up previous next
 Minimalized

remove redundant generators
 Syntax
 ``` Minimalized(E:IDEAL):IDEAL Minimalized(E:MODULE):MODULE where X is a variable containing an ideal or module. ```

 Description
In the inhomogeneous case it returns the ideal or module obtained by removing redundant generators from E.

In the homogeneous case, it obtains a generating set with smallest possible cardinality. The minimal set of generators found by CoCoA is not necessarily a subset of the given generators. It returns the minimalized ideal or module.

The coefficient ring is assumed to be a field.

The similar function Minimalize performs the same operation, but modifies the argument and returns NULL.

 Example
 ``` Use R ::= QQ[x,y,z]; I := Ideal(x-y^2,z-y^5,x^5-z^2); I; Ideal(-y^2 + x, -y^5 + z, x^5 - z^2) ------------------------------- Minimalized(I); Ideal(-y^2 + x, -y^5 + z) ------------------------------- I; Ideal(-y^2 + x, -y^5 + z, x^5 - z^2) ------------------------------- Minimalize(I); I; Ideal(-y^2 + x, -y^5 + z) ------------------------------- J := Ideal(x, x-y, y-z, z^2); Minimalized(J); Ideal(y - z, x - z, z) ------------------------------- ```