up previous next
saturate    --    saturation of ideals


Syntax
saturate(I: IDEAL, J: IDEAL): IDEAL

Description
This function returns the saturation of I with respect to J: the ideal of polynomials f such that f*g is in I for all g in J^k for some positive integer k.

The coefficient ring must be a field.

Example
/**/  use R ::= QQ[x,y,z];
/**/  I := ideal(x-z, y-2*z);
/**/  J := ideal(x-2*z, y-z);
/**/  K := intersection(I, J); -- ideal of two points in the
                               -- projective plane
/**/  L := intersection(K, ideal(x,y,z)^3); -- add an irrelevant component
/**/  HilbertFn(R/L);
H(0) = 1
H(1) = 3
H(2) = 6
H(t) = 2   for t >= 3

/**/  saturate(L, ideal(x,y,z)) = K; -- saturating gets rid of the
                                     -- irrelevant component
true

See Also