading coefficient of F, as determined by the term-ordering of the ring to which F belongs.

example

Use R ::= Q[x,y];
LC(x+3x^2-5y^2);
3
-------------------------------
LC(Vector(0,5y+6x^2,y^2));
6
-------------------------------
\end{verbatim}

See Also: Coefficients (VI-3.15 pg.175), CoeffOfTerm (VI-3.16 pg.176), LT (VI-12.16 pg.270)

VI-12.4 LCM

\begin{verbatim}
syntax

LCM(F_1:INT,...,F_n:INT):INT
LCM(L:LIST of INT):INT
LCM(F_1:POLY,...,F_n:POLY):POLY
LCM(L:LIST of POLY):POLY

Description

This function returns the least common multiple of “F_1,...,F_n” or of the elements in the list L. For the calculation of the GCDs and LCMs of polynomials, the coefficient ring must be a field.

example

Use R ::= Q[x,y];
F := x^2-y^2;
G := (x+y)^3;
LCM(F,G);
1/4x^4 + 1/2x^3y - 1/2xy^3 - 1/4y^4
-------------------------------
4 * It = G * (x-y); TRUE
-------------------------------
\end{verbatim}
Len(E:OBJECT):INT

Description

This function returns the "length" of an object, as summarized in the table below:

<table>
<thead>
<tr>
<th>type</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDEAL</td>
<td>length of Gens(E)</td>
</tr>
<tr>
<td>INT</td>
<td>1</td>
</tr>
<tr>
<td>LIST</td>
<td>number of items in the list</td>
</tr>
<tr>
<td>MAT</td>
<td>number of rows of the matrix</td>
</tr>
<tr>
<td>MODULE</td>
<td>length of Gens(E)</td>
</tr>
<tr>
<td>POLY</td>
<td>number of monomials</td>
</tr>
<tr>
<td>RATFUN</td>
<td>if E=F/G, then Len(E)=Len(F)+Len(G)</td>
</tr>
<tr>
<td>VECTOR</td>
<td>number of components</td>
</tr>
</tbody>
</table>

The operator "\verb&Len&"

Example

Use R ::= Q[x,y];
L := ["a",2,3,[4,5]];
Len(L);
4
-----------------------------------------------
Len(L[1]);
1
-----------------------------------------------
Len(L[4]);
2
-----------------------------------------------
Len(x^2 + xy + y^2 + xy^4);
4
-----------------------------------------------
Len((x^2+y^2)/(x+y+y^2));
5
-----------------------------------------------
Len((x+y) - (xy/x));
1
-----------------------------------------------
Len(Ideal(x,x^2));
2
-----------------------------------------------

See Also: Div (VI-4.21 pg.192), Mod (VI-13.17 pg.281), GCD (VI-7.21 pg.220)
**VI-12.6 LexMat**

**syntax**

\[ \text{LexMat}(N: \text{INTEGER}) : \text{MAT} \]

**Description**

This function returns the matrix defining a standard term-ordering. These functions return matrices defining standard term-orderings.

\[
\text{LexMat}(3);
\text{Mat}([\begin{bmatrix} 1, 0, 0 \\ 0, 1, 0 \\ 0, 0, 1 \end{bmatrix}])
\]

**See Also:** Ord (VI-15.8 pg.302), Orderings (IV-8.6 pg.106), DegLexMat (VI-4.6 pg.184), DegRevLexMat (VI-4.7 pg.185), RevLexMat (VI-18.21 pg.325), XelMat (VI-24.1 pg.361)

**VI-12.7 LinearSimplify**

**syntax**

\[ \text{LinearSimplify}(F: \text{POLY}) : [\text{POLY}, \text{POLY}] \]

**Description**

This function returns a list of two polynomials \([G, L]\) where \(L\) is linear and \(G\) is simple (in a heuristic sense). The composition \(G(L)\) is equal to the univariate polynomial given to LinearSimplify.

\[
\text{Use Q[x]};
\text{LinearSimplify}((123\times - 456)^9 - 1);
\text{[x^9 - 1, 123x - 456]}
\]

**VI-12.8 LinKer**

**syntax**

\[ \text{LinKer}(M: \text{MAT}) : \text{LIST} \]
\[ \text{LinKerModP}(M: \text{MAT}) : \text{LIST} \]

where \(M\) is a matrix over \(Q\) or \(Z\).

**Description**

The first function returns a list whose components are lists representing a \(Z\)-basis for the kernel of \(M\). Calling the function twice on the same input will not necessarily produce the same output, though in each case, a basis for the kernel is produced.

The second function returns a list whose components are lists representing a basis for the kernel of \(M\) over the current field of coefficients.
example

\[
\begin{align*}
M & := \text{Mat}([[1,2,3,4],[5,6,7,8],[9,10,11,12]]); \\
\text{LinKer}(M); & \text{[[1, -1, -1, 1], [0, 1, -2, 1]]} \\
\text{M*Transposed(Mat(It))}; & \text{Mat([[0, 0], [0, 0], [0, 0]])} \\
\text{Use } \mathbb{Z}/(3)[x]; \\
\text{LinKerModP}(M); & \text{[[1, 1, 1, 0], [0, -1, -1, -1]]} \\
\text{M*Transposed(Mat(It))}; & \text{Mat([[0, 0], [0, 0], [0, 0]])} \\
\end{align*}
\]

See Also: LinSol (VI-12.9 pg.267)

**VI-12.9 LinSol**

**syntax**

\[
\text{LinSol(M:MAT,L:LIST):LIST}
\]

where M is an m x n matrix over Z or Q, and L is a list of length m with entries in Z or Q (or a list of such lists).

**Description**

This function finds a solution to the inhomogeneous system of equations represented by M and L. Specifically, it returns a list, X, of length n with entries in Z or Q, such that \( M \times \text{Transposed(Mat(X))} = \text{Transposed(Mat([L]))} \), if such X exists; otherwise, it returns the empty list. Once a solution is found, all solutions may be found using the function \( \text{LinKer} \).

NOTE: “LinSol” (VI-12.9 pg.267) can solve several inhomogeneous systems at once. If L has the form \([L_1, ..., L_k]\) where each \(L_i\) is a list of length m with entries in Z or Q, then LinSol(M,L) returns a list \([X_1, ..., X_k]\) where \(X_i\) is a solution to the system of linear equations represented by M and \(L_i\).
LinSol(M, [L, [1, 2, 3]]);
[[199/5, 742/5, -181/5], [4/15, 7/15, -1/15]]

See Also: LinKer (VI-12.8 pg.266)

VI-12.10 List

**syntax**

```
List(E: OBJECT): LIST
```

where E has type LIST, MAT, or VECTOR.

**Description**

This function converts the expression E into a list. It is the same as Cast(E, LIST).

**example**

```
Use R ::= Q[x,y];
M := Jacobian([x^2*y^2, x+y]);
M;
Mat([[2xy^2, 2x^2y],
 [1, 1]])

Head(M);

ERROR: Bad parameters
CONTEXT: Head(M)

Head(List(M));
[2xy^2, 2x^2y]

```

The error occurs because the function “Head” (VI-8.13 pg.229) only accepts lists as arguments. 

See Also: NewList (VI-14.2 pg.288)

VI-12.11 LM

**syntax**

```
LM(P: POLY or VECTOR): same type as P
```

**Description**

This function returns the leading monomial of P. The monomial includes the coefficient. To get the leading term of P, (which does not included the coefficient), use “LT” (VI-12.16 pg.270).

**example**

```
Use R ::= Q[x,y];
LM(3x^2y+y);
3x^2y

LM(Vector(2x,y));
Vector(2x, 0)

LT(Vector(2x,y));
```
VI-12.12 Log

**syntax**

Log(F:POLY):LIST

**Description**

This function returns the list of exponents of the leading term of F.

**example**

Use R ::= Q[x,y,z];
F := x^3y^2z^5+x^2y+xz^4;
Log(F);
[3, 2, 5]

**See Also:** ILogBase (VI-9.8 pg.242), LT (VI-12.16 pg.270), LogToTerm (VI-12.13 pg.269)

VI-12.13 LogToTerm

**syntax**

LogToTerm(L:LIST):POLY

where L is a list of integers.

**Description**

This function returns the power-product whose list of exponents is L.

**example**

Use R ::= Q[x,y,z];
LogToTerm([2,3,5]);
x^2y^3z^5
Log(It);
[2, 3, 5]

**See Also:** Log (VI-12.12 pg.269)

VI-12.14 LPos

**syntax**

LPos(V:VECTOR):INT

**Description**

This function returns the position of the leading power-product of V.

**example**

Use R ::= Q[x,y],ToPos; -- ToPos is the default module term-ordering
LT(Vector(x,y^2));
Vector(0, y^2)
See Also: LM (VI-12.11 pg.268), LPP (VI-12.15 pg.270), LT (VI-12.16 pg.270)

### VI-12.15 LPP

#### Syntax

LPP(P:POLY or VECTOR):POLY

#### Description

This function returns the leading power-product of P.

#### Example

Use R ::= Q[x,y];
LPP(3x^2y+y); -- LPP is the same as LT for polynomials
x^2y
LPP(Vector(2x,y));
x
LT(Vector(2x,y)); -- Note the difference between LPP and LT
-- for vectors.
Vector(x, 0)

See Also: LC (VI-12.3 pg.264), LM (VI-12.11 pg.268), LT (VI-12.16 pg.270)

### VI-12.16 LT

#### Syntax

LT(E):same type as E

where E has type IDEAL, MODULE, POLY, or VECTOR.

#### Description

If E is a polynomial this function returns the leading term of the polynomial E with respect to the term-ordering of the polynomial ring of E. For the leading monomial, which includes the coefficient, use “LM” (VI-12.11 pg.268).
Use $R := \mathbb{Q}[x,y,z]$; -- the default term-ordering is DegRevLex
LT($y^2-xz$);
\[
y^2
\]
-------------------------------
Use $R := \mathbb{Q}[x,y,z]$, Lex;
LT($y^2-xz$);
\[
xy
\]
-------------------------------
If $E$ is a vector, $\text{LT}(E)$ gives the leading term of $E$ with respect to the module term-ordering of the polynomial ring of $E$. For the leading monomial, which includes the coefficient, use “LM” (VI-12.11 pg.268).

Example

Use $R := \mathbb{Q}[x,y]$;
V := Vector(0,x,$y^2$);
LT(V); -- the leading term of $V$ w.r.t. the default term-ordering, ToPos
Vector(0, 0, $y^2$)
-------------------------------
Use $R := \mathbb{Q}[x,y]$, PosTo;
V := Vector(0,x,$y^2$);
LT(V); -- the leading term of $V$ w.r.t. PosTo
Vector(0, x, 0)
-------------------------------
If $E$ is an ideal or module, $\text{LT}(E)$ returns the ideal or module generated by the leading terms of all elements of $E$, sometimes called the “initial” ideal or module.

Example

Use $R := \mathbb{Q}[x,y,z]$;
I := Ideal(x-y,x-z^2);
LT(I);
Ideal(x, $z^2$)
-------------------------------
See Also: LC (VI-12.3 pg.264), LM (VI-12.11 pg.268), LPP (VI-12.15 pg.270), Module Orderings (IV-8.10 pg.108), Orderings (IV-8.6 pg.106), GBasis5, and more (VI-7.18 pg.217)
Chapter VI-13

M

VI-13.1 MakeCheck

MakeCheck()

Description
This function run a series of tests on the whole system. To get a reliable result you should run this on a “just opened” CoCoA because some printouts may mysteriously add some empty spaces which will result in an apparent, failure of some tests.

You should start “CoCoAServer” (IV-14 pg.135) to test the whole system.

MakeCheck();

VI-13.2 MakeSet

MakeSet(L:LIST):LIST

Description
This function returns a list obtained by removing duplicates from L. It used to be called “Set”, but this is deprecated for the ambiguity with the command named “Set-Unset” (VI-19.6 pg.332) for setting panel options.

MakeSet([2,2,2,1,2,1,1,3,3]);
[2, 1, 3]

WARNING: to test two sets for equality use the function “EqSet” (VI-5.3 pg.196) instead of a normal equality test (because the latter yields false if the elements are in a different order).

See Also: EqSet (VI-5.3 pg.196), Intersection (VI-9.19 pg.248), IntersectionList (VI-9.20 pg.249), Insert (VI-9.16 pg.246), Remove (VI-18.13 pg.321)

VI-13.3 Man

? key
?? key
where “{\it key}” is a literal string (without quotes)

Man(S:STRING):NULL
Man(S:STRING,N:INT):NULL

273
where \( N = 0 \) or \( 1 \).

**Description**

The “Man” function is used to search the online help system for information matching a keyword.

In the forms “?key” and “??key”, the “key” is a literal string. This means that “key” should not appear enclosed in quotes. For instance, “?gbasis” is equivalent to “Man("gbasis")”. The command “?” is case insensitive and does not notice blank space before or after “key”. Also, the semicolon usually required at the end of a line of CoCoA input is optional. (“?” was introduced in CoCoA 4.2)

The online help contains a manual and a list of commands. Each section of the manual and each command has an associated list of keywords. To explain how the search system works, we will use the following terminology: say the key \( S \) “matches” a keyword \( K \) if \( S \) is a substring of \( K \), not counting capitalization. The key \( S \) is an “exact match” if it is identical to \( K \), not counting capitalization. The command “?S” searches for keywords in the online help system matching the \( S \). If only one match occurs or an exact match occurs, the corresponding information is displayed. Otherwise, if more than one match occurs (and no exact match), matching keywords are listed. It is often advisable to make search words small at first to get as many matches as possible.

**example**

```coconut
?po
```

See:

- Commands and Functions for Polynomials
- DensePoly
- EquiIsoDec
- Evaluation of Polynomials
- Factoring Polynomials

```
-> Output suppressed <--
```

**example**

```coconut
?f for poly
```

```
------------- Commands and Functions for Polynomials -------------
```

The following are commands and functions for polynomials:

```
-> Output suppressed <--
```

Intelligent choice of the string \( S \) can save a lot of typing. For example, there are many sections in the manual whose titles begin: “Commands and Functions for”; in the example above, we matched the corresponding section for polynomials by choosing the search string “for poly”.

The command “??S” displays all keywords in the online help system that match \( S \) (an exact match is not required, and *all* keywords are listed even if there is an exact match).

**example**

```coconut
??gbasis
```

See:

- GB.Start_GBasis
- GBasis
- ReducedGBasis

```

```

Typing “?gbasis”, with a single question mark produces only the manual entry for “GBasis”.

The function “Man” is equivalent to “?” except it requires an actual string, e.g., “Man("gbasis")” rather than “Man(gbasis)”. “Man” with the optional second argument set to the number 0 is equivalent to “??”. Since “Man” requires more typing than “?”, there should never be a need to use it.
Note: The set of keywords associated with any section of the manual always includes the title of the manual, so it might help to first take a look at the table of contents, using “H.Toc”. (The titles of Parts, which are numbered by “H.Toc” do not appear as keywords: only titles of chapters and sections.) Similarly, the set of keywords for a command always includes the command’s name. The complete list of documented commands can be printed by entering “H.Commands("")”.

See Also: H.Commands (VI-8.2 pg.225), H.Syntax (VI-8.7 pg.227), Shortcuts (VI-0.1 pg.155)

### VI-13.4 MantissaAndExponent

**syntax**

```plaintext
MantissaAndExponent(X:RAT, Prec:INT):RECORD
```

**Description**

This function converts a rational number into a Record with components named Mantissa and Exponent. The value of the Exponent field is the unique integer E such that $1 \leq X \times 10^E \leq 10$, and the value of Mantissa is the nearest integer to $(X \times 10^E) \times 10^{Prec - 1}$. As an exception the case of $X=0$ always produces zero values for both components of the record.

**example**

```
FloatStr(1/2); -- trailing zeroes are not suppressed
5.000000000*10^(-1)

MantissaAndExponent(1/2,3); -- 1/2 = 5.00*10^(-1)
Record[Exponent = -1, Mantissa = 500]

MantissaAndExponent(0.9999, 3); -- 0.9999 rounds up to give 1.00
Record[Exponent = 0, Mantissa = 100]

```

See Also: DecimalStr (VI-4.3 pg.181), FloatApprox (VI-6.10 pg.205), FloatStr (VI-6.11 pg.205)

### VI-13.5 MapDown

**syntax**

```plaintext
MapDown(F:POLY):RAT or ZMOD
```

**Description**

This function converts a constant polynomial to the equivalent coefficient. If the argument is not a constant polynomial, an error is signalled.

**example**

```
Use Q[x,y,z];
Type((x+1)^2 - x*(x+2)); -- value is seen as a polynomial
POLY

MapDown((x+1)^2 - x*(x+2)); -- attempt to map down to the coeff ring
1

Type(It); -- value is now simply a coefficient
RAT

MapDown((x+1)^2 - x^2); -- 2*x + 1 is not a coefficient
ERROR: Cannot MapDown non-const poly
CONTEXT: Error("Cannot MapDown non-const poly")

```
VI-13.6 Mat

**syntax**

Mat(E):MAT
Mat[E]:MAT -- deprecated!

where E is either: a "rectangular" lists of lists, a vector, or a module.

**Description**

This function converts the expression E into a matrix. The first form is equivalent to Cast(E,MAT).

**example**

Use R := Q[x,y];
L := [[1,2],[3,4]];
Mat(L);
Mat([ [1, 2], [3, 4] ])

M := Module([x,x^2,y],[x^2,y,0]);
Mat(M);
Mat([ [x, x^2, y], [x^2, y, 0] ])

Mat([[1,2],[3,4]]);
Mat([[1, 2], [3, 4]])

M := Mat([["a","b"],["c",[1,2]]]); -- a slightly more obscure example
N := Mat([["d","e"],["f",[3,4]]]);
M+N;
Mat([ ["ad", "be"], ["cf", [4, 6]] ])

**See Also:** BlockMatrix (VI-2.7 pg.166), NewMat (VI-14.3 pg.288)

VI-13.7 MatConcatHor

**syntax**

MatConcatHor(A:LIST,MAT, B:LIST,MAT):MAT

where A and B have the same number of rows
Description

This function creates a simple block matrix. The two entries are matrices (or lists cast-able to a matrix) with the same number of rows. MatrixConcatHor(A,B) will return a matrix of the form

\[
\begin{bmatrix}
A & B \\
\end{bmatrix}
\]

\[
A := \begin{bmatrix}
[1,2,3],
[4,5,6] \\
\end{bmatrix};
B := \begin{bmatrix}
[101,102],
[103,104] \\
\end{bmatrix};
\]

MatConcatHor(A,B);
Mat((
[1, 2, 3, 101, 102],
[4, 5, 6, 103, 104]
));

See Also: BlockMatrix (VI-2.7 pg.166), MatConcatVer (VI-13.8 pg.277)

VI-13.8 MatConcatVer

\[
\text{syntax}
\]
MatConcatVer(A:LIST,MAT, B:LIST,MAT):MAT
where A and B have the same number of columns

Description

This function creates a simple block matrix. The two entries are matrices (or lists cast-able to a matrix) with the same number of columns. MatConcatVer(A,B) will return a matrix of the form

\[
\begin{bmatrix}
A \\
B \\
\end{bmatrix}
\]

\[
A := \begin{bmatrix}
[1,2,3],
[4,5,6] \\
\end{bmatrix};
B := \begin{bmatrix}
[101,102,103] \\
\end{bmatrix};
\]

MatConcatVer(A,B);
Mat((
[1, 2, 3],
[4, 5, 6],
[101, 102, 103]
));

See Also: BlockMatrix (VI-2.7 pg.166), MatConcatHor (VI-13.7 pg.276)

VI-13.9 Max, Min

\[
\text{syntax}
\]
Max(E_1:OBJECT,...,E_n:OBJECT):OBJECT
Min(E_1:OBJECT,...,E_n:OBJECT):OBJECT
Max(L:LIST):OBJECT
Min(L:LIST):OBJECT
**Description**

In the first form, these functions return a maximum and minimum, respectively, of $E_1, ..., E_n$. In the second form, they return a maximum and minimum, respectively, of the objects in the list $L$.

```plaintext
Max([1,2,3]);
3

Max(1,2,3);
3

Min(1,2,3);
1

Use R ::= Q[x,y,z];
Max(x^3z, x^2y^2); -- x^2y^2 > x^3z in the default ordering, DegRevLex
x^2y^2

Min(x^3z, x^2y^2);
x^3z

Use R ::= Q[x,y,z], DegLex;
Max(x^3z, x^2y^2); -- x^3z > x^2y^2 in DegLex
x^3z

Max(Ideal(x),Ideal(x^2),Ideal(x,y),Ideal(x-2,y-1)); -- ordered by inclusion
-- a maximal element in the list is returned
Ideal(x, y)

```

**See Also:** Relational Operators (III-3.3 pg.52)

---

**VI-13.10 MDeg**

```plaintext
MDeg(F:POLY):LIST
```

**Description**

This function returns the multi-degree of $F$, as determined by the weights of the polynomial ring of $F$. The function “Deq” (VI-4.5 pg.184) returns the weight given by only the first row of the weights matrix.

NB: In CoCoA-5 will me managed differently to allow more flexibility.

```plaintext
Use R ::= Q[x,y], Weights(Mat([[1,2],[3,4],[5,6]]));
MDeg(x);
[1, 3, 5]

MDeg(y);
[2, 4, 6]

Deg(y);
2

MDeg(x^2+y);
[2, 6, 10]

```

**See Also:** Deg (VI-4.5 pg.184), Weights Modifier (IV-8.5 pg.105), PositiveGrading4 (VI-16.12 pg.309)
VI-13.11 Memory

syntax

Memory():TAGGED("Memory")
Memory(R:RING):TAGGED("Memory")

Description

The first form of this function prints the contents of the working memory, i.e., all non-global variables. The second form lists all global variables bound to the ring R.

For more information about memory in CoCoA, see the chapter entitled “Memory Management” (III-8 pg.67).

example

Use R ::= Q[x,y,z];
I := Ideal(x-y^2,xy-z^3);
X := 14;
ENV.R.Y := 5; -- a global variable bound to R
-- recall that "ENV.R" is equivalent to "MEMORY.ENV.R"
Use S ::= Q[a,b];
J := Ideal(a,b);
ENV.S.Z := 7;
Memory();
["I", "J", "X"]
-------------------------------
Memory(R);
["Y"]
-------------------------------

See Also: GlobalMemory (VI-7.30 pg.224), Memory Management (III-8 pg.67)

VI-13.12 MinGens

syntax

MinGens(M:IDEAL or MODULE or TAGGED("Quotient")):LIST

Description

If M is an ideal or module, this function returns a list of minimal generators for M. If M is the quotient of a polynomial ring by an ideal I or the quotient of a free module by the submodule N, then MinGens returns a set of minimal generators for I or N, respectively.

The coefficient ring must be a field.

The input must be homogeneous. The similar command “Minimalized” (VI-13.14 pg.280), will accept inhomogeneous input.

example

Use R ::= Q[x,y,z];
I := Ideal(x-y,(x-y)^4,z+y,(z+y)^2);
I;
Ideal(x - y, x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4, y + z, y^2 + 2yz + z^2)
-------------------------------
MinGens(I);
[y + z, x + z]
-------------------------------
MinGens(R/I);
[y + z, x + z]
-------------------------------
M :=Module([x+y,x-y],[(x+y)^2,(x+y)(x-y)]);
MinGens(M);
See Also: Minimalize (VI-13.13 pg.280), Minimalized (VI-13.14 pg.280)

VI-13.13 Minimalize

**syntax**

```
Minimalize(X: IDEAL): NULL
Minimalize(X: MODULE): NULL
```

**where X is a variable containing an ideal or module.**

**Description**

In the inhomogeneous case it removes redundant generators from the ideal or module contained in X, storing the result in X, i.e. the original ideal or module is overwritten.

In the homogeneous case, it obtains a generating set with smallest possible cardinality. The minimal set of generators found by CoCoA is not necessarily a subset of the given generators. As with the inhomogeneous case, it overwrites its argument.

The coefficient ring is assumed to be a field.

The similar function “Minimalized” (VI-13.14 pg.280) performs the same operation, but returns the minimalized ideal or module and does not modify the argument.

**example**

```
Use R := Q[x,y,z];
I := Ideal(x-y^2,z-y^5,x^5-z^2);
I;
Ideal(-y^2 + x, -y^5 + z, x^5 - z^2)
--
Minimalize(I);
I;
Ideal(-y^2 + x, -y^5 + z)
--
J := Ideal(x, x-y, y-z, z^2);
Minimalized(J);
Ideal(y - z, x - z, z)
--
```

See Also: MinGens (VI-13.12 pg.279), Minimalized (VI-13.14 pg.280)

VI-13.14 Minimalized

**syntax**

```
Minimalized(E: IDEAL): IDEAL
Minimalized(E: MODULE): MODULE
```

**where X is a variable containing an ideal or module.**

**Description**

In the inhomogeneous case it returns the ideal or module obtained by removing redundant generators from E.

In the homogeneous case, it obtains a generating set with smallest possible cardinality. The minimal set of generators found by CoCoA is not necessarily a subset of the given generators. It returns the minimalized ideal or module.
The coefficient ring is assumed to be a field.

The similar function “Minimalize” (VI-13.13 pg.280) performs the same operation, but modifies the argument and returns NULL.

```plaintext
Use R ::= Q[x,y,z];
I := Ideal(x-y^2, z-y^5, x^5-z^2);
I;
Ideal(-y^2 + x, -y^5 + z, x^5 - z^2)

Minimalized(I);
Ideal(-y^2 + x, -y^5 + z)

I;
Ideal(-y^2 + x, -y^5 + z, x^5 - z^2)

Minimalize(I);
I;
Ideal(-y^2 + x, -y^5 + z)

J := Ideal(x, x-y, y-z, z^2);
Minimalized(J);
Ideal(y - z, x - z, z)

```

See Also: MinGens (VI-13.12 pg.279), Minimalize (VI-13.13 pg.280)

### VI-13.15 Minors

**syntax**

Minors(N:INT, M:MAT):LIST

**Description**

This function returns the list of all determinants of N x N submatrices of M.

```plaintext
M := Mat([[1,2,3],[1,2,4]]);
Minors(2, M);
[4, 7, 2]

```

See Also: Det (VI-4.15 pg.190)

### VI-13.16 MinSyzMinGens

**syntax**

MinSyzMinGens: FUNCTION ELIMINATED.

**Description**

The MinSyzMinGens function has been removed.

See Also: SyzMinGens (VI-19.28 pg.343)

### VI-13.17 Mod

**syntax**

Mod(N:INT, D:INT):INT
Chapter VI-13. M

Description

If \( N = Q \cdot D + R \), and \( 0 \leq R < |D| \), then “\( \text{Div}(N,D) \)” returns \( Q \) and “\( \text{Mod}(N,D) \)” returns \( R \).

NOTE: To perform the division algorithm on a polynomial or vector, use “NR” (VI-14.11 pg. 291) (normal remainder) to find the remainder, or “\( \text{DivAlg} \)” (VI-4.22 pg. 192) to get both the quotients and the remainder.

\[
\begin{align*}
\text{Div}(10,3); & \quad 3 \\
\text{Mod}(10,3); & \quad 1
\end{align*}
\]

See Also: \( \text{Div} \) (VI-4.21 pg. 192), \( \text{DivAlg} \) (VI-4.22 pg. 192), \( \text{GenRepr} \) (VI-7.24 pg. 221), \( \text{NF} \) (VI-14.7 pg. 290), \( \text{NR} \) (VI-14.11 pg. 291)

VI-13.18 Mod2Rat

Syntax

\[
\text{Mod2Rat(Residue:INT, Modulus:INT, DenomBound:INT):RAT}
\]

Description

This function determines a rational number equivalent to the given residue modulo the given modulus; the denominator will not exceed DenomBound, and the absolute value of the numerator will be at most \( \text{Modulus}/(2 \cdot \text{DenomBound}) \) – this guarantees uniqueness of the answer. If no such rational exists, or if DenomBound exceeds Modulus/2 then zero is returned. DenomBound must be positive; if not, zero is returned.

\[
\begin{align*}
\text{Mod2Rat}(239094665,314159265,10000); & \quad 355/113 \\
\text{Residue} := 1234567; & \quad \text{To compute inverse of} \\
\text{Modulus} := 2^{100}; & \quad \text{Residue modulo Modulus}, \\
\text{Mod2Rat(Residue, Modulus, \text{Div}(\text{Modulus}-1,2))}; & \quad \text{result is the denominator.} \\
1/284507170216309247716413542199 & \quad \text{--- result is the denominator.}
\end{align*}
\]

See Also: \( \text{Div} \) (VI-4.21 pg. 192), \( \text{Mod} \) (VI-13.17 pg. 281)

VI-13.19 Module

Syntax

\[
\begin{align*}
\text{Module(V_1:VECTOR,...,V_n:VECTOR):MODULE} \\
\text{Module(L:LIST):MODULE} \\
\text{Module(I:IDEAL):MODULE}
\end{align*}
\]

where \( L \) is a list of elements cast-able to vectors.

Description

The first function returns the module generated by the vectors “\( V_1, \ldots, V_n \)”. The second function returns the module generated by the (elements cast-able to) vectors in \( L \). The third function returns the module generated by the generators of \( I \). This is the same as the function “\( \text{Cast}(E,\text{MODULE}) \)”.

\[
\begin{align*}
\text{Use } R ::= \mathbb{Q}[x,y,z]; \\
\text{M := Module([x^2-y^3,x^3-yz],[x^3,z^2])}; \\
\text{M;}
\end{align*}
\]
Module([-y^3 + x^2, x^3 - yz], [x^3, z^2])
-----------------------------
L := [-y^3 + x^2, x^3 - yz], [x^3, z^2];
Module(L) = M;
TRUE
-----------------------------
I := Ideal(x,y^2,z^3);
Module(I);
Module([x], [y^2], [z^3])
-----------------------------

See Also: Cast (VI-3.3 pg.170)

VI-13.20 Monic

Monic(F:POLY):POLY
Monic(L:LIST of POLY):LIST of POLY

Description
In the first form, this function returns F divided by its leading coefficient (see “LC” (VI-12.3 pg.264)) or, if F is zero, it returns zero.

In its second form, it returns the list obtained by applying the first form of Monic to each of the components of L.

Use R ::= Q[x,y];
L := [4x^5-y^2,3x-2y^4];
Monic(L);
[x^5 - 1/4y^2, y^4 - 3/2x]
-----------------------------

Use R ::= Z[x,y];
-- WARNING: Coeffs are not in a field
-- GBasis-related computations could fail to terminate or be wrong
-----------------------------

L := [4x^5-y^2,3x-2y^4];
Monic(L); -- can’t invert coefficients over Z
-----------------------------
ERROR: Cannot divide
CONTEXT: Cond(Type(X) = LIST, [Monic(A)|A IN X], IsZero(X), X, X / LC(X))
-----------------------------

Use R ::= Z/(5)[x,y];
F := 2x^2+4y^3;
Monic(F);
y^3 - 2x^2
-----------------------------

See Also: LC (VI-12.3 pg.264)

VI-13.21 Monomials

Monomials(F:POLY or VECTOR):LIST
Chapter VI-13. M

**Description**

This function returns the list of monomials of F. The function “Support” (VI-19.25 pg.341) returns the list of terms (monomials without coefficients).

```plaintext
Use R ::= Q[x,y];
F := 3x^2y+5y^3-xy^5;
Monomials(F);
[-xy^5, 3x^2y, 5y^3]

Support(F);
[xy^5, x^2y, y^3]

Monomials(Vector(3x^2y+y,5xy+4));
[Vector(3x^2y, 0), Vector(0, 5xy), Vector(y, 0), Vector(0, 4)]
```

**See Also:** Coefficients (VI-3.15 pg.175), Support (VI-19.25 pg.341)

### VI-13.22 MonInIdeal

**Syntax**

```plaintext
MonsInIdeal(I:IDEAL):IDEAL
```

**Description**

This function returns the ideal generated by all monomials in the original ideal I.

```plaintext
Use R ::= Q[x,y,z];
I := Ideal(xy^3+z^2, y^5-z^3, xz-y^2-x^3, x^4-xz^2+y^3);
MonsInIdeal(I);
Ideal(z^3, yz^2, x^2z^2, x^5z, x^4yz, x^5y, x^2y^2z, x^7, x^4y^2,
xy^3z, y^4z, xy^4, x^3y^3, y^5)
```

### VI-13.23 More

**Syntax**

```plaintext
More(S:STRING):NULL
More():NULL
```

**Description**

The purpose of this function is to print the string S without scrolling off of the screen.

The first form of this function stores the string S in a “MoreDevice”, then prints the first N lines from the MoreDevice where N is the integer stored in the global variable MEMORY.MoreCount. Subsequent calls to “More” print the next N lines from the MoreDevice, (each time removing the lines from the device) until the MoreDevice is empty. After each call to “More” a line with “More();” is printed as long as the MoreDevice is not empty. This line is easily cut-and-pasted.

The user may set the number of lines to print with the command “MEMORY.MoreCount := X”, where X is an integer. The default is value is 20.

If E is “any” CoCoA object, the command “Sprint(E)” converts E into a string. The output may then be given to “More” for printing.

To use the more device with the online help system, see “H.SetMore” (VI-8.6 pg.226), “H.UnSetMore” (VI-8.11 pg.228).

**See Also:** H.UnSetMore (VI-8.11 pg.228), H.SetMore (VI-8.6 pg.226), Commands and Functions for Strings (IV-3.5 pg.92)
VI-13.24 Multiplicity

**syntax**

```plaintext
Multiplicity(R:RING or TAGGED("Quotient")):INT
```

**Description**

This function computes the multiplicity (or degree) of M, i.e., the leading coefficient of the Hilbert polynomial multiplied by the factorial of the degree of the Hilbert polynomial. The weights of the indeterminates of the polynomial ring of M must all be 1. M can be a module or a quotient.

```plaintext
Use R ::= Q[t,x,y,z];
Multiplicity(R/Ideal(x,y,z)^5);
35
```

**See Also:** Hilbert (VI-8.16 pg.231), HilbertSeries (VI-8.20 pg.232), HVector (VI-8.27 pg.236), Poincare (VI-16.8 pg.307)
Chapter VI-14

N

VI-14.1 NewId

**syntax**

```
NewId():STRING
```

**Description**

This function returns a string of the form “V#N” where N is an integer. Each time it is called, the integer N changes, producing a new string. The purpose is to produce identifiers for variables or rings. (CoCoA does not check for the unlikely event that variables of the same form have been defined without the use of “NewId”.) The function “NewId” is often used with “Var” (VI-22.1 pg.355).

The most important use for this function is for creating temporary rings within user-defined functions. For an example, see the section of the tutorial entitled “Rings Inside User-Defined Functions” (II-2.18 pg.35).

**example**

```
NewId();
V#0

NewId();
V#1

X := NewId();
X;
V#2

Var(X) := 3;
Var(NewId()) := 4;
Describe Memory();
-----------------------------[Memory]-----------------------------
It = V#2
V#2 = 3
V#3 = 4
X = V#2

Y := NewId();
Var(Y) ::= Q[a,b];
Use Var(Y);
RingEnvs();
[“Q”, “Qt”, “R”, “V#6”, “Z”]

Y;
V#6

```
VI-14.2 NewList

Syntax

```plaintext
NewList(N:INT):LIST
NewList(N:INT,E:OBJECT)
```

Description

The second function returns a list of length N, filled by E. The first function, in which E is not indicated, returns a list of length N filled with "Null" values.

Example

```plaintext
NewList(4,"a");
["a", "a", "a", "a"]

NewList(4);
[Null, Null, Null, Null]
```

See Also: List (VI-12.10 pg.268)

VI-14.3 NewMat

Syntax

```plaintext
NewMat(M:INT,N:INT):MAT
NewMat(M:INT,N:INT,E:OBJECT):MAT
```

Description

The second function returns an MxN matrix, filled by E. The first function, in which E is not indicated, returns an MxN matrix filled with "Null" values.

Example

```plaintext
NewMat(2,3,"a");
Mat([["a", "a", "a"],
 ["a", "a", "a"]])

NewMat(2,2);
Mat([[Null, Null],
 [Null, Null]])
```

See Also: Mat (VI-13.6 pg.276)
**VI-14.4 NewVector**

Syntax

NewVector(N:INT):VECTOR
NewVector(N:INT,E:OBJECT):VECTOR

where E is cast-able to POLY.

**Description**

The second function returns a vector of length N, each of whose components is E. The first function, in which E is not indicated, returns a vector of length N filled with zeros.

Example

Use R ::= Q[x,y];
NewVector(4);
Vector(0, 0, 0, 0)
----------------------------------
NewVector(3,x^2+y);
Vector(x^2 + y, x^2 + y, x^2 + y)
----------------------------------

See Also: Vector (VI-22.2 pg.356)

**VI-14.5 NextPPrime**

Syntax

NextPPrime(N:INT):INT

**Description**

This function computes the smallest probable prime number greater than N. If N is negative an error is generated. This function can generate primes larger than permitted as the characteristic of a finite field in CoCoA.

Example

NextPPrime(1000);
1009
----------------------------------
NextPPrime(10^50);
10000000000000000000000000000000000000000000000000151
----------------------------------

See Also: IsPPrime (VI-9.33 pg.254), NextPrime (VI-14.6 pg.289)

**VI-14.6 NextPrime**

Syntax

NextPrime(N:INT):INT

**Description**

This function computes the smallest prime number greater than N. If N is negative or too large then the value zero is returned. This function may generate primes larger than permitted as the characteristic of a finite field in CoCoA. On most platforms primes up to about 45000 can be generated; in some cases a higher limit exists.

Example

NextPrime(1000);
1009
----------------------------------
See Also: IsPrime (VI-9.34 pg.254), NextPPrime (VI-14.5 pg.289)

VI-14.7 NF

**syntax**

NF(F:POLY,I:IDEAL):POLY  
NF(V:VECTOR,M:MODULE):VECTOR

**Description**

The first function returns the normal form of F with respect to I. It also computes a Groebner basis of I if that basis has not been computed previously.

The second function returns the normal form of V with respect to M. It also computes a Groebner basis of M if that basis has not been computed previously.

The coefficient ring is assumed to be a field. Note that the definition of normal form depends on the current value of the option FullRed of the panel GROEBNER. If FullRed is FALSE it means that a polynomial is in normal form when its leading term with respect to the term ordering cannot be reduced. If FullRed is TRUE it means that a polynomial is in NF if and only if each monomial cannot be reduced.

**example**

Use R ::= Q[x,y,z];  
Set FullRed;  
I := Ideal(z);  
NF(x^2+xy+xz+y^2+yz+z^2,I);  
x^2 + xy + y^2  
-----------------------------------  
UnSet FullRed;  
NF(x^2+xy+xz+y^2+yz+z^2,I);  
x^2 + xy + y^2 + xz + yz + z^2  
-----------------------------------

See Also: DivAlg (VI-4.22 pg.192), FullRed (V-1.13 pg.143), GenRepr (VI-7.24 pg.221), IsIn (VI-9.29 pg.252), NFsAreZero (VI-14.8 pg.290), NR (VI-14.11 pg.291)

VI-14.8 NFsAreZero

**syntax**

NFsAreZero(L:LIST of POLY,M IDEAL):BOOL  
NFsAreZero(L:LIST of VECTOR,M:MODULE):BOOL

**Description**

This function returns TRUE if each component of L has normal form 0 with respect to M, i.e., if each component is an element of M. Otherwise, it returns FALSE. The coefficient ring is assumed to be a field.

**example**

Use S ::= Q[t,x,y,z];  
I := Ideal(t^31-t^6-x, t^8-y, t^10-z);  
F := y^5-z^4;  
G := (t^8-y)(3F+t^10-z);  
NFsAreZero([F,G],I); -- F and G are in I  
TRUE  
-----------------------------------  
NFsAreZero([F,x,G],I); -- x is not in I  
FALSE  
-----------------------------------

See Also: IsIn (VI-9.29 pg.252), NF (VI-14.7 pg.290)
VI-14.9 NonZero

**syntax**

NonZero(L: LIST or VECTOR): LIST

**Description**

This function returns the list obtained by removing the zeroes from L.

**example**

Use R ::= Q[x,y,z];
NonZero(\["a",0,0,3,\text{Ideal}(y),0\]);
\["a",3,\text{Ideal}(y)\]

---

**See Also:** FirstNonZero (VI-6.7 pg. 203), FirstNonZeroPos (VI-6.8 pg. 204)

VI-14.10 Not, And, Or

**syntax**

Not E
E And F
E Or F

where E and F are of type BOOL.

**Description**

These operators have their usual meanings. Note that when two or more boolean expressions are combined with AND, they are evaluated one by one until a FALSE expression is found. The rest are not evaluated. For example, given the expression \(A \text{ And } B\), the system does not attempt to evaluate B unless A evaluates to TRUE. Similarly, evaluation of a sequence of boolean expressions connected by OR stops as soon as a TRUE expression is found.

---

VI-14.11 NR

**syntax**

NR(X: POLY, L: LIST of POLY): POLY
NR(X: VECTOR, L: LIST of VECTOR): VECTOR

**Description**

This function returns the normal remainder of X with respect to L, i.e., it returns the remainder from the division algorithm. To get both the quotients and the remainder, use “DivAlg” (VI-4.22 pg. 192). Note that if the list does not form a Groebner basis, the remainder may not be zero even if X is in the ideal or module generated by L (use “GenRepr” (VI-7.24 pg. 221) or “NF” (VI-14.7 pg. 290) instead).

**example**

Use R ::= Q[x,y,z];
F := x^2y+xy^2+y^2;
NR(F, [xy-1, y^2-1]);
x + y + 1

--------------

V := Vector(x^2+y^2+z^2, xyz);
NR(V, [Vector(x,y), Vector(y,z), Vector(z,x)]);
Vector(z^2, z^3 - yz - z^2)

--------------

**See Also:** DivAlg (VI-4.22 pg. 192), GenRepr (VI-7.24 pg. 221), NF (VI-14.7 pg. 290)
### VI-14.12 Num

**syntax**

\[
\begin{align*}
\text{Num}(N: \text{INT or RAT}): \text{INT} \\
\text{Num}(N: \text{POLY or RATFUN}): \text{POLY}
\end{align*}
\]

**Description**

These functions return the numerator and denominator of \( N \). The numerator and denominator can also be found using \(" .Num" \) and \(" .Den" \) (fragile).

**example**

\[
\begin{align*}
\text{Num}(3); \\
3 \\
\text{Num}(x/(x+y)); \\
x \\
X := 2/3; \\
X.\text{Num}; X.\text{Den}; \\
2 \\
3 \\
\end{align*}
\]

**See Also:** Numerators and Denominators for Rational Functions (IV-10.2 pg.117), Numerators and Denominators for Rational Numbers (IV-2.3 pg.87), Den (VI-4.9 pg.186)

### VI-14.13 NumComps

**syntax**

\[
\text{NumComps}(X: \text{VECTOR or MODULE}): \text{INT}
\]

**Description**

If \( X \) is a vector, this function returns the number of components of \( X \); it gives the same result as \( \text{Len}(X) \). If \( X \) is a module, then this function returns the rank of the free module in which \( X \) is defined.

**example**

\[
\begin{align*}
\text{Use } R := Q[x,y]; \\
\text{NumComps}(\text{Vector}(x,y,x^2+y^2,x^2-y^2)); \\
4 \\
\text{M := Module([x,y^2,2+x^2*y],[x,0,y]); -- a submodule of } R^3 \\
\text{NumComps}(M); \\
3 \\
\text{M.\text{NumComps}; -- alternative syntax} \\
3
\end{align*}
\]

**See Also:** Len (VI-12.5 pg.265)

### VI-14.14 Numerical.BBasisOfPoints5

**syntax**

\[
\text{$numerical.BBasisOfPoints5(Points, Epsilon, GetO): Object}$
\]
**Description**

This command computes a border basis of an almost vanishing ideal for a set of points using the algorithm described in the paper

D. Heldt, M. Kreuzer, H. Poulisse: “Approximate Computation of Zero-Dimensional Ideals”

Submitted: August 2006

The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the number of indeterminates in the current ring. Epsilon is a rational \( \epsilon > 0 \) describing which singular values should be treated as 0 (smaller values for Epsilon lead to bigger errors of the polynomials evaluated at the point set). Epsilon should be in the interval \((0,1)\). As a rule of thumb, Epsilon is the expected percentage of error on the input points. GetO must be either True or False. If it is true, the command returns a list of two values: the first contains the border basis, the second one a vector space basis of \( P/I \) comprising those power products lying outside the leading term ideal of \( I \). If GetO is false, the function returns only the border basis (not in a list).

```plaintext
Points := Mat([[1,0,0],[0,0,1],[0,2,0]]);
$numerical.BBasisOfPointsInIdeal5(Points, 0.001, True);

[[x + 9007199254740991/18014398509481984y + z - 1, z^2 - 9007199254740991/9007199254740992z, 1/2yz, xz, 1/4y^2 - 9007199254740991/18014398509481984y, 1/2xy], [y, z, 1]]
```

*See Also:* Introduction to CoCoAServer (IV-14.1 pg.135), Numerical.GBasisOfPoints5 (VI-14.18 pg.295), Numerical.BBasisOfPoints5 (VI-14.14 pg.292), Numerical.HBasisOfPoints5 (VI-14.20 pg.296), Numerical.GBasisOfPointsInIdeal5 (VI-14.19 pg.295), Numerical.BBasisOfPointsInIdeal5 (VI-14.15 pg.293), Numerical.HBasisOfPointsInIdeal5 (VI-14.21 pg.296), Numerical.FirstVanishingRelations5 (VI-14.16 pg.294), Numerical.FirstVanishingRelationsInIdeal5 (VI-14.17 pg.294)
Chapter VI-14  N

VI-14.16  Numerical.FirstVanishingRelations5

$\text{numerical.FirstVanishingRelations5(Points, Epsilon, GetO)}: \text{Object}$

**Description**

The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the number of indeterminates in the current ring. Epsilon is a rational \(\epsilon \geq 0\) describing which singular values should be treated as 0 (smaller values of Epsilon lead to bigger errors of the polynomials evaluated at the point set). Epsilon should be in the interval \((0,1)\). As a rule of thumb, Epsilon is the expected percentage of error on the input points. GetO must be either True or False. If it is true, the command returns a list of two values: the first contains all lowest degree vanishing relations, the second one a vector space basis of \(P/I\) comprising those power products lying outside the leading term ideal of \(I\). If GetO is false, the function returns only the relations (not in a list).

**example**

```plaintext
Points := Mat([[1,0,0],[0,0,1],[0,2,0]]);
$\text{numerical.FirstVanishingRelations5(Points, 0.001, True)};
```

```
[[x + 9007199254740989/18014398509481984y + 4503599627370495/4503599627370496z - 4503599627370495/4503599627370496], [1]]
```

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical.GBasisOfPoints5 (VI-14.18 pg.295), Numerical.BBasisOfPoints5 (VI-14.14 pg.292), Numerical.HBasisOfPoints5 (VI-14.20 pg.296), Numerical.GBasisOfPointsInIdeal5 (VI-14.19 pg.295), Numerical.BBasisOfPointsInIdeal5 (VI-14.15 pg.293), Numerical.HBasisOfPointsInIdeal5 (VI-14.21 pg.296), Numerical.FirstVanishingRelationsInIdeal5 (VI-14.17 pg.294)

VI-14.17  Numerical.FirstVanishingRelationsInIdeal5

$\text{numerical.FirstVanishingRelationsInIdeal5(Points, Epsilon, GetO, GBasis)}: \text{Object}$

**Description**

The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the number of indeterminates in the current ring. Epsilon is a rational \(\epsilon \geq 0\) describing which singular values should be treated as 0 (smaller values of Epsilon lead to bigger errors of the polynomials evaluated at the point set). Epsilon should be in the interval \((0,1)\). As a rule of thumb, Epsilon is the expected percentage of error on the input points. GetO must be either True or False. If it is true, the command returns a list of two values: the first contains all lowest degree vanishing relations, the second one a vector space basis of \(P/I\) comprising those power products lying outside the leading term ideal of \(I\). If GetO is false, the function returns only the relations (not in a list). GBasis must be a homogeneous Groebner Basis in the current ring. This basis defines the ideal we compute the approximate vanishing relations in. Warning: for efficiency the validity of GBasis is not checked.

**example**

```plaintext
Points := Mat([[1,0,0],[0,0,1],[0,2,0]]);
$\text{numerical.FirstVanishingRelationsInIdeal5(Points, 0.001, True, [x])};
```

```
[[xz, 1/2xy, x^2 - 4503599627370495/4503599627370496x], [x]]
```

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical.GBasisOfPoints5 (VI-14.18 pg.295), Numerical.BBasisOfPoints5 (VI-14.14 pg.292), Numerical.HBasisOfPoints5 (VI-14.20 pg.296), Numerical.GBasisOfPointsInIdeal5 (VI-14.19 pg.295), Numerical.BBasisOfPointsInIdeal5 (VI-14.15 pg.293), Numerical.HBasisOfPointsInIdeal5 (VI-14.21 pg.296), Numerical.FirstVanishingRelations5 (VI-14.16 pg.294)
VI-14.18 Numerical.GBasisOfPoints5

**Description**

This command computes a Groebner basis of an almost vanishing ideal for a set of points using the algorithm described in the paper


The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the number of indeterminates in the current ring. Epsilon is a rational \(\geq 0\), describing which singular values should be treated as 0 (smaller values for epsilon lead to bigger errors of the polynomials evaluated at the point set). Epsilon should be in the interval \((0,1)\). As a rule of thumb, Epsilon is the expected percentage of error on the input points. GetO must be either True or False. If it is true, the command returns a list of two values: the first contains the Groebner basis, the second one a vector space basis of \(P/I\) comprising those power products lying outside the leading term ideal of \(I\). If GetO is false, the function returns only the Groebner basis (not in a list).

**Example**

```plaintext
Points := Mat([[1,0,0],[0,0,1],[0,2,0]]);
$numerical.GBasisOfPoints5(Points, 0.001, True);
-- CoCoAServer: computing Cpu Time = 0.0185

[[x + 9007199254740991/18014398509481984y + z - 1, z^2 - 9007199254740991/9007199254740992z, 1/2yz, 1/4y^2 - 9007199254740991/18014398509481984y], [y, z, 1]]
```

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical.BBasisOfPoints5 (VI-14.14 pg.292), Numerical.HBasisOfPoints5 (VI-14.20 pg.296), Numerical.GBasisOfPointsInIdeal5 (VI-14.19 pg.295), Numerical.BBasisOfPointsInIdeal5 (VI-14.15 pg.293), Numerical.HBasisOfPointsInIdeal5 (VI-14.21 pg.296), Numerical.FirstVanishingRelations5 (VI-14.16 pg.294), Numerical.FirstVanishingRelationsInIdeal5 (VI-14.17 pg.294)

VI-14.19 Numerical.GBasisOfPointsInIdeal5

**Description**

This command computes a Groebner basis of an almost vanishing sub-ideal for a set of points and ideal using the algorithm described in the paper

D. Heldt, M. Kreuzer, H. Poulisse: “Computing Approximate Vanishing Ideals” (Work in progress)

The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the number of indeterminates in the current ring. Epsilon is a rational \(\geq 0\), describing which singular values should be treated as 0 (smaller values for epsilon lead to bigger errors of the polynomials evaluated at the point set). Epsilon should be in the interval \((0,1)\). As a rule of thumb, Epsilon is the expected percentage of error on the input points. GetO must be either True or False. If it is true, the command returns a list of two values: the first contains the Groebner basis, the second one a vector space basis of \(P/I\) comprising those power products lying outside the leading term ideal of \(I\). If GetO is false, the function returns only the Groebner basis (not in a list). GBasis must be a homogeneous Groebner Basis in the current ring. Warning: for reasons of efficiency the function does not check that the validity of GBasis.

**Example**

```plaintext
Points := Mat([[2,0,0],[0,3,0],[0,0,1]]);
$numerical.GBasisOfPointsInIdeal5(Points, 0.001, False, [z,y]);
-- CoCoAServer: computing Cpu Time = 0.0160
```

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical.BBasisOfPoints5 (VI-14.14 pg.292), Numerical.HBasisOfPoints5 (VI-14.20 pg.296), Numerical.GBasisOfPointsInIdeal5 (VI-14.19 pg.295), Numerical.BBasisOfPointsInIdeal5 (VI-14.15 pg.293), Numerical.HBasisOfPointsInIdeal5 (VI-14.21 pg.296), Numerical.FirstVanishingRelations5 (VI-14.16 pg.294), Numerical.FirstVanishingRelationsInIdeal5 (VI-14.17 pg.294)
\[ [z^2 - z, 1/3yz, 1/2xz, 1/9y^2 - 9007199254740991/27021597764222976y, 1/6xy] \]

---

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical.GBasisOfPoints5 (VI-14.18 pg.295), Numerical.BBasisOfPoints5 (VI-14.14 pg.292), Numerical.HBasisOfPoints5 (VI-14.20 pg.296), Numerical.BBasisOfPointsInIdeal5 (VI-14.15 pg.293), Numerical.HBasisOfPointsInIdeal5 (VI-14.21 pg.296), Numerical.FirstVanishingRelations5 (VI-14.16 pg.294), Numerical.FirstVanishingRelationsInIdeal5 (VI-14.17 pg.294)

### VI-14.20 Numerical.HBasisOfPoints5

**Syntax**

\[ \texttt{numerical.HBasisOfPoints5(Points, Epsilon, GetO):Object} \]

**Description**

WARNING: This function does not yet work!

This command computes a H basis of an almost vanishing ideal for a set of points using the algorithm described in the paper

D. Heldt, M. Kreuzer, H. Poulisse, S. Pokutta: “Approximate Computation of Zero-Dimensional Ideals”
Submitted: August 2006

The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the number of indeterminates in the current ring. Epsilon is a rational \( \geq 0 \), describing which singular values should be treated as 0 (smaller values for epsilon lead to bigger errors of the polynomials evaluated at the point set). Epsilon should be in the interval \((0,1)\). As a rule of thumb, Epsilon is the expected percentage of error on the input points. GetO must be either True or False. If it is true, the command returns a list of two values: the first contains the H basis, the second one a vector space basis of \( P/I \) comprising those power products lying outside the leading term ideal of \( I \). If GetO is false, the function returns only the H basis (not in a list).

**Example**

-- NOT YET WORKING --

---

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical.GBasisOfPoints5 (VI-14.18 pg.295), Numerical.BBasisOfPoints5 (VI-14.14 pg.292), Numerical.GBasisOfPointsInIdeal5 (VI-14.19 pg.295), Numerical.BBasisOfPointsInIdeal5 (VI-14.15 pg.293), Numerical.HBasisOfPointsInIdeal5 (VI-14.21 pg.296), Numerical.FirstVanishingRelations5 (VI-14.16 pg.294), Numerical.FirstVanishingRelationsInIdeal5 (VI-14.17 pg.294)

### VI-14.21 Numerical.HBasisOfPointsInIdeal5

**Syntax**

\[ \texttt{numerical.HBasisOfPointsInIdeal5(Points, Epsilon, GetO, GBasis):Object} \]

**Description**

Warning: This function does not yet work!

This command computes H border basis of an almost vanishing sub-ideal for a set of points and ideal using the algorithm described in the paper

D. Heldt, M. Kreuzer, H. Poulisse: “Computing Approximate Vanishing Ideals” (Work in progress)

The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the number of indeterminates in the current ring. Epsilon is a rational \( \geq 0 \), describing which singular values should be treated as 0 (smaller values for epsilon lead to bigger errors of the polynomials evaluated at the point set). Epsilon should be in the interval \((0,1)\). As a rule of thumb, Epsilon is the expected percentage of error on the input points. GetO must be either True or False. If it is true, the command returns a list of two values: the first contains the H basis, the second one a vector space basis of \( P/I \) comprising those power products lying outside the leading term ideal of \( I \). If GetO is false, the function returns only the H basis (not in a list). GBasis has to
be a homogeneous Groebner Basis in the current ring. This basis defines the ideal we compute the approximate
vanishing ideal’s basis in. Warning: for efficiency, the validity of GBasis is not checked.

--- NOT YET WORKING ---


---

VI-14.22 Numerical.QR5

Syntax

$\texttt{numerical.QR5}(A:\texttt{Matrix}):\texttt{Matrix};$

Description

This function returns a matrix, containing the "IMPF". The matrix consists of the upper-right triangular matrix
and the lower left triangular matrix, describing the input matrix's QR-decomposition.

Example

Points:=Mat([[1,2,3],[2,3,4],[3,4,5]]);
$\texttt{numerical.QR5}(Points);$

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical.SVD5 (VI-14.23 pg.297)

---

VI-14.23 Numerical.SVD5

Syntax

$\texttt{numerical.SVD5}(A:\texttt{Matrix}):\texttt{List};$

Description

This function returns a list of three matrices which form the singular value decomposition of the input matrix.
The list produced is $[U, S, VT]$. Warning: internally floating point values are used, so the result is only approximate.

Example

D:=Mat([[1,2,7,18],[2,4,9,12],[23,8,9,10]]);
$\texttt{numerical.SVD5}(D);$
VI-14.24 NumIndets

**Syntax**

```plaintext
NumIndets():INT
NumIndet(R:RING):INT
```

**Description**

This function returns the number of indeterminates of the current ring or of \( R \).

**Example**

```plaintext
S ::= Q[x,y];
Use R ::= Q[x,y,z];
NumIndets();
3

NumIndets(S);
2

```

**See Also:** Indet (VI-9.11 pg.244), IndetInd (VI-9.12 pg.245), IndetIndex (VI-9.13 pg.245), IndetName (VI-9.14 pg.245), Indets (VI-9.15 pg.246)
Chapter VI-15

O

VI-15.1 OpenIFile

**syntax**

```
OpenIFile(S:STRING):DEVICE
```

**Description**

This function opens the file with name S for input. Input from that file can then be read with “Get” (VI-7.26 pg.222).

(Note: one would normally use “Source” (VI-19.16 pg.337) to read CoCoA commands from a file.)

```
D := OpenOFile("my-test"); -- open "my-test" for output from CoCoA
Print "hello world" On D; -- print string into "mytest"
Close(D);
D := OpenIFile("my-test"); -- open "my-test" for input to CoCoA
Get(D,3); -- get the first three characters (in Ascii code)
[104, 101, 108]
Ascii(It); -- convert the ascii code into characters
hel
Close(D);
```

**See Also:** Close (VI-3.11 pg.174), Introduction to IO (III-7.1 pg.61), OpenOFile (VI-15.4 pg.301), OpenIString (VI-15.2 pg.299), OpenOString (VI-15.5 pg.301), OpenSocket (VI-15.6 pg.301), Source (VI-19.16 pg.337)

VI-15.2 OpenIString

**syntax**

```
OpenIString(S:STRING,T:STRING):DEVICE
OpenOString(S:STRING):DEVICE
```

**Description**

This function open strings for input. The string S serves as the name of the device opened for input or output; one may use the empty string. “OpenIString” is used to read input from the string T with the help of “Get” (VI-7.26 pg.222).

```
S := "hello world";
D := OpenIString("",S); -- open the string S for input to CoCoA
```
L := Get(D,7); -- read 7 characters from the string
L; -- ascii code
-----------------------------
Ascii(L); -- convert ascii code to characters
hello w
-----------------------------
Close(D); -- close device D

See Also: Close (VI-3.11 pg.174), Introduction to IO (III-7.1 pg.61), OpenOString (VI-15.5 pg.301), OpenIFile (VI-15.1 pg.299), OpenOFile (VI-15.4 pg.301), Source (VI-19.16 pg.337), Sprint (VI-19.18 pg.338)

VI-15.3 OpenLog

```plaintext
OpenLog(D:DEVICE):NULL
```

Description

This function opens the output device D and starts to record the output from a CoCoA session on D. The “CloseLog” (VI-3.12 pg.174) closes the device D and stops recording the CoCoA session on D. At present the choices for the device D are an output file (see “OpenOFile” (VI-15.4 pg.301)) or an output string (see “OpenOString” (VI-15.5 pg.301)). Several output devices may be open at a time. If the panel option “Echo” is set to TRUE, both the input and output of the CoCoA session are logged; otherwise, just the output is logged.

```plaintext
D := OpenOFile("MySession");
OpenLog(D);
1+1;
2

G := 1;
Set Echo;
2+2;
2 + 2
4

F := 2;
F := 2
CloseLog(D);
CloseLog(D)
UnSet Echo;
SET(Echo, FALSE)

The contents of "MySession":
2

2 + 2
4

F := 2
CloseLog(D)
```

See Also: Introduction to IO (III-7.1 pg.61), OpenIFile (VI-15.1 pg.299), OpenOFile (VI-15.4 pg.301), OpenIString (VI-15.2 pg.299), OpenOString (VI-15.5 pg.301), Unset (VI-21.2 pg.351)
VI-15.4 OpenOFile

**syntax**

OpenOFile(S:STRING):DEVICE  
OpenOFile(S:STRING,"w" or "W"):DEVICE

**Description**

This function opens the file with name S—creating it if it does not already exist—for output. If used with second argument "w" or "W" then it immediately erases the file S. The function “Print On” (VI-16.17 pg.311) is then used for appending output to S.

```cocoa
D := OpenOFile("my-test"); -- open "my-test" for output from CoCoA
Print "hello world" On D; -- print string into "mytest"
Print " test" On D; -- append to the file "mytest"
Close(D); -- close the file
D := OpenOFile("my-test","w"); -- clear "my-test"
Print "goodbye" On D; -- "mytest" now consists only of the string "goodbye"
Close(D);
```

**See Also:** Close (VI-3.11 pg.174), Introduction to IO (III-7.1 pg.61), OpenFile (VI-15.1 pg.299), OpenIString (VI-15.2 pg.299), OpenOString (VI-15.5 pg.301), Source (VI-19.16 pg.337)

---

VI-15.5 OpenOString

**syntax**

OpenOString(S:STRING):DEVICE

**Description**

This function opens strings for output. The string S serves as the name of the device opened for input or output; one may use the empty string. “OpenOString” is used to write to a string with the help of “Print On”.

```cocoa
D := OpenOString(""); -- open a string for output from CoCoA
L := [1,2,3]; -- a list
Print L On D; -- print to D
D;
Record[Name = "", Type = "OString", Protocol = "CoCoAL"]

S := Cast(D,STRING); -- S is the string output to D
S; -- a string
[1, 2, 3]
Print " more characters" On D; -- append to the existing output string
Cast(D,STRING);
[1, 2, 3] more characters

```

**See Also:** Close (VI-3.11 pg.174), Introduction to IO (III-7.1 pg.61), OpenFile (VI-15.1 pg.299), OpenFile (VI-15.4 pg.301), OpenIString (VI-15.2 pg.299), Source (VI-19.16 pg.337), Sprint (VI-19.18 pg.338)

---

VI-15.6 OpenSocket

**syntax**

OpenSocket(Machine: STRING, Port: STRING): DEVICE
Description

This function opens a client socket (I/O) connection. It requires the name of the machine with the server socket and the port number (expressed as a STRING).

CoCoA-4 communicates with the CoCoAServer via socket which, by default, runs on “localhost” on port “0xc0c0”. To change these settings redefine in your “userinit.coc” or “.cocoarc” the variables

\[
\text{MEMORY.CoCoAServerMachine} := \text{"localhost"}; \\
\text{MEMORY.CoCoAServerPort} := \text{"0xc0c0"};
\]

```coconut
D := OpenSocket("localhost", "10000");
Print 100^6 On D;
Source D;
Close(D);
```

See Also: Introduction to IO (III-7.1 pg.61), OpenIFile (VI-15.1 pg.299), OpenOFile (VI-15.4 pg.301), OpenIString (VI-15.2 pg.299), OpenOString (VI-15.5 pg.301), Unset (VI-21.2 pg.351)

VI-15.7 Option

**syntax**

```
Option(O):BOOL
```

where O is a panel option.

Description

This function returns the status of a panel option (TRUE/FALSE). For a list of panels, use “Panels” (VI-16.3 pg.306) and for the current status of each option for a panel with name P, use “Panel(P)”. To toggle option values, use “Set-Unset” (VI-19.6 pg.332). The function “Option” (VI-15.7 pg.302) is particularly useful inside a user-defined function in order to temporarily change the value of an option (restoring the option’s original value when the function is complete). See “Setting Options” (V-1.2 pg.139) for an example of this use of “Option” (VI-15.7 pg.302).

```coconut
Option(Indentation);
FALSE

```

See Also: Introduction to Panels (V-1.1 pg.139), Panel (VI-16.2 pg.305), Panels (VI-16.3 pg.306), Setting Options (V-1.2 pg.139), Unset (VI-21.2 pg.351)

VI-15.8 Ord

**syntax**

```
Ord():MAT
Ord(R:RING):MAT
Ord(M:MAT):MAT
```

Description

The first two forms return matrices which describe the term-ordering of the current ring or of the ring R, respectively. The last form is used as a modifier when creating a new ring. In that case, it determines the term-ordering for the ring (see “Orderings” (IV-8.6 pg.106)). Its argument is a matrix of small integers which defines a term-ordering; i.e. for a ring with N indeterminates it must be an NxN matrix of full rank where the first non-zero entry in each column is positive. The matrix entries must be in the range -32767 to +32767, otherwise an error results.
Use $S := \mathbb{Q}[x,y,z]$, $\text{Ord} \left( \text{Mat} \left( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \right)$;

$M := \text{Mat} \left( \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \right)$;

$T := \mathbb{Q}[a,b]$, $\text{Ord}(M)$;

$U := \mathbb{Z}/(101)[x,y,z,t]$, $\text{DegRevLex}$;

-- The term-order for the current ring, $S$.
$\text{Ord}();$

\begin{verbatim}
Mat([ [1, 0, 0],
     [0, 1, 0],
     [0, 0, 1]]
)
\end{verbatim}

$\text{Ord}(T);$

\begin{verbatim}
Mat([ [1, 1],
     [0, -1]]
)
\end{verbatim}

$\text{Ord}(U);$

\begin{verbatim}
Mat([ [1, 1, 1, 1],
     [0, 0, 0, -1],
     [0, 0, -1, 0],
     [0, -1, 0, 0]]
)
\end{verbatim}

\textbf{See Also:} DegLexMat (VI-4.6 pg.184), DegRevLexMat (VI-4.7 pg.185), LexMat (VI-12.6 pg.266), RevLexMat (VI-18.21 pg.325), XelMat (VI-24.1 pg.361), Elim (VI-5.2 pg.195), Orderings (IV-8.6 pg.106), Pre-defined Term-Orderings (IV-8.7 pg.106)
Chapter VI-16

P

VI-16.1 Packages

| syntax | Packages():LIST |

Description
This function returns the names of the loaded packages as a list of strings. The string “$user” refers to the user-defined functions defined in the current CoCoA session.

```
example
Packages();
[""\verb&$builtin&"", ""\verb&$coclib&"", ""\verb&$user&"", "$help",
 "$io", "$misc"]
```

See Also: CoCoA Packages (III-9 pg.71), Supported Packages (III-9.11 pg.76)

VI-16.2 Panel

| syntax | Panel(E) |

where E is one of "GENERAL" or "GROEBNER".

Description
This command prints the status of the options in one of the three panels. It returns no value.

```
example
Panel(GENERAL);
Echo.............. : FALSE
Timer.............. : FALSE
Trace.............. : FALSE
Indentation........ : FALSE
TraceSources....... : FALSE
SuppressWarnings... : FALSE
ComputationStack... : FALSE
```

See Also: Introduction to Panels (V-1.1 pg.139), Option (VI-15.7 pg.302), Panels (VI-16.3 pg.306), Unset (VI-21.2 pg.351)
** VI-16.3 Panels 

** syntax 

Panels() 

** Description 

This function returns a list of CoCoA’s panels. 

Panels(); 
"["GENERAL", "GROEBNER"]

Panel(1[1]);

Echo.............. : FALSE 
Timer.............. : FALSE 
Trace.............. : FALSE 
Indentation........ : FALSE 
TraceSources....... : FALSE 
SuppressWarnings... : FALSE 
ComputationStack... : FALSE 

** See Also: ** Introduction to Panels (V-1.1 pg.139), Option (VI-15.7 pg.302), Panel (VI-16.2 pg.305), Unset (VI-21.2 pg.351)

** VI-16.4 Partitions 

** syntax 

Partitions(N: INT): LIST 

** Description 

These function returns all integer partitions of N, positive integer 

Partitions(3);

\[[3], [1, 2], [1, 1, 1]\]

** See Also: ** Subsets (VI-19.22 pg.340), Tuples (VI-20.8 pg.348)

** VI-16.5 Permutations 

** syntax 

Permutations(L: LIST): LIST 

** Description 

This function computes all permutations of the entries of a list (set). If L has repeated elements it will return repeated elements. 

Permutations(3..5);

\[[3, 4, 5], [3, 5, 4], [4, 3, 5], [4, 5, 3], [5, 3, 4], [5, 4, 3]\]

Permutations([2, 2, x]);

\[[2, 2, x], [2, x, 2], [2, 2, x], [2, x, 2], [x, 2, 2], [x, 2, 2]\]
VI-16.6 Pfaffian

**syntax**

\[
\text{Pfaffian}(M: \text{MAT})
\]

where \( M \) is skew-symmetric. The resulting type depends on the entries of the matrix.

**Description**

This function returns the Pfaffian of \( M \).

**example**

Use \( R ::= \mathbb{Q}[x,y] \);
\[
\text{Pfaffian(Mat([\begin{array}{cc} 0,y \\ -y,0 \end{array}]))};
\]
\( y \)

**See Also:** Det (VI-4.15 pg.190)

VI-16.7 PkgName

**syntax**

\[
\text{PkgName}(): \text{STRING}
\]  
\[
\text{S.PkgName}(): \text{STRING}
\]

where \( S \) is the identifier or alias for a package.

**Description**

This function returns the (long) name of a package. The first form returns “\$coclib” and the second returns the name of the package whose name or alias is \( S \). This function is useful as a shorthand, when \( S \) is an alias, for the full name a package.

**example**

\[
\text{GB.PkgName}();
\]  
\( \$gb \)

\[
\text{\$gb.PkgName}();
\]  
\( \$gb \)

\[
\text{PkgName}();
\]  
\( \$coclib \)

**See Also:** Subsets (VI-19.22 pg.340), Tuples (VI-20.8 pg.348)

VI-16.8 Poincare

**syntax**

\[
\text{Poincare}(M: \text{RING or TAGGED("Quotient")}): \text{TAGGED("$hp.PSeries")}
\]
Description

Same as “HilbertSeries” (VI-8.20 pg.232).

See Also: Dim (VI-4.18 pg.191), Hilbert (VI-8.16 pg.231), HilbertSeries (VI-8.20 pg.232), HVector (VI-8.27 pg.236), Multiplicity (VI-13.24 pg.285), PoincareMultiDeg (VI-16.9 pg.308), PoincareShifts (VI-16.10 pg.308), Weights Modifier (IV-8.5 pg.105), WeightsMatrix (VI-23.2 pg.357)

VI-16.9 PoincareMultiDeg

syntax

\[ \text{PoincareMultiDeg}(\text{"Quotient"}, \text{WM:MAT}):\text{TAGGED}(\"hp.PSeries\") \]

Description

Same as “HilbertSeriesMultiDeg” (VI-8.21 pg.233).

Example

Use \( R := \mathbb{Q}[x,y,z] \);

\[ \text{WM} := \text{Mat}([1,0,0],[1,-1,0]); \]
\[ \text{PoincareMultiDeg}(R/\text{Ideal(Indets())}^2, \text{WM}); \]

See Also: HilbertSeries (VI-8.20 pg.232), HilbertSeriesMultiDeg (VI-8.21 pg.233), Weights Modifier (IV-8.5 pg.105), WeightsMatrix (VI-23.2 pg.357)

VI-16.10 PoincareShifts

syntax

\[ \text{PoincareShifts}(M: \text{Module}, \text{ShiftsList: LIST}):\text{TAGGED}(\"hp.PSeries\") \]
\[ \text{PoincareShifts}(M: \text{TAGGED}(\"Quotient\"), \text{ShiftsList: LIST}):\text{TAGGED}(\"hp.PSeries\") \]

Description

Same as “HilbertSeriesShifts” (VI-8.22 pg.234).

See Also: Dim (VI-4.18 pg.191), Hilbert (VI-8.16 pg.231), HilbertSeries (VI-8.20 pg.232), HilbertSeriesShifts (VI-8.22 pg.234), HVector (VI-8.27 pg.236), Multiplicity (VI-13.24 pg.285), Poincare (VI-16.8 pg.307), PoincareMultiDeg (VI-16.9 pg.308), Weights Modifier (IV-8.5 pg.105), WeightsMatrix (VI-23.2 pg.357)

VI-16.11 Poly

syntax

\[ \text{Poly}(E:OBJECT):\text{POLY} \]

Description

This function converts the expression \( E \) into a polynomial, if possible. It is the same as \( \text{Cast}(E,\text{POLY}) \).

Example

\[ F := 3; \]
\[ G := \text{Poly}(3); \]
\[ \text{Type}(F); \]
\[ \text{INT} \]
\[ \text{--------------------------} \]
\[ \text{Type}(G); \]
\[ \text{POLY} \]
\[ \text{--------------------------} \]
\[ \text{Use } R := \mathbb{Q}[x]; \]
**VI-16.12 PositiveGrading4**

### Syntax

PositiveGrading4(M: MATRIX): MATRIX

### Description

This function returns a matrix defining a “similar” multigrading. Because of an innate limitation (see “Weights Modifier” (IV-8.5 pg.105)) CoCoA-4 does not allow zero entries in the first row of the weights matrix. This function returns a matrix which has an extra first row which is a suitable combination of the following rows and has no zero entries. This we can work in CoCoA-4 with any positive grading being the first component the multidegree “redundant”.

**Example**

```plaintext
G := Mat([[1,1,1,0,0], [0,0,0,1,1]]);
PG := PositiveGrading4(G);
Use Q[x[1..5]], Weights(PG);
MDeg(x[2]); -- ignore the first entry to get the degree wrt G
[1, 1, 0]
```

### See Also:

- Weights Modifier (IV-8.5 pg.105), IsPositiveGrading (VI-9.32 pg.253), HilbertSeriesMultiDeg (VI-8.21 pg.233)

---

**VI-16.13 PowerMod**

### Syntax

PowerMod(A: INT, B: INT, M: INT): INT

### Description

This function calculates efficiently an integer power modulo a given modulus. Thus “PowerMod(A,B,M)” is equal to “Mod(A^B, M)”, but the former is computed faster. B must be non-negative.

**Example**

```plaintext
PowerMod(12345,41041,41041); -- 41041 is a Carmichael number
12345
```

```plaintext
PowerMod(123456789,987654321,32003); -- cannot compute 123456789^987654321 directly
2332
```

---

**VI-16.14 PreprocessPts5**

### Syntax

PreprocessPts5(Pts: LIST, Toler: LIST): LIST
PreprocessPts5(Pts: LIST, Toler: LIST, "Grid"): LIST
**PreprocessPts5**

```plaintext
PreprocessPts5(Pts: LIST, Toler: LIST, "Subdiv"): LIST
PreprocessPts5(Pts: LIST, Toler: LIST, "Aggr"): LIST
```

**Description**

This function returns a list of “well-separated” points. The first argument is a list of points in k-dimensional space, and the second argument is list of k tolerances (one for each dimension). The function detects groups of close points (all lying within the given tolerance of each other) and chooses a representative for the whole group; the result is the list of these representatives.

There is a third, optional argument: it should be one of the strings “Grid”, “Subdiv”, “Aggr” and specifies which specific algorithm to use. If there are just two arguments, an automatic choice is made between “Subdiv” and “Aggr”; the “Subdiv” method works well when the original points are densely packed (so the result will be a small list), while the “Aggr” method is better suited to situations where the original points are less densely packed. The “Aggr” method regards the tolerances as being slightly flexible.


Note: values are represented internally in floating point, so the results are only approximate, and may vary from one type of computer to another.

**example**

```plaintext
Pts := [[-1,0],[0,0],[1,0],[99,1],[99,0],[99,-1]];
Toler := [3,3];
PreprocessPts5(Pts, Toler);
[[99, 0], [0, 0]]

PreprocessPts5(Pts, [0.8,0.8]);
[[-1/2, 0], [1, 0], [99, 1/2], [99, -1]]

PreprocessPts5(Pts, [0.9,0.9], "Aggr"); -- exhibits tolerance flex
[[0, 0], [99, 0]]

```

**See Also:** Introduction to CoCoAServer (IV-14.1 pg.135)

### VI-16.15 Primary Decomposition

**syntax**

```plaintext
PrimaryDecomposition(I: SQUAREFREE MONOMIAL IDEAL): LIST of IDEAL
```

**Description**

This function returns the primary decomposition of the ideal I. Currently it is implemented ONLY for squarefree monomial ideals using the Alexander dual technique.

**example**

```plaintext
Use R ::= Q[x,y,z];
PrimaryDecomposition(Ideal(xy, xz, yz));
[Ideal(y, z), Ideal(x, z), Ideal(x, y)]

```

**See Also:** EquiIsoDec (VI-5.5 pg.196)

### VI-16.16 Print

**syntax**

```plaintext
Print E_1,...,E_n :NULL
Print(E_1,...,E_n):NULL
```

where the E_i are CoCoA expressions.
VI-16.17 Print On

**Description**

This command displays the value of each of the expressions, “E_i”. The parentheses are optional. The argument “NewLine” (without quotes, but note the two capital letters), moves the cursor to the next line.

The similar command “PrintLn” (VI-16.18 pg.311) is equivalent to “Print” with a final extra argument, “NewLine”.

```
example

For I := 1 To 10 Do
 Print(I^2, " ");
EndFor;
1 4 9 16 25 36 49 64 81 100

Print "hello",NewLine,"world";
hello
world

```

See Also: Print On (VI-16.17 pg.311), PrintLn (VI-16.18 pg.311), Latex (VI-12.2 pg.263), StarPrint (VI-19.19 pg.338)

---

### VI-16.17 Print On

**Syntax**

```
Print E:OBJECT On D:DEVICE
```

**Description**

This command prints the value of expression E to the device D. Currently, the command can be used to print to files, strings, or the CoCoA window. In the first two cases, the appropriate device must be opened with “OpenOFile” (VI-15.4 pg.301) or “OpenOString” (VI-15.5 pg.301).

```
example

D := OpenOFile("my-test"); -- open "my-test" for output from CoCoA
Print "hello world" On D; -- print string into "mytest"
Close(D); -- close the file
D := OpenIFile("my-test"); -- open "my-test" for input to CoCoA
Get(D,3); -- get the first three characters (in Ascii code)
[104, 101, 108]

Ascii(It); -- convert the ascii code into characters
hel

Close(D);
```

See “OpenOFile” (VI-15.4 pg.301) for an example using output strings. For printing to the CoCoA window, just use “Print E” which is short for “Print E On DEV.OUT”.

**See Also:** Introduction to IO (III-7.1 pg.61), OpenIFile (VI-15.1 pg.299), OpenOFile (VI-15.4 pg.301), OpenIFString (VI-15.2 pg.299), OpenOString (VI-15.5 pg.301), Print (VI-16.16 pg.310), PrintLn (VI-16.18 pg.311)

---

### VI-16.18 PrintLn

**Syntax**

```
PrintLn E_1,...,E_n :NULL
PrintLn(E_1,...,E_n):NULL
```

where the E_i are CoCoA expressions.
Description

This command is equivalent to “Print” (VI-16.16 pg.310) with a final extra argument, “NewLine”; in other words, it prints the values of its arguments, then moves the cursor to the next line. The parentheses are optional.

example

```
For I := 1 To 10 Do
 Print(I^2, " ");
EndFor;
1 4 9 16 25 36 49 64 81 100

For I := 1 To 3 Do
 PrintLn(I);
EndFor;
1
2
3

Print "hello",NewLine,"world";
hello
world
```

See Also: Print (VI-16.16 pg.310), Print On (VI-16.17 pg.311)

VI-16.19 Product

Syntax

```
Product(L:List):OBJECT
```

Description

This function returns the product of the objects in the list L.

example

```
Use R ::= Q[x,y];
Product([3,x,y^2]);
3xy^2

Product(1..40) = Fact(40);
TRUE
```

See Also: Algebraic Operators (III-3.2 pg.51), Sum (VI-19.24 pg.341)
VI-17.1 Quit

**syntax**

```
Quit
```

**Description**

This command is used to quit CoCoA. Note, it is issued as follows:

```
Quit;
```

without parentheses.

**See Also:** Ciao (VI-3.8 pg.173)

VI-17.2 QuotientBasis

**syntax**

```
QuotientBasis(I:IDEAL):LIST
```

**Description**

This function determines a vector space basis (of power products) for the quotient space associated to a zero-dimensional ideal. That is, if $R$ is a polynomial ring with field of coefficients $k$, and $I$ is a zero-dimensional ideal in $R$ then QuotientBasis($I$) is a set of power products forming a $k$-vector space basis of $R/I$.

The actual set of power products chosen depends on the term ordering in the ring $R$: the power products chosen are those not divisible by the leading term of any member of the reduced Groebner basis of $I$.

**Example**

```
Points := [[Rand(-9,9) | N In 1..3] | S In 1..25];
Use Q[x,y,z];
I := IdealOfPoints(Points);
QuotientBasis(I); -- power products underneath the DegRevLex reduced GBasis
[1, z, z^2, z^3, z^4, y, yz, yz^2, yz^3, y^2, y^2z, x, xz, xz^2, xz^3, xy, xyz, xy^2, x^2, x^2z, x^2y, x^3]

Use Q[x,y,z],Lex;
I := IdealOfPoints(Points);
QuotientBasis(I); -- power products underneath the Lex reduced GBasis
[1, z, z^2, z^3, z^4, z^5, z^6, z^7, z^8, z^9, z^10, z^11, z^12, z^13, y, yz, yz^2, yz^3, yz^4, yz^5, yz^6, y^2, y^2z, y^2z^2, y^2z^3]

```

**See Also:** IdealOfPoints (VI-9.4 pg.239)
**VI-17.3 QZP**

**syntax**

- QZP(F:POLY):POLY
- QZP(F:LIST of POLY):LIST of POLY
- QZP(I:IDEAL):IDEAL

**Description**

The functions "QZP" and "ZPQ" (VI-25.1 pg.363) map polynomials and ideals of other rings into ones of the current ring. When mapping from one ring to another, one of the rings must have coefficients in the rational numbers and the other must have coefficients in a finite field. The indeterminates in both rings must be identical.

The function "QZP" maps polynomials with rational coefficients to polynomials with coefficients in a finite field; the function "ZPQ" (VI-25.1 pg.363) does the reverse, mapping a polynomial with finite field coefficients into one with rational (actually, integer) coefficients. The function "ZPQ" (VI-25.1 pg.363) is not uniquely defined mathematically, and currently for each coefficient the least non-negative equivalent integer is chosen. Users should not rely on this choice, though any change will be documented.

**example**

```plaintext
Use R ::= Q[x,y,z];
F := 1/2*x^3 + 34/567*x*y*z - 890; -- a poly with rational coefficients
Use S ::= Z/(101)[x,y,z];
QZP(F); -- compute its image with coeffs in Z/(101)
-50x^3 - 19xyz + 19

G := It;
Use R;
ZPQ(G); -- now map that result back to Q[x,y,z]
-- it is NOT the same as F...
51x^3 + 82xyz + 19

H := It;
F - H; -- ... but the difference is divisible by 101
-101/2x^3 - 46460/567xyz - 909

Use S;
QZP(H) - G; -- F and H have the same image in Z/(101)[x,y,z]
0

```

**See Also:** Accessing Other Rings (IV-8.11 pg.108), BringIn (VI-2.9 pg.167), Image (VI-9.9 pg.242), Ring Mappings: the Image Function (IV-8.12 pg.109)
Chapter VI-18

R

VI-18.1 Radical

syntax

Radical(I:IDEAL):IDEAL

Description

This function computes the radical of I using the algorithm described in the paper


NOTE: at the moment, this implementation works only if the coefficient ring is the rationals or has large enough characteristic.

example

Use R ::= Q[x,y];
I := Ideal(x,y)^3;
Radical(I);
Ideal(y, x)
-------------------

See Also: EquiIsoDec (VI-5.5 pg.196), RadicalOfUnmixed (VI-18.2 pg.315)

VI-18.2 RadicalOfUnmixed

syntax

RadicalOfUnmixed(I:IDEAL):IDEAL

Description

This function computes the radical of an unmixed ideal.

NOTE: at the moment, this implementation works only if the coefficient ring is the rationals or has large enough characteristic.

example

Use R ::= Q[x,y];
I := Ideal(x^2 - y^2 - 4x + 4y, x - 2);
----------------------------------------
RadicalOfUnmixed(I);
Ideal(x^2 - y^2 - 4x + 4y, x - 2, y - 2)
----------------------------------------
Minimalized(It); -- the result may not be presented in its simplest form
Ideal(x - 2, y - 2)
----------------------------------------

See Also: EquiIsoDec (VI-5.5 pg.196), Radical (VI-18.1 pg.315)
VI-18.3  Rand

\textbf{syntex}

\begin{verbatim}
Rand() : INT
Rand(X:INT,Y:INT) : INT
\end{verbatim}

\textbf{Description}

In the first form, the function returns a random integer. In the second, it returns a random integer between \(X\) and \(Y\), inclusive. (Note: \(-X-Y\) should be less than \(2^{31}\) to assure a more random distribution.)

NB: every time you restart CoCoA the sequence of random numbers will be the same (as in other programming languages). If you want total randomness read “Seed” (VI-19.3 pg.330)

\begin{verbatim}
Rand();
6304433354
-------------------
Rand(1,100);
8
-------------------
Rand(100,1);
14
-------------------
Rand(-10^4,0);
-2747
-------------------
\end{verbatim}

\textbf{See Also:} Randomize (VI-18.4 pg.316), Randomized (VI-18.5 pg.317), Seed (VI-19.3 pg.330)

VI-18.4  Randomize

\textbf{syntex}

\begin{verbatim}
Randomize(V:POLY) : POLY
\end{verbatim}

where \(V\) is a variable containing a polynomial.

\textbf{Description}

This function replaces the coefficients of terms of the polynomial contained in \(V\) with randomly generated coefficients. The result is stored in \(V\), overwriting the original polynomial.

Note: It is possible that some coefficients will be replaced by zeroes, i.e., some terms from the original polynomial may disappear in the result.

The similar function “Randomized” (VI-18.5 pg.317) performs the same operation, but returns the randomized polynomial without modifying the argument.

NB: every time you restart CoCoA the sequence of random numbers will be the same (as in other programming languages). If you want total randomness read “Seed” (VI-19.3 pg.330)

\begin{verbatim}
Use R ::= Q[x];
F := 1+x+x^2;
Randomized(F);

-2917104644x^2 + 3623608766x - 2302822308
-------------------
F;
x^2 + x + 1
-------------------
Randomize(F);
F;
-1010266662x^2 + 1923761602x - 4065654277
-------------------
\end{verbatim}
**Randomized**

**Syntax**

```plaintext
Randomized(F:POLY or INT):POLY or INT
```

where \( V \) is a variable containing a polynomial.

**Description**

This function with a polynomial argument returns a polynomial obtained by replacing the coefficients of \( F \) with randomly generated coefficients. The original polynomial, \( F \), is unaffected. With an integer argument, it returns a random integer.

Note: It is possible that some coefficients will be replaced by zeroes, i.e., some terms from the original polynomial may disappear in the result.

The similar function “Randomize” (VI-18.4 pg.316) performs the same operation, but returns NULL and modifies the argument.

NB: every time you restart CoCoA the sequence of random numbers will be the same (as in other programming languages). If you want total randomness read “Seed” (VI-19.3 pg.330)

**Example**

```plaintext
Use R ::= Q[x];
F := 1+x+x^2;
Randomized(F);
-2917104644x^2 + 3623608766x - 2302822308

F;
x^2 + x + 1

Randomized(23);
-3997312402

Use R ::= Z/(7)[x,y];
Randomized(x^2+3x-5);
3x^2 + 2x - 2

```

**See Also:** Rand (VI-18.3 pg.316), Randomize (VI-18.4 pg.316), Seed (VI-19.3 pg.330)

**Rank**

**Syntax**

```plaintext
Rank(M:MODULE):INT
Rank(M:MAT):INT
```

**Description**

This function computes the rank of \( M \). For a module \( M \) this is defined as the vector space dimension of the subspace generated by the generators of \( M \) over the quotient field of the base ring – contrast this with the function NumComps which simply counts the number of components the module has.

**Example**

```plaintext
Use R ::= Q[x,y,z];
Rank(Module([x,y,z,0]));
1

Rank(Module([[1,2,3],[2,4,6]]));
1

```

**See Also:** Rand (VI-18.3 pg.316), Randomize (VI-18.4 pg.316), Seed (VI-19.3 pg.330)
VI-18.7  RealRootRefine

**syntax**

RealRootRefine(Root:RECORD, Precision:RAT):RECORD

**Description**

This function computes a refinement of a real root of a univariate polynomial over Q to the desired precision (width of isolating interval). The starting root must be a record produced by RealRoots.

**example**

RR := RealRoots(x^2-2);
RealRootRefine(RR[1], 1/2);
Record[ CoeffList = [-8, 1456, -712], Inf = -91/64, Sup = -45/32]

RR := [RealRootRefine(Root, 10^-20) | Root In RR];
FloatStr(RR[1].Inf);
-1.414213562*10^0

**See Also:** RealRoots (VI-18.8 pg.318), RootBound (VI-18.27 pg.328)

VI-18.8  RealRoots

**syntax**

RealRoots(F:POLY):LIST
RealRoots(F:POLY, Precision:RAT):LIST
RealRoots(F:POLY, Precision:RAT, Interval:[RAT,RAT]):LIST

**Description**

This function computes isolating intervals for the real roots of a univariate polynomial over Q. It returns the list of the real roots, where a root is represented as a record containing either the exact root (if the fields Inf and Sup are equal), or an open interval (Inf, Sup) containing the root. A third field (called CoeffList) has an obscure meaning.

An optional second argument specifies the maximum width an isolating interval may have. An optional third argument specifies a closed interval in which to search for roots.

The interval represented by a root record may be refined by using the function RealRootRefine.

**example**

RealRoots(x^2-2);
[Record(CoeffList = [8, -16, 7], Inf = -4, Sup = 0],
Record[CoeffList = [8, 0, -1], Inf = 0, Sup = 4]]

RR := RealRoots((x^2-2)*(x-1), 10^-(-5));
FloatStr(RR[1].Inf);  -- left end of interval
-1.414213657*10^-0

FloatStr(RR[1].Sup);  -- right end of interval
-1.414213419*10^-0

RR := RealRoots(x^2-2, 10^-(-20), [0, 2]);
RR[1].Inf;  -- incomprehensible
VI-18.9  Record

**syntax**

`Record[X_1 = OBJECT,...,X_n = OBJECT]`

**where each X_i is a variable.**

**Description**

This function returns a record with fields “X_1”,...,”X_n”. The empty record is given by “Record[]”. The records are “open” in the sense that new fields may be added after the record is first defined.

**example**

```plaintext
P := Record[Height = 10, Width = 5];
P.Height * P.Width;
50

P.Area := It;
P;
Record[Area = 50, Height = 10, Width = 5]

```

**See Also:** Fields (VI-6.5 pg.203)

VI-18.10 ReducedGBasis

**syntax**

`ReducedGBasis(M:IDEAL, MODULE, or TAGGED("Quotient")):LIST`

**Description**

If M is an ideal or module, this function returns a list whose components form a reduced Groebner basis for M with respect to the term-ordering of the polynomial ring of M. If M is a quotient of a ring by an ideal I or of a free module by a submodule N, then the Groebner basis for M is defined to be that of I or N, respectively.

**example**

```plaintext
Use R ::= Q[t,x,y,z];
I := Ideal(t^-3-x,t^-4-y,t^-5-z);
GB.Start_GBasis(I); -- start the Interactive Groebner Framework
GB.Step(I); -- take one step towards computing the Groebner basis
I.GBasis; -- the Groebner basis so far
[t^-3 - x]

GB.Complete(I); -- finish the computation
I.GBasis;
[t^-3 - x, -tx + y, -ty + z, -y^2 + xz, -x^2 + tz, t^-2z - xy]

ReducedGBasis(I);
[t^-3 - x, tx - y, ty - z, y^2 - xz, x^2 - tz, t^-2z - xy]

```
See Also: Introduction to Groebner Bases in CoCoA (IV-13.1 pg.127), The Interactive Groebner Framework (IV-13.3 pg.129), GBasis5, and more (VI-7.18 pg.217)

VI-18.11 RefineGCDFreeBasis

**syntax**

RefineGCDFreeBasis(B:LIST of INT, N:INT):LIST of INT

**Description**

This function computes a refined GCD free basis by adjoining a given integer to it. The value returned is [NewB, N2] where NewB is the refined basis and N2 is the part of N coprime to every element of B.

**example**

```plaintext
B := GCDFreeBasis(GCDFreeBasis([Fact(10),Bin(20,10)]));
[14175, 4, 46189]
RefineGCDFreeBasis(B, 15);
[[7, 3, 5, 4, 46189], 1]
```

See Also: GCDFreeBasis (VI-7.22 pg.220)

VI-18.12 RegularityIndex

**syntax**

Multiplicity(R:RING or TAGGED("Quotient")):INT

**Description**

This function computes the regularity index of a Hilbert function. The input might be expressed as a Hilbert function or as the corresponding Hilbert series (computed with standard weights).

**example**

```plaintext
Use R ::= Q[x,y,z];
Quot := R/Ideal(x^3, y^2);
HilbertFn(Quot);
H(0) = 1
H(1) = 3
H(2) = 6
H(3) = 10
H(4) = 15
H(t) = 7t - 14 for t >= 5

RegularityIndex(Hilbert(Quot));
3

RegularityIndex(Poincare(Quot));
3
```

See Also: Hilbert (VI-8.16 pg.231), HilbertFn (VI-8.18 pg.232), HilbertSeries (VI-8.20 pg.232), Poincare (VI-16.8 pg.307)
VI-18.13  Remove

Remove(V:LIST,N:INT):NULL

where V is a variable containing a list.

Description

This function removes the N-th component from L. (The function “WithoutNth” (VI-23.4 pg.358) returns the list obtained by removing the N-th component of L without affecting L, itself.)

example

Use R ::= Q[x,y,z];
L := Indets();
L;
[x, y, z]
--------------------
Remove(L,2);
L;
[x, z]
--------------------

See Also: Insert (VI-9.16 pg.246), WithoutNth (VI-23.4 pg.358)

VI-18.14  Repeat

Repeat C Until B
Repeat C EndRepeat

where C is a sequence of commands and B is a boolean expression.

Description

In the first form, the command sequence C is repeated until B evaluates to FALSE. Unlike the “While” command, C is executed at least once. Note that there is no “EndRepeat” following B. In the second form, the command sequence C is repeated until a “Break” or “Return” is encountered within C.

example

Define GCD_Euclid(A,B)
    Repeat
        R := Mod(A,B);
        A := B;
        B := R;
        Until B = 0;
        Return A
    EndDefine;

GCD_Euclid(6,15);
3
----------------------

N := 0;
Repeat
    N := N+1;
    PrintLn(N);
    If N = 5 Then Return; EndIf;
EndRepeat;
1
See Also: For (VI-6.12 pg.206), Foreach (VI-6.13 pg.207), While (VI-23.3 pg.358)

### VI-18.15 Res

**syntax**

\[
\text{Res}(M) : \text{TAGGED} \("gb.Res")
\]

where \(M\) is of type IDEAL or MODULE or TAGGED("Quotient").

**Description**

This function returns the minimal free resolution of \(M\). If \(M\) is a quotient of a ring by an ideal \(I\) or a quotient of a free module by a submodule \(N\), then the resolution of \(M\) is defined to be that of \(I\) or \(N\), respectively.

"Res" only works in the homogeneous context, and the coefficient ring must be a field.

**example**

Use \(R \ ::= Q[x,y,z]\);
\(I \ ::= \text{Ideal}(x,y,z^2)\);
\(\text{Res}(R/I)\);

\[
0 \rightarrow R(-4) \rightarrow R(-2)(+)R^2(-3) \rightarrow R^2(-1)(+)R(-2) \rightarrow R
\]

Describe It;

\[
\text{Mat}([y, x, z^2])
\]

\[
\text{Mat}([x, z^2, 0], [-y, 0, z^2], [0, -y, -x])
\]

\[
\text{Mat}([z^2], [x], [y])
\]


For fine control and monitoring of Groebner basis calculations, including various types of truncations, see “The Interactive Groebner Framework” (IV-13.3 pg.129) and “Introduction to Panels” (V-1.1 pg.139).

**See Also:** Example: Interactive Resolution Computation (IV-13.6 pg.130), Example: Truncations (IV-13.7 pg.131), Introduction to Groebner Bases in CoCoA (IV-13.1 pg.127)

### VI-18.16 Reset

**syntax**

\[
\text{Reset}(): \text{NULL}
\]
**Description**

This function resets the options in the CoCoA panels to their default values and executes “Seed(0)”.

```plaintext
Set Indentation;
Panel(GENERAL);

Echo............... : FALSE
Timer.............. : FALSE
Trace.............. : FALSE
Indentation........ : TRUE
TraceSources....... : FALSE
SuppressWarnings... : FALSE
ComputationStack... : FALSE

Reset();
Panel(GENERAL);

Echo............... : FALSE
Timer.............. : FALSE
Trace.............. : FALSE
Indentation........ : FALSE
TraceSources....... : FALSE
SupressWarnings... : FALSE
ComputationStack... : FALSE

```

See Also: Introduction to Panels (V-1.1 pg.139), ResetPanels (VI-18.17 pg.323), Seed (VI-19.3 pg.330)
Chapter VI-18. R

SuppressWarnings...: FALSE
ComputationStack...: FALSE

See Also: Introduction to Panels (V-1.1 pg.139), Reset (VI-18.16 pg.322)

VI-18.18 Resultant

Syntax

Resultant(F:POLY,G:POLY,X:INDET):POLY

Description

This function returns the resultant of the polynomials \( F \) and \( G \) with respect to the indeterminate \( X \).

Example

Use \( R::=Q[p,q,x] \);
\( F:=x^3+px-q; \ G:=\text{Der}(F,x); \)
Resultant(F,G,x);
\( 4p^3 + 27q^2 \)

See Also: Discriminant (VI-4.19 pg.191), Sylvester (VI-19.26 pg.342)

VI-18.19 Return

Syntax

Return
Return E

where \( E \) is an expression.

Description

This function is used to exit from a structured command. The latter form returns the value of the expression \( E \) to the user. If executed within a nested loop or inside a user-defined function, it breaks out back to the “top level”, not just to the next higher loop. (For breaks to the next higher loop, see “Break” (VI-2.8 pg.167).)

Example

Define Rev(L) -- reverse a list
If Len(L) < 2 Then Return L EndIf;
M := Rev(Tail(L)); -- recursive function call
H := Head(L);
Return Concat(M,[H]);
EndDefine;
Rev([1,2,3,4]);
[4, 3, 2, 1]

-- Another example: returning from a nested loop
For I := 1 To 5 Do
   For J := 1 To 5 Do
      If J > 2 Then Return Else Print([I,J], " ") EndIf
   EndFor;
EndFor;
[1, 1] [1, 2]

See Also: Break (VI-2.8 pg.167), Define (VI-4.4 pg.182)
VI-18.20 Reverse, Reversed

syntax

Reverse(V:LIST):NULL
Reversed(L:LIST):NULL

where V is a variable containing a list in the first case.

Description

The function “Reverse” reverses the order of the elements of the list in V, returning Null. It does *not* return the reversed list, but instead changes L itself. The function “Reversed” returns the reversed list without changing L.

example

L := [1,2,3,4];
Reverse(L);
L; -- L has been modified
[4, 3, 2, 1]
-----------------------
M := [1,2,3,4];
Reversed(M); -- the reversed list is returned
[4, 3, 2, 1]
-----------------------
M; -- M has not been modified
[1, 2, 3, 4]
-----------------------

See Also: Sort (VI-19.12 pg.335), Sorted (VI-19.14 pg.336)

VI-18.21 RevLexMat

syntax

RevLexMat(N:INTEGER):MAT

Description

This function return the matrix defining a standard ordering (which is not a term-ordering!).

example

RevLexMat(3);
Mat([  
    [0, 0, -1],
    [0, -1, 0],
    [-1, 0, 0]
  ])
-----------------------

See Also: Ord (VI-15.8 pg.302), Orderings (IV-8.6 pg.106), DegRevLexMat (VI-4.7 pg.185), DegLexMat (VI-4.6 pg.184), LexMat (VI-12.6 pg.266), XelMat (VI-24.1 pg.361)

VI-18.22 Ring

syntax

Ring(R:RING):RING
**Description**

This function returns the ring with identifier R.

```
Use R ::= Q[x,y,z];
S ::= Z/(3)[a,b];
Ring(S);
Z/(3)[a,b]

Ring(R);
Q[x,y,z]

R; -- same as above, as long as there is no variable with identifier
 -- R in the working memory
Q[x,y,z]

CurrentRing();
Q[x,y,z]

R := 5; -- a variable with identifier R; now there are two objects
 -- with the identifier R: a variable and a ring
R;
5

Memory(); -- the variables of the working memory
["It", "R"]

RingEnvs(); -- the list of rings
["Q", "Qt", "R", "S", "Z"]

Ring(R); -- the ring with identifier R
Q[x,y,z]

```

**See Also:** CurrentRing (VI-3.26 pg.180), Introduction to Rings (IV-8.1 pg.103), RingEnv (VI-18.23 pg.326), RingEnvs (VI-18.24 pg.327)

**VI-18.23 RingEnv**

**syntax**

```
RingEnv():STRING
RingEnv(E:POLY, IDEAL, MODULE, RATFUN, VECTOR):STRING
```

**Description**

The first form of this function returns the identifier for the current ring. The second form returns the identifier of the ring on which the object E is dependent.

```
Use R ::= Q[x,y,z];
I := Ideal(x,y); -- an object dependent on R
S ::= Z/(3)[a,b]; -- define S, but do not make S active
RingEnv(); -- the current ring
R

RingEnvs(); -- your result here could be different
["Q", "Qt", "R", "S", "Z"]

```
Ring(S);
Z/(3)[a,b]
-------------------------------
I;
Ideal(x, y)
-------------------------------
Use S; -- S is now the active ring
I; -- I is labeled by its ring. The label appears explicitly when R
-- is not the current ring.
R :: Ideal(x, y)
-------------------------------
RingEnv(I); -- the ring labeling I
R
-------------------------------
CurrentRing();
Q[x,y,z]
-------------------------------
Use Q[a,b];
RingEnv();
CurrentRingEnv
-------------------------------

See Also: CurrentRing (VI-3.26 pg.180), Ring (VI-18.22 pg.325), RingEnvs (VI-18.24 pg.327), RingEnvSet (VI-18.25 pg.327)

VI-18.24 RingEnvs

Syntax

RingEnvs():TAGGED

Description

This function returns the tagged list of identifiers for the existing rings.

Example

R_1 ::= Q[a,b,c];
R_2 ::= Q[x,y];
RingEnvs(); -- your result may be different
["Q", "Qt", "R", "R_1", "R_2", "Z"]

See Also: CurrentRing (VI-3.26 pg.180), Ring (VI-18.22 pg.325), RingEnv (VI-18.23 pg.326)

VI-18.25 RingEnvSet

Syntax

RingEnvSet(E:LIST, MAT, POLY, IDEAL, MODULE, RATFUN, VECTOR):LIST of STRING

Description

This function returns the list of the identifiers of the rings on which the object E is dependent. Similar to "RingEnv" (VI-18.23 pg.326), this function also works on lists and matrices and returns the set of ring environments of all entries. ...needless to say that it may be quite slow on big inputs!

Example

Use R ::= Q[x,y,z];
L1 := [x, y];
L2 := [x, y, 0, 5/4];
Use S ::= Z/(3)[a,b];
RingEnvSet(L1);
[R]
-------------------------------
RingEnvSet(L2);
[R, ]
-------------------------------
RingEnvSet([L2, a+b]);
[R, , S]
-------------------------------

See Also: CurrentRing (VI-3.26 pg.180), Ring (VI-18.22 pg.325), RingEnv (VI-18.23 pg.326), RingEnvs (VI-18.24 pg.327)

VI-18.26 RMap

RMap(L:LIST):TAGGED("RMap")

Description
See “Image” (VI-9.9 pg.242).

See Also: Accessing Other Rings (IV-8.11 pg.108), BringIn (VI-2.9 pg.167), Image (VI-9.9 pg.242), QZP (VI-17.3 pg.314), ZPQ (VI-25.1 pg.363), Ring Mappings: the Image Function (IV-8.12 pg.109), Subst (VI-19.23 pg.340), Using (VI-21.5 pg.353)

VI-18.27 RootBound

RootBound(F:POLY):INT

Description
This function computes a bound on the absolute values of the complex roots of a univariate polynomial over Q.

Example

RootBound(x^2-2);
4
-------------------------------

See Also: RealRootRefine (VI-18.7 pg.318), RealRoots (VI-18.8 pg.318)
Chapter VI-19

S

VI-19.1 Saturation

**Syntax**

Saturation(I:IDEAL,J:IDEAL):IDEAL

**Description**

This function returns the saturation of I with respect to J: the ideal of polynomials F such that F\*G is in I for all G in J^d for some positive integer d.

The coefficient ring must be a field.

**Example**

Use R ::= Q[x,y,z];
I := Ideal(x-z, y-2z);
J := Ideal(x-2z, y-z);
K := Intersection(I, J); -- ideal of two points in the
   -- projective plane
L := Intersection(K, Ideal(x,y,z)^3); -- add an irrelevant component
Hilbert(R/L);
H(0) = 1
H(1) = 3
H(2) = 6
H(t) = 2 for t >= 3
--------------------
Saturation(L, Ideal(x,y,z)) = K; -- saturating gets rid of the
   -- irrelevant component
TRUE
--------------------

**See Also:** Colon (VI-3.17 pg.176), HColon (VI-8.12 pg.228), HSaturation (VI-8.26 pg.235), GBasis5, and more (VI-7.18 pg.217)

VI-19.2 ScalarProduct

**Syntax**

ScalarProduct(L, M):OBJECT

where each of L and M is of type VECTOR or LIST

**Description**

This function returns the sum of the product of the components of L and M; precisely:

ScalarProduct(L,M) = \sum([L[I]^M[I] - I In 1..Min(Len(L),Len(M))]).
Thus, the function works even if the lengths of L and M are different. The function works whenever the product of the components of L and M are defined (see “Algebraic Operators” (III-3.2 pg.51)).

\begin{verbatim}
ScalarProduct([1,2,3],[5,0,-1]); 2
-----------------------------
ScalarProduct([1,2,3],[5,0]); 5
-----------------------------
Use R ::= Q[x,y];
ScalarProduct([Ideal(x,y),Ideal(x^2-xy)],[x^2,y]);
Ideal(x^3, x^2y, x^2y - xy^2)
-----------------------------
\end{verbatim}

See Also: Algebraic Operators (III-3.2 pg.51)

VI-19.3 Seed

\begin{verbatim}
Seed(N:INT):INT
\end{verbatim}

\textbf{Description}

This function seeds the random number generator, “\texttt{Rand}” (VI-18.3 pg.316).

NB: every time you restart CoCoA the sequence of random numbers will be the same (as in other programming languages). If you want total randomness see the example below.

\begin{verbatim}
Seed(5);
Rand();
1991603592
-----------------------------
Rand();
-1650270230
-----------------------------
Seed(5); -- with the same seed, "Rand" generates the same sequence
Rand();
1991603592
-----------------------------
Rand();
-1650270230
-----------------------------
-- Total randomness:
-- the following shows how to make a random seed based on the date.
D := Date();
D;
Mon Mar 02 14:43:44 1998
-----------------------------
Seed(Sum(Ascii(D)));
\end{verbatim}

See Also: Rand (VI-18.3 pg.316)

VI-19.4 SeparatorsOfPoints

\begin{verbatim}
SeparatorsOfPoints(Points:LIST):LIST
\end{verbatim}
where Points is a list of lists of coefficients representing a set of
*distinct* points in affine space.

**Description**

This function computes separators for the points: that is, for each point a polynomial is determined whose value is 1 at that point and 0 at all the others. The separators yielded are reduced with respect to the reduced Groebner basis which would be found by “IdealOfPoints” (VI-9.4 pg.239).

**NOTE:**
* the current ring must have at least as many indeterminates as the dimension of the space in which the points lie;
* the base field for the space in which the points lie is taken to be the coefficient ring, which should be a field;
* in the polynomials returned the first coordinate in the space is taken to correspond to the first indeterminate, the second to the second, and so on;
* the separators are in the same order as the points (i.e. the first separator is the one corresponding the first point, and so on);
* if the number of points is large, say 100 or more, the returned value can be very large. To avoid possible problems when printing such values as a single item we recommend printing out the elements one at a time as in this example:

```
S := SeparatorsOfPoints(Pts);
Foreach Element In S Do
 PrintLn Element;
EndForeach;
```

For separators of points in projective space, see “SeparatorsOfProjectivePoints” (VI-19.5 pg.331).

**example**

```
Use R ::= Q[x,y];
Points := [[1, 2], [3, 4], [5, 6]];
S := SeparatorsOfPoints(Points); -- compute the separators
S;
[1/8y^2 - 5/4y + 3, -1/4y^2 + 2y - 3, 1/8y^2 - 3/4y + 1]
Foreach F In S Do
 PrintLn Eval(F, P) | P In Points;
EndForeach;
```

**See Also:** GenericPoints (VI-7.23 pg.221), IdealAndSeparatorsOfPoints (VI-9.2 pg.237), IdealAndSeparatorsOfProjectivePoints (VI-9.3 pg.238), IdealOfPoints (VI-9.4 pg.239), IdealOfProjectivePoints (VI-9.5 pg.240), Interpolate (VI-9.17 pg.247), SeparatorsOfProjectivePoints (VI-19.5 pg.331)
NOTE:
* the current ring must have at least one more indeterminate than the dimension of the projective space in
which the points lie, i.e., at least as many indeterminates as the length of an element of the input, Points;
* the base field for the space in which the points lie is taken to be the coefficient ring, which should be a
field;
* in the polynomials returned the first coordinate in the space is taken to correspond to the first indetermi-
nate, the second to the second, and so on;
* the separators are in the same order as the points (i.e. the first separator is the one corresponding the
first point, and so on);
* if the number of points is large, say 100 or more, the returned value can be very large. To avoid possible
problems when printing such values as a single item we recommend printing out the elements one at a time as
in this example:

```plaintext
S := SeparatorsOfProjectivePoints(Pts);
Foreach Element In S Do
 PrintLn Element;
EndForeach;
```

For separators of points in affine space, see “SeparatorsOfPoints” (VI-19.4 pg.330).

```plaintext
Use R ::= Q[x,y,z];
Points := [[0,0,1],[1/2,1,1],[0,1,0]];
S := SeparatorsOfProjectivePoints(Points);
S;
[-2x + z, 2x, -2x + y]
```

```
[[Eval(F, P) | P In Points] | F In S]; -- verify separators
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
```

See Also: GenericPoints (VI-7.23 pg.221), IdealAndSeparatorsOfPoints (VI-9.2 pg.237), IdealAndSeparatorsOfProjectivePoints (VI-9.3 pg.238), IdealOfPoints (VI-9.4 pg.239), IdealOfProjectivePoints (VI-9.5 pg.240), Interpolate (VI-9.17 pg.247), SeparatorsOfPoints (VI-19.4 pg.330)

### VI-19.6 Set-Unset

**Syntax**

```plaintext
Set 0
Set 0 := B:BOOL
UnSet 0
```

**Where** O is a panel option.

**Description**

See “Unset” (VI-21.2 pg.351).

**See Also:** Unset (VI-21.2 pg.351), Introduction to Panels (V-1.1 pg.139), Panel (VI-16.2 pg.305), Option (VI-15.7 pg.302), Panels (VI-16.3 pg.306)

### VI-19.7 Shape

**Syntax**

```plaintext
Shape(E:LIST):LIST (of TYPE)
Shape(E:MAT):MAT (of TYPE)
Shape(E:RECORD):RECORD (of TYPE)
Shape(E:OTHER):TYPE
```

**Where** OTHER stands for a type which is not LIST, MAT, or RECORD.
Description

This function returns the extended list of types involved in the expression E as outlined below:

Type(E) = LIST
In this case, Shape(E) is the list whose i-th component is the type of the i-th component of E.

Type(E) = MAT
In this case, Shape(E) is a matrix with (i,j)-th entry equal to the type of the (i,j)-th entry of E.

Type(E) = RECORD
In this case, Shape(E) is a record whose fields are the types of the fields of E.

Otherwise, “Shape(E)” is the type of E.

Example

Use R ::= Q[x];
L := [1,[1,"a"],x^2-x];
Shape(L);
[INT, [INT, STRING], POLY]
-------------------------------
R := Record[Name = "test", Contents = L];
Shape(R);
Record[Contents = [INT, [INT, STRING], POLY], Name = STRING]
-------------------------------
It.Name;
STRING
-------------------------------

There are undocumented functions, “IsSubShape” and “IsSubShapeOfSome”, for determining if the “shape” of a CoCoA expression is a “subshape” of another. To see the code for these functions, enter

Describe Function("$misc.IsSubShape");
Describe Function("$misc.IsSubShapeOfSome");

See Also: Data Types (III-2.6 pg.48)

VI-19.8 Sign

Sign(X:INT of RAT):INT

Description

This function returns -1 if X ¡ 0, 0 if X = 0, and 1 if X ¿ 0. X must be INT or RAT.

Example

Sign(123);
1
-------------------------------
Sign(-5/2);
-1

VI-19.9 Size

Size(E:OBJECT):INT
Description
This function returns the amount of memory used by the object E, expressed in words (1 word = 4 bytes = 32 bits).

```plaintext
Use R ::= Q[x,y];
Size(1);
 1

Size(2^32-1);
 1

Size(2^32);
 2

Size(2^64);
 3

Size(x);
 32

Size([x,y]);
 64

```

See Also: Count (VI-3.25 pg. 180), Len (VI-12.5 pg. 265)

VI-19.10 Skip

```plaintext
Skip
```

Description
This command does nothing. I suppose it might be used to make the structure of a user-defined function more clear. It is probably at least as useful as the function “Tao”.

```plaintext
Skip;
```

VI-19.11 SmoothFactor

```plaintext
SmoothFactor(N:INT, MaxP:INT):[LIST of INT, INT]
```

Description
This function finds the small prime factors of an integer. It simply tries dividing by all primes up to the given bound. The result is a list of the prime factors found together with the unfactored part of N. Be careful about supplying large values for MaxP (e.g. greater than a million): the function could take a very long time. MaxP must be positive.

```plaintext
SmoothFactor(100, 3);
[[2, 2], 25]

SmoothFactor(123456789, 3700);
```
VI-19.12 Sort

**syntax**

```plaintext
Sort(V:LIST):NULL
```

where V is a variable containing a list.

**Description**

This function sorts the elements of the list in V with respect to the default comparisons related to their types; it overwrites V and returns NULL.

For more on the default comparisons, see “Relational Operators” (III-3.3 pg. 52) in the chapter on operators. For more complicated sorting, see “SortBy” (VI-19.13 pg.335), “SortedBy” (VI-19.15 pg.336).

```plaintext
L := [3,2,1];
Sort(L); -- this returns nothing and modifies L
L;
[1, 2, 3]

Use R ::= Q[x,y,z];
L := [x,y,z];
Sort(L); -- this returns nothing and modifies L
L[1];
z-------------------------------
Sort([y,x,z,x^2]); -- this returns nothing!!
Sorted([y,x,x^2]); -- this returns the sorted list
[y, x, x^2]

```

**See Also:** Relational Operators (III-3.3 pg.52), Sorted (VI-19.14 pg.336), SortBy (VI-19.13 pg.335), SortedBy (VI-19.15 pg.336)

VI-19.13 SortBy

**syntax**

```plaintext
SortBy(V:LIST,F:FUNCTION):NULL
```

where V is a variable containing a list and F is a boolean-valued comparison function of two arguments (e.g. representing ‘{it less than}’).

**Description**

This function sorts the elements of the list in V with respect to the comparisons made by F; it overwrites V and returns NULL.

The comparison function F takes two arguments and returns TRUE if the first argument is less than the second, otherwise it returns FALSE. The sorted list is in increasing order.

Note that if both F(A,B) and F(B,A) return TRUE, then A and B are viewed as being equal.
Define ByLength(S,T) -- define the sorting function
    Return Len(S) > Len(T);
EndDefine;
M := ["dog","mouse","cat"];
sortBy(M, Function("ByLength"));
M;
["mouse", "dog", "cat"]
-------------------------------

See Also: Sort (VI-19.12 pg.335), Sorted (VI-19.14 pg.336), SortedBy (VI-19.15 pg.336)

VI-19.14 Sorted

```plaintext
Sorted(L:LIST):LIST
where V is a variable containing a list.
```

Description
This function returns the list of the sorted elements of L without affecting L, itself.
For more on the default comparisons, see “Relational Operators” (III-3.3 pg.52) in the chapter on operators.
For more complicated sorting, see “sortBy” (VI-19.13 pg.335), “SortedBy” (VI-19.15 pg.336).

example
L := [3,2,1];
Sorted(L);
[1, 2, 3]
-------------------------------
Use R ::= Q[x,y,z];
L := [x,y,z];
Sorted(L);
[z, y, x]
-------------------------------
Sorted([y,x,z,x^2]);
[z, y, x, x^2]
-------------------------------
Sorted([3,1,1,2]);
[1, 1, 2, 3]
-------------------------------
Sorted(["b","c","a"]);
["a", "b", "c"]
-------------------------------
Sorted([Ideal(x,y),Ideal(x)]); -- ideals are ordered by containment
[Ideal(x), Ideal(x, y)]
-------------------------------

See Also: Relational Operators (III-3.3 pg.52), SortBy (VI-19.13 pg.335), SortedBy (VI-19.15 pg.336),
Sort (VI-19.12 pg.335)

VI-19.15 SortedBy

```plaintext
SortedBy(L:LIST,F:FUNCTION):LIST
where V is a variable containing a list and F is a boolean-valued
comparison function of two arguments (e.g. representing ‘‘\{it less than\}’’).
```
Description

This function returns the list of the sorted elements of \( L \) without affecting \( L \), itself. As for \texttt{SortBy} (VI-19.13 pg.335), the comparison function \( F \) takes two arguments and returns \text{TRUE} if the first argument is less than the second, otherwise it returns \text{FALSE}. The sorted list is in increasing order.

Note that if both \( F(A,B) \) and \( F(B,A) \) return \text{TRUE}, then \( A \) and \( B \) are viewed as being equal.

\begin{verbatim}
Define ByLength(S,T) -- define the sorting function
  Return Len(S) > Len(T);
EndDefine;
M := ["dog","mouse","cat"];
SortedBy(M,Function("ByLength"));
["mouse", "dog", "cat"]
-----------------------------
M; -- M is not changed
["dog", "mouse", "cat"]
-----------------------------
Sorted(M); -- the function "Sort" sorts using the default ordering:
-- in this case, alphabetical order.
["cat", "dog", "mouse"]
-----------------------------
SortBy(M,Function("ByLength")); -- sort M in place, changing M
M;
["mouse", "dog", "cat"]
-----------------------------
\end{verbatim}

See Also: \texttt{Sort} (VI-19.12 pg.335), \texttt{Sorted} (VI-19.14 pg.336), \texttt{SortBy} (VI-19.13 pg.335)

---

**VI-19.16 Source**

\begin{verbatim}
Source S:STRING
<< S:STRING
\end{verbatim}

Description

This command executes all CoCoA commands in the file or device named \( S \). A typical use of \texttt{Source} is to collect user-defined functions and variables in a text file, say, \texttt{MyFile.coc} and then execute:

\begin{verbatim}
Source "MyFile.coc";
\end{verbatim}

or, equivalently,

\begin{verbatim}
<< "MyFile.coc";
\end{verbatim}

Functions and variables read in from a file in this way will erase functions and variables with identical names that may already exist. This can be avoided by using packages. Repeatedly used functions can be read into CoCoA at start-up by using \texttt{Source} in the "userinit.coc" file.

See Also: Introduction to IO (III-7.1 pg.61), Introduction to Packages (III-9.1 pg.71), User Initialization (V-3.1 pg.149), Shortcuts (VI-0.1 pg.155)

---

**VI-19.17 Spaces**

\begin{verbatim}
Spaces(N:INT):STRING
\end{verbatim}
**Description**

This function returns a string consisting of N spaces.

```plaintext
L := "a" + Spaces(5) + "b";
L;
a b
```

**See Also:** Dashes (VI-4.1 pg.181), Equals (VI-5.4 pg.196)

### VI-19.18 Sprint

**syntax**

```plaintext
Sprint(E:OBJECT):STRING
```

**Description**

This function takes any CoCoA expression and converts its value to a string. One use is to check for extremely long output before printing in a CoCoA window.

```plaintext
Use R ::= Q[x,y];
I := Ideal(x,y);
J := Sprint(I);
I;
Ideal(x, y)

J; -- The output for I and J looks the same, but ...
Ideal(x, y)

Type(I); -- I is an ideal, and
IDEAL

Type(J); -- J is just the string "Ideal(x, y)"
STRING

J[1]; -- the 1st character of J
I

J[2]; -- the 2nd character of J
d

Len(J); -- J has 11 characters
11

```

**See Also:** Introduction to IO (III-7.1 pg.61), IO.SprintTrunc (VI-9.22 pg.249), Print (VI-16.16 pg.310), PrintLn (VI-16.18 pg.311)

### VI-19.19 StarPrint

**syntax**

```plaintext
StarPrint(F:POLY):NULL
StarPrintFold(F:POLY, LineWidth:INT)
```
Starting

These functions print the polynomial F with asterisks added to denote multiplications. They may be useful when cutting and pasting from CoCoA to other mathematical software (Gap, Maple, Macaulay, Singular,...). StarPrint inserts newline characters (only between terms) to avoid lines much longer than about 70 characters. If a different approximate maximum length is desired this may be specified as the second argument to StarPrintFold; a negative value means no line length limit.

\begin{verbatim}
example

Use R ::= Q[x,y];
F := x^3+2xy-y^2;
StarPrint(F);
1*x^3+2*x*y-1*y^2
-------------------------------
StarPrintFold(F,0); -- this will print one term per line
1*x^3
+2*x*y
-1*y^2
-------------------------------
\end{verbatim}

See Also: Latex (VI-12.2 pg.263)

Starting

\begin{verbatim}
syntax
Starting(S:STRING):LIST of STRING
\end{verbatim}

Description

This function returns a list of all CoCoA functions starting with the string “S”. In general, this list will include undocumented commands. For these, one may find some information using “Describe Function("Fn_Name")” or “Describe Function("$PackageName.Fn_Name")”.

\begin{verbatim}
example

Starting("Su");
-------------------------------
\end{verbatim}

See Also: Other Help (V-2.4 pg.146)

Submat

\begin{verbatim}
syntax
Submat(M:LIST or MAT,R:LIST of INT,C:LIST of INT):MAT
\end{verbatim}

Description

This function returns the submatrix of M formed by the rows listed in R and the columns listed in C. If M is a list, it is interpreted as a matrix in the natural way.

\begin{verbatim}
example

M := Mat([[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15]]);
Submat(M,[1,3],3..5);
Mat[
   [3, 4, 5],
   [13, 14, 15]
]
-------------------------------
L := [[1,2,3],[4,5,6]];
\end{verbatim}
Chapter VI-19. S

Submat(L,[2],[1,3]);
Mat([[
    [4, 6]
]);
-------------------------------

See Also: Introduction to Matrices (IV-7.1 pg.101), Minors (VI-13.15 pg.281)

VI-19.22 Subsets

syntax
Subsets(S:LIST):LIST
Subsets(S:LIST, N:INT):LIST

Description
This function computes all sublists (subsets) of a list (set). If N is specified, it computes all sublists of cardinality N.

example
Subsets([[1, 4, 7]]);
[[[]], [7], [4], [4, 7], [1], [1, 7], [1, 4], [1, 4, 7]]
-------------------------------
Subsets([[1, 4, 7]], 2);
[[[1, 4], [1, 7], [4, 7]]
-------------------------------
Subsets([[2, 3, 3]]); -- list with repeated entries
[[[], [3], [3], [3, 3], [2], [2, 3], [2, 3], [2, 3, 3]]
-------------------------------
Subsets(MakeSet([[2, 3, 3]]);
[[[], [3], [2], [2, 3]]
-------------------------------

See Also: IsSubset (VI-9.39 pg.256), Partitions (VI-16.4 pg.306), Permutations (VI-16.5 pg.306), MakeSet (VI-13.2 pg.273), Tuples (VI-20.8 pg.348)

VI-19.23 Subst

syntax
Subst(E:OBJECT,X,F):OBJECT
Subst(E:OBJECT,[[X_1,F_1],...,[X_r,F_r]]):OBJECT

where each X or X_i is an indeterminate and each F or F_i is a number, polynomial, or rational function.

Description
The first form of this function substitutes “F_i” for “X_i” in the expression E. The second form is a shorthand for the first in the case of a single indeterminate. When substituting for the indeterminates in order, it is easier to use “Eval” (VI-5.7 pg.197).

example
Use R ::= Q[x,y,z,t];
F ::= x+y+z+t^2;
Subst(F,x,-2);
t^-2 + y + z - 2
-------------------------------
Subst(F,x,z/y);
\[(yt^2 + y^2 + yz + z)/y\]

\[\begin{align*}
\text{Subst}(F, &\{[x,x^2],[y,y^3],[z,t^5]\}); \\
t^5 + y^3 + x^2 + t^2
\end{align*}\]

\[\begin{align*}
\text{Eval}(F, &\{x^2,y^3,t^5\}); \quad \text{-- the same thing as above} \\
t^5 + y^3 + x^2 + t^2
\end{align*}\]

\[\text{MySubst} := \{[y,1],[t,3z-x]\};\]

\[\text{Subst}(\text{xyzt}, \text{MySubst}); \quad \text{-- substitute into the function xyzt} \]

\[= -x^2z + 3xz^2\]

---

**See Also:** Eval (VI-5.7 pg.197), Evaluation of Polynomials (IV-9.2 pg.114), Image (VI-9.9 pg.242), QZP (VI-17.3 pg.314), ZPQ (VI-25.1 pg.363), Substitutions (II-2.15 pg.33)

### VI-19.24 Sum

**Syntax**

\[
\text{Product}(L:\text{List}):\text{OBJECT} \\
\text{Sum}(L:\text{List}):\text{OBJECT}
\]

**Description**

This function returns the sum of the objects in the list \(L\).

\[\begin{align*}
\text{Use } R &:= \mathbb{Q}[x,y]; \\
\text{Sum}([3,x,y^2]); \\
y^2 + x + 3
\end{align*}\]

\[\begin{align*}
\text{Sum}(1..40) &= \text{Bin}(41,2); \\
\text{TRUE}
\end{align*}\]

\[\begin{align*}
\text{Sum}(["c","oc","oa"]); \\
cocoa
\end{align*}\]

**See Also:** Algebraic Operators (III-3.2 pg.51), Product (VI-16.19 pg.312)

### VI-19.25 Support

**Syntax**

\[
\text{Support}(F:\text{POLY or VECTOR}):\text{LIST}
\]

**Description**

This function returns the list of terms of \(F\). To get a list of monomials, which includes coefficients, use “Monomials” (VI-13.21 pg.283).

\[\begin{align*}
\text{Use } R &:= \mathbb{Q}[x,y]; \\
F &:= 3x^2-4xy+y^3+3; \\
\text{Support}(F); \\
[y^3, \ x^2, \ xy, \ 1]
\end{align*}\]

\[\begin{align*}
\text{Monomials}(F); \\
[y^3, \ 3x^2, \ -4xy, \ 3]
\end{align*}\]
Support(Vector(x^2y,x^3-3y^2,34));
[Vector(0, x^3, 0), Vector(x^2y, 0, 0), Vector(0, y^2, 0), Vector(0, 0, 1)]

See Also: Coefficients (VI-3.15 pg.175), Monomials (VI-13.21 pg.283)

**VI-19.26  Sylvester**

Syntax

Sylvester(F:POLY,G:POLY,X:INDET)

Description

This function returns the Sylvester matrix of the polynomials F and G with respect to the indeterminate X. This is the matrix used to calculate the resultant.

```
Use R ::= Q[p,q,x];
F := x^3+px-q; G := Der(F,x);
Sylvester(F,G,x);
Mat([[1, 0, p, -q, 0],
 [0, 1, 0, p, -q],
 [3, 0, p, 0, 0],
 [0, 3, 0, p, 0],
 [0, 0, 3, 0, p]]);
```

```
Det(Sylvester(F,G,x)) = Resultant(F,G,x);
TRUE
```

See Also: Resultant (VI-18.18 pg.324)

**VI-19.27  Syz**

Syntax

Syz(L:LIST of POLY):MODULE
Syz(L:LIST of VECTOR):MODULE
Syz(M:IDEAL or MODULE, Index:INT):MODULE

Description

In the first two forms this function computes the syzygy module of a list of polynomials or vectors. In the last form this function returns the specified syzygy module of the minimal free resolution of M which must be homogeneous. As a side effect, it computes the Groebner basis of M.

The coefficient ring must be a field.

```
Use R ::= Q[x,y,z];
Syz([x^2-y,xy-z,xy]);
Module([0, xy, -xy + z], [z, x^2 - y, -x^2 + y], [yz, -y^2, y^2 - xz],
 [xy, 0, -x^2 + y]);
```

```
I := Ideal(x^2-yz, xy-z^2, xyz);
Syz(I,0);
Module([x^2 - yz], [xy - z^2], [xyz])
```
Syz(I,1);
Module([-x^2 + yz, xy - z^2, 0], [xz^2, -yz^2, -y^2 + xz], [z^3, 0, -xy + z^2], [0, z^3, -x^2 + yz])
-------------------------------
Syz(I,2);
Module([0, z, -x, y], [-z^2, -x, y, -z])
-------------------------------
Syz(I,3);
Module([0])
-------------------------------
Res(I);
0 --> R^2(-6) --> R(-4)(+)R^3(-5) --> R^2(-2)(+)R(-3)
-------------------------------

For fine control and monitoring of Groebner basis calculations, see
''The Interactive Groebner Framework'' (\ref{The Interactive Groebner Framework} pg.\pageref{The Interactive Groebner Framework}) and ''Introduction to Panels'' (\ref{Introduction to Panels} pg.\pageref{Introduction to Panels}).

\textbf{See Also:} Introduction to Groebner Bases in CoCoA (IV-13.1 pg.127), GBasis5, and more (VI-7.18 pg.217)

**VI-19.28 SyzMinGens**

\textbf{syntax}

SyzMinGens: FUNCTION ELIMINATED

\textbf{Description}

The SyzMinGens function has been removed.

\textbf{See Also:} Syz (VI-19.27 pg.342), SyzOfGens (VI-19.29 pg.343)

**VI-19.29 SyzOfGens**

\textbf{syntax}

SyzOfGens(M:IDEAL, MODULE, or TAGGED("Quotient")):MODULE

\textbf{Description}

If M is an ideal or module, this function calculates the syzygy module for the given set of generators of M. If M is a quotient of a ring by an ideal I or a quotient of a free module by a submodule N, then this function calculates the syzygy module for the given set of generators of I or N, respectively.

The coefficient ring must be a field.

\textbf{example}

Use R := Q[x,y];
I := Ideal(x,y,x+y);
SyzOfGens(I);
Module([I[1, 1, -1], [y, -x, 0]])
-------------------------------

\textbf{See Also:} Syz (VI-19.27 pg.342), SyzMinGens (VI-19.28 pg.343)
Chapter VI-20

T

VI-20.1 Tag

**syntax**

\[
\text{Tag}(E: \text{OBJECT}): \text{STRING}
\]

**Description**

If \( E \) is a tagged object, this function returns the tag of \( E \); otherwise, it returns the empty string.

**example**

\[
\begin{align*}
L & := \text{Tagged}(3, "MyTag") ; \\
\text{Type}(L) ; \\
\text{TAGGED}("MyTag") \\
\text{Tag}(L) ; \\
\text{MyTag}
\end{align*}
\]

**See Also:** Tagged Printing (III-7.6 pg. 63), Tagged (VI-20.2 pg. 345), Untagged (VI-21.3 pg. 352)

VI-20.2 Tagged

**syntax**

\[
\text{Tagged}(E: \text{OBJECT}, S: \text{STRING}): \text{TAGGED}(S)
\]

**Description**

This first function returns the object \( E \), tagged with the string \( S \). Tagging is used for pretty printing of objects.

**example**

\[
\begin{align*}
L & := \lfloor 1, 2, 3 \rfloor ; \\
M & := \text{Tagged}(L, "MyTag") ; \\
\text{Type}(L) ; \\
\text{LIST} \\
\text{Type}(M) ; \\
\text{TAGGED}("MyTag") \\
\text{Type}(\text{Untagged}(M)) ; \\
\text{LIST}
\end{align*}
\]

**See Also:** Tagged Printing (III-7.6 pg. 63), Tag (VI-20.1 pg. 345), Untagged (VI-21.3 pg. 352)
VI-20.3 Tail

**syntax**

Tail(L:LIST):OBJECT

**Description**

This function returns the list obtained from L by removing its first element. It cannot be applied to the empty list.

**example**

Tail([1,2,3]);
[2, 3]

---

**See Also:** First (VI-6.6 pg.203), Head (VI-8.13 pg.229), Last (VI-12.1 pg.263)

VI-20.4 TensorMat

**syntax**

TensorMat(M:Mat, N:Mat):MAT

**Description**

This function returns the tensor product of two matrices.

**example**

Use R ::= Q[x,y,z,w];
TensorMat(Mat([[1,-1],[2,-2],[3,-3]]),Mat([[x,y],[z,w]]));
Mat([x, y, -x, -y],
[z, w, -z, -w],
[2x, 2y, -2x, -2y],
[2z, 2w, -2z, -2w],
[3x, 3y, -3x, -3y],
[3z, 3w, -3z, -3w])

---

VI-20.5 Toric

**syntax**

Toric(L:LIST of BINOMIAL):IDEAL
Toric(L:LIST of BINOMIAL,X:LIST of INDETS):IDEAL
Toric(M:MAT or LIST of LIST):IDEAL

where M is a matrix of integers with no zero column. Elements of L must be homogeneous (w.r.t. the first row of the weights matrix).

**Description**

These functions return the saturation of an ideal, I, generated by binomials. In the first two cases, I is the ideal generated by the binomials in L. To describe the ideal in the last case, let K be the integral elements in the kernel of M. For each k in K, we can write \( k = k(+) - k(-) \) where the i-th component of \( k(+) \) is the i-th component of \( k \), if positive, otherwise zero. Then I is the ideal generated by the binomials \( x^k(+) - x^k(-) \) as \( k \) ranges over K. Note: successive calls to this last form of the function may produce different generators for the saturation.

The first and third functions return the saturation of I. For the second function, if the saturation of I with respect to the variables in X happens to equal the saturation of I, then the saturation of I is returned. Otherwise,
an ideal *containing* the saturation with respect to the given variables is returned. The point is that if one
knows, a priori, that the saturation of I can be obtained by saturating with respect to a subset of the variables,
the second function may be used to save time.

For more details, see the article: A.M. Bigatti, R. La Scala, L. Robbiano, “Computing Toric Ideals,” Preprint
(1998). The article describes three different algorithms; the one implemented in CoCoA is “EATT”. The first
two examples below are motivated by B. Sturmfels, “Groebner Bases and Convex Polytopes,” Chapter 6, p. 51.
They count the number of homogeneous primitive partition identities of degrees 8 and 9.

```plaintext
example
Use Q[x[1..8],y[1..8]];
BL := Toric(HPPI8, [x[1],y[2]]);
Len(BL.Gens);
340

Use Q[x[1..9],y[1..9]];
BL := Toric(HPPI9, [x[1],y[2]]);
Len(BL.Gens);

798

Use R ::= Q[x,y,z,w];
Toric(Ideal(xz-y^2, xw-yz));
Ideal(-y^2 + xz, -yz + xw, z^2 - yw)

Toric(Mat([[1,3,2],[3,4,8]]));
Ideal(-x'16 + y'2z'5)

Toric(Mat([[1,3,2],[3,4,8]]));
Ideal(-x'16 + y'2z'5)

```

See Also: Toric.CheckInput (VI-20.6 pg.347)

### VI-20.6 Toric.CheckInput

**Syntax**

Toric.CheckInput(E:OBJECT):BOOL  
Toric.CheckInput(E:OBJECT,X:LIST):BOOL

**Description**

This function checks if E or (E,X) is suitable input for “Toric” (VI-20.5 pg.346). Thus, E should be either a
list of homogeneous binomials (without coefficients) or a matrix of non-negative integers. In the former case, X
must be a list of indeterminates (in the latter, X would be ignored by “Toric” (VI-20.5 pg.346) anyway).

```plaintext
example
Use R ::= Q[x,y,z];
Toric.CheckInput([[1,2,3,4],[4,5,6,7]]);
```
TRUE
-------------------------------
Toric.CheckInput([[\(-1,2\),\([3,4]\)];
ERROR: entries must be non-negative integers
CONTEXT: Return(Error(Toric_IntMatrix))
-------------------------------
Toric.CheckInput([xy-z^2,x^3-y^2z]);
TRUE
-------------------------------
Toric.CheckInput([3xy-z^2,x^3-y^2z]); -- the binomials should not
--- have coefficients
ERROR: generators must be of type: power-product - power-product
CONTEXT: Return(Error(Toric_PP))
-------------------------------
Toric.CheckInput([xy-z^2,x^3-y^2z],[x]);
TRUE
-------------------------------

See Also: Toric (VI-20.5 pg.346)

VI-20.7 Transposed

syntax
Transposed(M:MAT):MAT

Description
This function returns the transpose of the matrix M.

element
M := Mat([[1,2,3],[4,5,6]]);
M;
Mat([ [1, 2, 3], [4, 5, 6] ])
-------------------------------
Transposed(M);
Mat([ [1, 4], [2, 5], [3, 6] ])
-------------------------------

VI-20.8 Tuples

syntax
Tuples(S:LIST, N:INT):LIST

Description
This function computes all N-tuples with entries in S. It is equivalent to “S \times S \times \ldots \times S” [N times].

element
Tuples([1, 4, 7], 2);
[[1, 1], [1, 4], [1, 7], [4, 1], [4, 4], [4, 7], [7, 1], [7, 4], [7, 7]]
-------------------------------
**VI-20.9 Type**

**syntax**

```plaintext
Type(E:OBJECT):TYPE
```

**Description**

This function returns the data type of E. The function “Types” (VI-20.11 pg.350) returns the list of CoCoA data types.

**example**

```plaintext
Define CollectInts(L)
 Result := [];,
 Foreach X In L Do
 If Type(X) = INT Then Append(Result,X) EndIf
 EndForeach;
 Return Result
EndDefine;
CollectInts([1,"a",2,"b",3,"c"]);
[1, 2, 3]

Type(Type(INT)); -- Type returns a value of type TYPE
TYPE

Types();
[NULL, BOOL, STRING, TYPE, ERROR, RECORD, DEVICE, INT, RAT, ZMOD,
POLY, RATFUN, VECTOR, IDEAL, MODULE, MAT, LIST, RING, TAGGED(""),
FUNCTION]

```

**See Also:** Data Types (III-2.6 pg.48), Types (VI-20.11 pg.350)

**VI-20.10 TypeOfCoeffs**

**syntax**

```plaintext
TypeOfCoeffs():TYPE
```

**Description**

This function returns the type of the coefficients of the current ring.

**example**

```plaintext
Use R ::= Q[x,y,z];
.TypeOfCoeffs();
RAT

Use S ::= Z/(2)[t];
.TypeOfCoeffs();
ZMOD

```

**See Also:** Characteristic (VI-3.7 pg.172), Coefficients (VI-3.15 pg.175), CurrentRing (VI-3.26 pg.180), Indets (VI-9.15 pg.246)
VI-20.11 Types

**syntax**

Types()

**Description**

This function lists all CoCoA data types.

**example**

Types();
[NULL, BOOL, STRING, TYPE, ERROR, RECORD, DEVICE, INT, RAT, ZMOD,
POLY, RATFUN, VECTOR, IDEAL, MODULE, MAT, LIST, RING, TAGGED('"'),
FUNCTION]
---------------------------------

**See Also:** Data Types (III-2.6 pg.48), Type (VI-20.9 pg.349)
Chapter VI-21

U

VI-21.1 UnivariateIndetIndex

**syntax**

UnivariateIndetIndex(F: POLY): INT

**Description**

This function returns 0 if the polynomial F is not univariate otherwise it returns the indeterminate index of F.

NB: If F is a constant, it returns 1.

**example**

Use Q[x,y];
UnivariateIndetIndex(3x^4-2x-1);
1
--------------------
UnivariateIndetIndex(x-y-1);
0
--------------------
UnivariateIndetIndex(3);
1
--------------------

See Also: Indet (VI-9.11 pg.244), IndetInd (VI-9.12 pg.245), IndetIndex (VI-9.13 pg.245), IndetName (VI-9.14 pg.245), Indets (VI-9.15 pg.246), NumIndets (VI-14.24 pg.298)

VI-21.2 Unset

**syntax**

Set O
Set O := B:BOOL
UnSet O

where O is a panel option.

**Description**

The command “Set” in its first form sets a panel option to TRUE. The command “UnSet” sets a panel option to FALSE. The command “Set” in the second-listed form can be used to set an option to TRUE or FALSE. A list of panels is returned by “Panels()”, and a list of panel options for a panel with name P is printed by “Panel(P)”. The current status of an option is returned by “Option” (VI-15.7 pg.302).

**example**

Panel(GROEBNER);
NOTE: there is also a function called “MakeSet” which takes a list obtained by removing duplicate elements. The search key for that function in online help is “MakeSet” (VI-13.2 pg.273) and the search key for the present command is “Unset”.

See Also: Introduction to Panels (V-1.1 pg.139), Panel (VI-16.2 pg.305), Option (VI-15.7 pg.302), Panels (VI-16.3 pg.306)

VI-21.3 Untagged

Syntax

Untagged(E:TAGGED_OBJECT):UNTAGGED_OBJECT

Description

This function strips an object E of its tag, if any. “E” is equivalent to “Untagged(E)”.

Tags are used for pretty printing of objects. See the reference listed below.

Example

L := [1,2,3];
M := Tagged(L,"MyTag");
Type(L);
LIST
-----------------------------------
Type(M);
TAGGED("MyTag")
-----------------------------------
Type(Untagged(M));
LIST
-----------------------------------

See Also: Tagged Printing (III-7.6 pg.63), Tag (VI-20.1 pg.345), Tagged (VI-20.2 pg.345), Shortcuts (VI-0.1 pg.155)

VI-21.4 Use

Syntax

Use N

where N is either the identifier of an existing ring or a ring itself.
VI-21.5. Using

**Description**

This command makes a ring active, i.e. makes a ring the current ring. The command “Use N ::= E;” where E is a ring, is a shorthand for “N ::= E; Use N; ”

If you want to change the ring inside a function you should call “Using” (VI-21.5 pg.353) instead.

```
example

Use S ::= Q[x,y,z];
RingEnv();
S

T ::= Z/(3)[a,b];
Use T;
RingEnv();
T

Use Q[u]; -- note that "Use" can be used w/out a ring identifier
RingEnv();
CurrentRingEnv

CurrentRing();
Q[u]

```

See Also: Accessing Other Rings (IV-8.11 pg.108), Using (VI-21.5 pg.353)

**VI-21.5 Using**

**syntax**

Using R Do C EndUsing

where R is the identifier for a ring and C is a sequence of commands.

**Description**

Suppose S is the current ring and R is another ring, then

```
Using R Do
 C;
EndUsing;
```

is equivalent to

```
Use R;
C;
Use S;
```

example

```
Use S ::= Q[x,y]; -- the current ring is S
R ::= Q[a,b,c]; -- another ring
Using R Do Indets(); EndUsing;
[a, b, c]

```

Note: “Using Q[a,b] Do ... EndUsing;” will produce an error: you need to name the polynomial ring.

See Also: Accessing Other Rings (IV-8.11 pg.108), Use (VI-21.4 pg.352)
Chapter VI-22

V

VI-22.1 Var

<table>
<thead>
<tr>
<th>syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var X</td>
</tr>
<tr>
<td>Var(X)</td>
</tr>
<tr>
<td>Var(S:STRING)</td>
</tr>
</tbody>
</table>

where X is the identifier of a CoCoA variable.

Description

In the first and second form “Var” is used as a formal parameter to a user-defined function. It is used to pass a variable—not its value—to the user-defined function. The following example should make the difference clear.

```
example
Define CallByRef(Var L) -- "call by reference": The variable referred
 L := "new value"; -- to by L is changed.
EndDefine;
M := "old value";
CallByRef(M);
M;
new value

Define CallByVal(L) -- "call by value": The value of L is passed to
 L := "new value"; -- the function.
 Return L;
EndDefine;
L := "old value";
CallByVal(L);
new value

L;
old value.
```

In the third form, Var(S), references the value of the variable or ring whose identifier is S:

```
example
Var("a string") := 6;
Var("a string");
6

P := Record[Name = "test", Value = 1];
X := "Name";
```
P.Var(X);
test
-----------------------------------
Var("myring") := Q[a,b];
Var("myring");
Q[a,b]
-----------------------------------
Using Var("myring") Do (a+b)^2 EndUsing;
a^2 + 2ab + b^2
-----------------------------------

See Also: Define (VI-4.4 pg.182), RingEnv (VI-18.23 pg.326)

VI-22.2 Vector syntax

Vector(F_1:POLY,...,F_n:POLY):VECTOR
Vector(L:LIST):VECTOR

where L is a list of polynomials.

Description

The first form returns the vector with components “F_1,...,F_n”; the second form returns the vector whose components are the components of the list L.

example

Use R ::= Q[x];
V := Vector(1,x,x^2);
Type(V);
VECTOR
-----------------------------------
Vector([1+x, x, x^2]);
Vector(x + 1, x, x^2)
-----------------------------------
Chapter VI-23

W

VI-23.1 WeightsList

Syntax
WeightsList():LIST

Description
This function returns the first row of the weights matrix for the current ring as a list.

Example
Use R ::= Q[t,x,y,z];
WeightsList();
[1, 1, 1, 1]

Use R ::= Q[t,x,y,z], Weights(1,3,5,2);
WeightsList();
[1, 3, 5, 2]

Use R ::= Q[x,y], Weights(Mat([[1,2],[3,4],[5,6]]));
WeightsList();
[1, 2]

See Also: Deg (VI-4.5 pg.184), MDeg (VI-13.10 pg.278), Weights Modifier (IV-8.5 pg.105), WeightsMatrix (VI-23.2 pg.357)

VI-23.2 WeightsMatrix

Syntax
WeightsMatrix():MAT

Description
This function returns the weights matrix for the current ring.

Example
Use R ::= Q[x,y], Weights(Mat([[1,2],[3,4],[5,6]]));
WeightsMatrix();
Mat(
    [1, 2],
    [3, 4],
    [5, 6]
)

357
Chapter VI-23.

See Also: Deg (VI-4.5 pg.184), MDeg (VI-13.10 pg.278), Weights Modifier (IV-8.5 pg.105), WeightsList (VI-23.1 pg.357)

VI-23.3 While

syntax

While B Do C EndWhile

where B is a boolean expression and C is a sequence of commands.

Description

The command sequence C is repeated until B evaluates to FALSE.

example

N := 0;
While N <= 5 Do
  PrintLn(2, "^", N, " = ", 2^N);
  N := N+1;
EndWhile;
2^0 = 1
2^1 = 2
2^2 = 4
2^3 = 8
2^4 = 16
2^5 = 32

See Also: For (VI-6.12 pg.206), Foreach (VI-6.13 pg.207), Repeat (VI-18.14 pg.321)

VI-23.4 WithoutNth

syntax

WithoutNth(L:LIST,N:INT):LIST

Description

This function returns the list obtained by removing the N-th component of the list L. The list L is not affected (as opposed to the command “Remove” (VI-18.13 pg.321)).

example

L := [1,2,3,4,5];
WithoutNth(L,3);
[1, 2, 4, 5]

See Also: Insert (VI-9.16 pg.246), Remove (VI-18.13 pg.321)
VI-23.5  WLog

syntax

WLog(F:POLY):LIST of INT

Description

This function returns the weighted list of exponents of the leading term of F, as determined by the first row of the weights matrix. Thus, if all the weights are 1, this function returns the same thing as “Log(F)”.

example

Use R ::= Q[x,y];
F := x^2-y;
WLog(F);
[2, 0]
---------------------
Use R ::= Q[x,y], Weights(2,3);
F := x^2-y;
WLog(F);
[4, 0]
---------------------

See Also: Log (VI-12.12 pg.269)
Chapter VI-24

X

VI-24.1 XelMat

**syntax**

XelMat(N:INTEGER):MAT

**Description**

This function returns the matrix defining a standard term-ordering.

**example**

```
XelMat(3);
Mat([
 [0, 0, 1],
 [0, 1, 0],
 [1, 0, 0]
])
```

**See Also:** Ord (VI-15.8 pg.302), Orderings (IV-8.6 pg.106), DegRevLexMat (VI-4.7 pg.185), DegLexMat (VI-4.6 pg.184), LexMat (VI-12.6 pg.266), RevLexMat (VI-18.21 pg.325)
Z

VI-25.1 ZPQ

The function "ZPQ" maps a polynomial with finite field coefficients into one with rational (actually, integer) coefficients. It is not uniquely defined mathematically, and currently for each coefficient the least non-negative equivalent integer is chosen. Users should not rely on this choice, though any change will be documented.

See "QZP" (VI-17.3 pg.314) for more details.

example

Use R ::= Q[x,y,z];
F := 1/2*x^3 + 34/567*x*y*z - 890; -- a poly with rational coefficients
Use S ::= Z/(101)[x,y,z];
QZP(F); -- compute its image with coeffs in Z/(101)
-50x^3 - 19xyz + 19
-------------------------------
G := It;
Use R;
ZPQ(G); -- now map that result back to Q[x,y,z] it is NOT the same as F...
51x^3 + 82xyz + 19
-------------------------------

See Also: Accessing Other Rings (IV-8.11 pg.108), BringIn (VI-2.9 pg.167), Image (VI-9.9 pg.242), Ring Mappings: the Image Function (IV-8.12 pg.109)