up previous next

compute reduced Groebner basis

ReducedGBasis(M:IDEAL, MODULE, or TAGGED("Quotient")):LIST

If M is an ideal or module, this function returns a list whose components form a reduced Groebner basis for M with respect to the term-ordering of the polynomial ring of M. If M is a quotient of a ring by an ideal I or of a free module by a submodule N, then the Groebner basis for M is defined to be that of I or N, respectively.

  Use R ::= QQ[t,x,y,z];
  I := Ideal(t^3-x,t^4-y,t^5-z);
  $gb.Start_GBasis(I);  -- start the Interactive Groebner Framework
  $gb.Step(I);  -- take one step towards computing the Groebner basis
  I.GBasis;  -- the Groebner basis so far
[t^3 - x]
  $gb.Complete(I);  -- finish the computation
[t^3 - x, -tx + y, -ty + z, -y^2 + xz, -x^2 + tz, t^2z - xy]
[t^3 - x, tx - y, ty - z, y^2 - xz, x^2 - tz, t^2z - xy]

See Also