up previous next
 ReducedGBasis

compute reduced Groebner basis
 Syntax
 ``` ReducedGBasis(M:IDEAL, MODULE, or TAGGED("Quotient")):LIST ```

 Description
If M is an ideal or module, this function returns a list whose components form a reduced Groebner basis for M with respect to the term-ordering of the polynomial ring of M. If M is a quotient of a ring by an ideal I or of a free module by a submodule N, then the Groebner basis for M is defined to be that of I or N, respectively.

 Example
 ``` Use R ::= QQ[t,x,y,z]; I := Ideal(t^3-x,t^4-y,t^5-z); \$gb.Start_GBasis(I); -- start the Interactive Groebner Framework \$gb.Step(I); -- take one step towards computing the Groebner basis I.GBasis; -- the Groebner basis so far [t^3 - x] ------------------------------- \$gb.Complete(I); -- finish the computation I.GBasis; [t^3 - x, -tx + y, -ty + z, -y^2 + xz, -x^2 + tz, t^2z - xy] ------------------------------- ReducedGBasis(I); [t^3 - x, tx - y, ty - z, y^2 - xz, x^2 - tz, t^2z - xy] ------------------------------- ```