up previous next
2.9.7 Quotient Rings
If R is a ring and I is an ideal (in R ) then R/I creates the corresponding quotient ring. There is a convenient shorthand for quotients of ZZ .

Example
/**/  use ZZ/(11)[x];
/**/  (x+3)^11;
x^11 + 3
/**/  use R ::= QQ[x,y];
/**/  I := ideal(x^3+y^3, x^2*y-y^2*x);
/**/  Q := R/I;
/**/  HilbertFn(Q);  -- the Hilbert function for Q
H(0) = 1
H(1) = 2
H(2) = 3
H(3) = 2
H(4) = 1
H(t) = 0   for t >= 5