up previous next
 MinGens

list minimal generators
 Syntax
 ``` MinGens(M:IDEAL or MODULE or TAGGED("Quotient")):LIST ```

 Description
If M is an ideal or module, this function returns a list of minimal generators for M. If M is the quotient of a polynomial ring by an ideal I or the quotient of a free module by the submodule N, then MinGens returns a set of minimal generators for I or N, respectively.

The coefficient ring must be a field.

The input must be homogeneous. The similar command Minimalized , will accept inhomogeneous input.

 Example
 ``` Use R ::= QQ[x,y,z]; I := Ideal(x-y,(x-y)^4,z+y,(z+y)^2); I; Ideal(x - y, x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4, y + z, y^2 + 2yz + z^2) ------------------------------- MinGens(I); [y + z, x + z] ------------------------------- MinGens(R/I); [y + z, x + z] ------------------------------- M :=Module([x+y,x-y],[(x+y)^2,(x+y)(x-y)]); MinGens(M); [Vector(x + y, x - y)] ------------------------------- MinGens(R^2/M); [Vector(x + y, x - y)] ------------------------------- ```