
The Veronese Varieties

These varieties are based on the structure of the polynomial ring Sym(V ∗) =

R = C[x0, . . . , xn] = ⊕d≥0Rd.

There is a very simple function

Pn = P(R1) −→ P(Rd) = PN , N =
(

d+n
n

)

− 1,

[L] −→ [Ld]

Definition: The image of this map is a projective variety of dimension n called

the dth-Veronese embedding of Pn.

(Hartshorne calls this the d-uple embedding of Pn).

Example: Let’s look at the case: n = 1, d = 3. We have R = C[x0, x1] and the

map is

[a0x0 + a1x2] −→ [(a0x0 + a1x2)
3]

= [a3
0x

3
0 + 3a2

0a1x
2
0x1 + 3a0a

2
1x0x

2
1 + a3

1x
3
1]
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If we use as a basis for Rd the monomials of degree d and order them

lexicographically and write things with respect to coordinates we get that the

map is defined by:

[a0 : a1] −→ [a3
0 : 3a2

0a1 : 3a0a
2
1 : a3

1]

Notice that by performing a collineation on P3 we can change the image to

[a3
0 : a2

0a1 : a0a
2
1 : a3

1]

Oftentimes this is the may the Veronese embeddings are defined, namely:

take all of the monomials of degree d in R and order them lexicographically. Call

them

M0,M1, . . . ,MN

with N as above. The embedding can be described by

P = [a0 : . . . : an] −→ [M0(P ) : M1(P ) : . . . : MN (P )]
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It is clear that the two methods of describing the Veronese embeddings are

equivalent in characteristic zero.

The Quadratic Veronese Embeddings

These are a very nice special case which I would like to study first. We have

R = C[x0, . . . , xn], and

Pn = P(R1) −→ P(R2) = Ps, s =
(

d+2
2

)

− 1

[L] −→ [L2]

We denote the image by V2,n. So, the Veronese variety consists of forms of degree

2 which are the square of a linear form. What do the various secant varieties of

it look like?

Clearly, [F ] belongs to the secant line which connects the point P0 = [L2
0]

to the point P1 = [L2
1] if and only if F = [α0L

2
0 + α1L

2
1]. More generally, [F ]
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belongs to a secant Pr to V2,n if and only if

F = β0N
2
0 + . . . + βrN

2
r , where βi ∈ C, Ni ∈ R1.

But, it is well known that the quadratic polynomials in

C[x0, . . . , xn] are in 1-1 correspondence with the symmetric (n + 1) × (n + 1)

matrices and that symmetric matrices are diagonalizable. What this means in

our context is that there exists a basis, L0, . . . , Ln for R1 so that with respect to

that basis the quadratic form we began with can be written

F = L2
0 + . . . + L2

t

where t + 1 is the rank of the associated symmetric matrix.

Thus, if we think of Ps (s =
(

d+2
2

)

− 1) as the projectivization of the vector

space of all (n + 1) × (n + 1) symmetric matrices, then

Sect(V2,n) = { symmetric matrices of rank ≤ t + 1}.
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I.e. these are the symmetric matrices of size (n + 1) × (n + 1) for which all the

t + 2-minors vanish.

Let’s look at the very special case of n = 2. In this case R = C[x0, x1, x2]

and the quadratic Veronese embedding of P
2 is

φ : P
2 −→ P

5

where we think of P
5 as the 3× 3 symmetric matrices, up to multiplication by a

non-zero scalar.

We have that V2,2 ⊂ P5 is a surface, isomorphic to P2. It can be described

by the ideal of all the 2 × 2 minors of the generic symmetric matrix. Sec1(V2,2)

can thus be thought of as all the 3 × 3 symmetric matrices of rank 2.

But, saying that a 3 × 3 matrix has rank 2 is equivalent to saying that

its determinant is 0. Thus Sec1(V2,2) can be described as the zeroes of the

determinant of the generic 3×3 symmetric matrix. I.e. it is a cubic hypersurface

in P5 and, as such, it has dimension 4. But, the expected dimension of Sec1(V2,2)

is min{2 · 2 + 1, 5} = 5. So, this classical variety is defective as well.
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There are many interesting things going on here. In the first place, it is not

hard to show that ALL the quadratic Veronese varieties whose secant variety is

a proper subvariety of the envelopping Ps are defective.

Interestingly enough, it is a well known theorem of Severi, that the only

smooth surface in P
5 whose secant line variety is not all of P

5 (i.e. is defective)

is V2,2.

I want to describe two further classes of projective varieties whose secant

varieties are interesting and which we would like to understand better. The

reasons for this are many but involve a combination of the fact that the results

would be interesting to understand on their own and also the solutions to these

problems have interesting applications not only in mathematics but in other

areas as well.
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The Varieties of Reducible Forms

These varieties are defined as follows: fix n ≥ 1 and consider the polynomial

ring

R = C[x0, . . . , xn] = ⊕j≥0Rj .

Fix any positive integer d > 1. A partition λ of d is a tuple of positive integers,

λ = (d1, d2, . . . , ds), where

i) d1 ≥ d2 ≥ · · · ≥ ds ;

ii)
∑s

i=1 di = d .

If λ is a partition of d we write λ ` d.

Given n, d, λ (as above) we define

Vn,λ = {[F ] ∈ P(Rd) | F = F1 · · ·Fs,deg Fi = di }.

It’s easy to see that

dimVn,λ = (
s

∑

i=1

(

di + n

n

)

) − s.
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We will see later that the joins and secant varieties of these varieties have

interesting applications to an extension of a theorem of Noether and Severi about

the existence of complete intersection subvarieties on general hypersurfaces of

degree d in P
n.

The Segre-Veronese Varieties

As the name suggests, these varieties are a mix of Segre and Veronese vari-

eties. Very little is known about them even though a knowledge of the dimensions

of the secant varieties to them has interesting applications in Algebraic Geome-

try as well as applications outside the area. Let me quickly give a description of

these varieties. I hope we will have time to mention some of the open problems

concerning them. (Perhaps in the Tutorial?)

Let

X = P
n1 × · · · × P

ns = P(V1) × · · · × P(Vs)

where dimVi = ni + 1. Let (d1, . . . , ds) be an s-tuple of positive integers.
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We define a map

φ : X
(d1,...,ds)
−→ P(Symd1

(V1) ⊗ · · · ⊗ Symds
(Vs))

by taking the composition of the appropriate Veronese maps into the product

and then following it by the Segre map to the tensor product.

E.g. Consider P1 ×P1 (2,2)
−→ P(Sym2(V1)⊗Sym2(V2)). We will suppose that

V1 = 〈x0, x1〉 and V2 = 〈y0, y1〉. The the map (2, 2) is given by:

[x0 : x1] × [y0, y1] −→ [x2
0 : x0x1 : x2

1] × [y2
0 : y0y1 : y2

1] −→

[x2
0 ⊗ y2

0 : x2
0 ⊗ y0y1 : x2

0 ⊗ y2
1 : . . . : x2

1 ⊗ y2
0 : x2

1 ⊗ y0y1 : x2
1 ⊗ y2

1 ]

(which is in P
8).

We can look at this (as we did earlier) as giving us a 3 × 3 matrix, whose

entries are all the monomials in the two sets of variables x0, x1, y0, y1 of bi-degree

(2, 2).
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The Search for the dimensions of Joins and Secant Varieties

Up to this stage we have used rather ad-hoc methods for trying to figure

out the dimensions of the higher order secant varieties to some simple varieties.

I would like to now explain a method that we can use very generally, that is

the major tool which gets us started in trying to find the dimensions of Secant

Varieties. This is the Lemma of Terracini. (Alessandro Terracini (1889-1968)

was an Italian mathematician who shortly after obtaining a cattedra at the Uni-

versity of Torino was forced to leave Italy in 1938. He went to live in Argentina

but returned to Italy in 1948. He was, by this time, greatly appreciated by the

Italian mathematical community which reveled in his return.)

Terracini’s Lemma is really an observation that he made about the tangent

space to a general point on a join. Of course, if our varieties are not too bad,

the general point on the join will be a smooth point, and assuming again that

our varieties are connected, the joins will be connected as well. Consequently,

knowing the dimension of the tangent space at a general point of the join is the
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same thing as knowing the dimension of the join.

So, let Xi, i = 0, . . . , s (s < n) be a family of non-degenerate varieties in Pn

of dimensions di. If Pi ∈ Xi is a general point of Xi and TPi,Xi
is the projectivized

tangent space to Xi at Pi, then:

if P ∈ P
s =< P0, . . . , Ps >⊂ J(X0, . . . , Xs) = Y, is a general point

of Y we have that

TP,Y = 〈TP0,X0
, . . . , TPs,Xs

〉

i.e. the projective space spanned by these tangent spaces.

This is Terracini’s Lemma; it provides us with a method to find the dimen-

sions of the various joins we have defined, assuming of course that we are able

to calculate the tangent spaces at general points of our varieties and then figure

out the dimension of the linear space they span.

It is an easy exercise (which I suggest you try) to see that dim J(X0, . . . , Xs)

is the expected dimension (i.e. is s +
∑s

i=0 dim Xi if this is ≤ n) precisely when
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these different tangent spaces don’t intersect at all. So, the expected dimension

depends on a “general position” argument for tangent spaces at points of our

varieties.

Thus, in order to apply Terracini’s Lemma we will have to figure out a way

to find these various tangent spaces.

Let’s begin with one of the last families of varieties I introduced above, the

varieties of reducible forms. In some sense their tangent spaces are the easiest

to understand and it will give us a clue as to how to confront the same kind of

problem for the other varieties.

Let Vλ,n ⊂ P(Rd), R = C[x0, . . . , xn], λ = (d1, . . . , ds),
∑s

i=1 di = d. Let P

be a point in Vλ,n. Then, without loss of generality we can suppose that

P = [F ], F = F1F2 · · ·Fs, deg Fi = di, Fi all irreducible.

How do we find TP,Vλ,n
?
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It will be easier to calculate the tangent space to the point F on the affine

cone over Vλ,n, i.e. in the affine space Rd.

Recall that we have a map

C
` = Rd1

× · · · × Rds
−→ Rd, ` =

∑s
i=1

(

di+n
n

)

(G1, · · · , Gs) −→ G1 · · ·Gs

We are interested in the tangent space at the image of the point (F1, . . . , Fs) ∈ C`.

Recall that all the vectors in the tangent space at the point F1 · · ·Fs (in the

image of this map) are the tangent vectors to the images of curves in C` which

pass through (F1, . . . , Fs) in all the directions permitted by the tangent space to

C` at that point.

So, what we have to do is find curves through (F1, . . . , Fs) which have all

possible tangent vectors, take their images under the map above and calculate

the tangent vectors to those images at the point F1 · · ·Fs.

At any point of C`, the tangent space is precisely C` and so we can represent
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every direction from (F1, F2, . . . , Fs) by a tuple (F ′
1, F

′
s, . . . , F

′
s) and the curve

with that tangent direction is nothing more than the parametrized line

(F1, F2, . . . , Fs) + t(F ′
1, F

′
2, . . . , F

′
s)

The image of this curve is the parametrized curve

(F1 + tF ′
1)(F2 + tF ′

2) · · · (Fs + tF ′
s).

and, by Taylor’s Theorem, it’s tangent vector at the point F1F2 · · ·Fs is the

coefficient of t in the equation of the curve.

That coefficient is nothing other than

s
∑

i=1

F1 · · ·Fi−1F
′
iFi+1 · · ·Fs .

I.e. the affine tangent space to the cone over Vλ,n at the point F =

F1F2 · · ·Fs is the following subspace of Rd,

Rd1
(F2 · · ·Fs) + Rd2

(F1F3 · · ·Fs) + · · · + Rds
(F1F2 · · ·Fs−1) ,
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i.e. the degree d homogeneous piece of the ideal

I = (F2 · · ·Fs, F1F3 · · ·Fs, . . . , F1F2 · · ·Fs−1) .

Passing to the projectivized tangent space, we get that

dimVλ,n = dimTP,Vλ,n
= dim Id − 1.

But, more important than knowing the dimension of Vλ,n (which we already

knew!) is the fact that we now have the tools available to use Terracini’s Lemma.

Let’s now do that for some special varieties of reducible forms. In particular,

let λ0, . . . , λs be partitions of d into 2 parts, i.e.

λ0 = (d01, d02), . . . , λs = (ds1, ds2) .

and let Xi = Vλi,n.
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I would like to find the dimension of

J = J(X0, . . . , Xs) ⊂ P(Rd).

From what we just discovered above, it is enough to consider the ideal

I = (F01, F02, . . . , Fs1, Fs2)

where Fi0, Fi1 are general forms having degrees, respectively, di0, di1, and figure

out how big this ideal is in degree d.

It turns out that there is a very well known conjecture (due to Ralf Froberg)

whose solution would answer this question. To explain Froberg’s conjecture I

want to remind you of another definition.

Let R = C[x0, . . . , xn] = ⊕t≥0Rt, let I be a homogeneous ideal of R and set

A = R/I = ⊕t≥0At = ⊕t≥0(Rt/It).
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Definition: The Hilbert function of A, HA : N −→ N is the function

HA(r) = dimC(Ar).

We know dimC(Rd) =
(

d+n
n

)

, so knowing HA(d) is equivalent to knowing

dimC(Id).

Froberg’s Conjecture says more than what we want to know. His conjecture

is the following:

Let H1, . . . ,Ht be generic forms in R, deg Hi = di. Then, for each i ≤ t,

the linear transformations

Hi : R/(H1, . . . ,Hi−1)s −→ R/(H1, . . . ,Hi−1)di+s

is of maximal rank for every s and every i.

It is a simple matter (complicated arithmetic, however) to go from this

statement to a statement about the Hilbert function of A = R/(H1, . . . ,Ht).
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Since that was what we needed to know to find the dimension of the join

J above, this is an interesting connection between an algebraic and a geometric

problem. (Mention the work with Carlini and Chiantini)

Calculating the Secant Varieties of the Veronese Varieties

Recall that in the case of the Veronese varieties we had R = C[x0, . . . , xn] =

⊕d≥0Rd and that the dth Veronese variety was the image of the map

P
n = P(R1)

νd−→ P(Rd) = P
N , N =

(

d+n
n

)

− 1

[L] −→ [Ld]

Having acquired some expertise in the earlier case, let’s pick L ∈ Cn+1, since

the tangent space to L in Cn+1 is Cn+1, we need to find lines through L in all

these directions. Such a direction is given by an M ∈ Cn+1 (which we can think

of as a linear form). So, the lines we need to look at, through L, are

L + tM, t ∈ C,M ∈ R1.
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Under νd, these lines are sent to (L + tM)d, which we can expand as

Ld + t(Ld−1M) + t2(Ld−2M2) + ...

from which we see that the tangent space to Ld consists of all forms of the type

MLd−1, M ∈ R1.

So, if we are interested in knowing e.g. dimSect(νd(Pn)) we need to know

the dimension of the vector space

R1L
d−1
0 + R1L

d−1
1 + · · · + R1L

d−1
t

where L0, L1, . . . , Lt are a general set of t +1 linear forms. I.e. we need to know

the size of the ideal

I = (Ld−1
0 , . . . , Ld−1

t )

in degree d.

This turns out to not be such an easy problem to confront, and I would

like to now explain another way to approach this problem. To do that I need to

explain something about Macaulay’s Inverse System.
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